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Abstract
With the Bass model and data of previous sales a point estimate of future sales can be
made for the purpose of stock management. In order to obtain information about the
accuracy of that estimate a confidence interval can be of use. In this study such an
interval is constructed from a Bass model extended with a noise term. The size of the
noise is assumed to be proportional with the yearly sales. It is also assumed that the
deviation from the deterministic solution is sufficiently small to make a small noise
approximation. This perturbation takes the form of a time dependent
Ornstein–Uhlenbeck process. For the variance of the perturbation an exact expression
can be given which is needed in order to obtain confidence intervals.

Keywords: Bass model; Ornstein–Uhlenbeck process; Sensitivity of parameter to
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1 Introduction
The initial purchase of a new product is often explained in terms of innovators who buy
the product on their own initiative without being influenced by other buyers. Imitators
buy the product because others have done so. Together they form the total number of
buyers, the saturation level of a market. The Bass diffusion model [1] yields an estimate of
these metrics on the basis of sales data. The model consists of a differential equation that
relates current sales growth to past accumulated sales levels. This modelling approach has
become extremely popular, not only within the context of new-product diffusion patterns
[2–7].

Product introducing firms that have a key interest in reliable market forecasts, may face
the following fundamental challenges when using the Bass diffusion modelling approach.
First, to obtain reliable forecasts, one needs accurate measurements of the innovation
and imitation effects and of the saturation level. It has been recognized, however, that
the information content of the market data, from which one has to derive the accuracy,
may not only change over time, but may also differ among these metrics of interest [8].
Because the distribution of the information content is reflected in the sensitivity of the
market metrics with respect to the available data, its derivation is an empirical issue, for
which a proper statistical approach is needed. Furthermore, the solution of the differen-
tial equation of the Bass diffusion model yields point estimates of futures sales. From a
point estimate, however, one cannot conclude about its accuracy. A stochastic approach

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13362-019-0059-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13362-019-0059-6&domain=pdf
http://orcid.org/0000-0002-3779-6028
mailto:johan.grasman@wur.nl


Grasman and Kornelis Journal of Mathematics in Industry             (2019) 9:2 Page 2 of 10

that facilitates the construction of confidence intervals for the estimated future sales is
warranted.

In this study, the following steps can be discerned. We first consider the case that
sales data of all years are known and fit the Bass diffusion model to these data. Next,
we investigate the over-time information content of the metrics of interest. Based on
these results, we identify the minimal sample size that is needed to obtain reliable fore-
casts. For that purpose the sample may be compared with samples of similar prod-
uct introductions in the past [9]. In our approach we only use information from sales
of the product under consideration. We also did not expand the deterministic model
with additional parameters, which indeed may give rise to interesting results [3, 4, 10,
11].

We introduce a stochastic extension of the Bass model. Assuming that stochastic per-
turbations, in the form of white noise, are small, we consider solutions of this extended
model that stay in the neighbourhood of the solution of the deterministic Bass diffusion
model. Next, we compute the variance of the stochastic component of the solution which
in turn will be used for the construction of the upper and lower boundary of the confi-
dence interval for the yearly sales. Finally, we apply a forecasting approach, based upon
the previous methodological steps. Ultimately, confidence intervals for the point fore-
casts are derived. For the ease of exposition, we make use of a dataset [12] in each of
these consecutive steps. Our approach is related to that of Boswijk and Franses [8], who
apply a similar approach in their analysis of the validity of the parameter estimation pro-
cedure.

2 Methods
The Bass model, formulated as a differential equation for the product sales y(t) cumulated
over the years, takes the form

y′(t) = f
(
y(t)

)
with f (y) = (m – y)

{
p + (q/m)y

}
and y(0) = 0. (1)

The term with parameter p, called the coefficient of innovation, represents consumers
who buy the product on their own initiative without being influenced by other buyers.
The term with q, the imitation coefficient, represents consumers that buy the product
because others have done so. Finally, the parameter m denotes the total number of buyers
over the years. To illustrate our proposed methodological steps, we consider a dataset that
can be found in Lilien et al. [12]. It deals with steam iron sales and gives cumulated yearly
sales (ti, yi), i = 0, 1, . . . , n with ti = i and n = 31.

3 Estimating the parameters of the model
The model (1) is fitted to this data by using the Matlab based software package Grind
(http://www.sparcs-center.org/grind) and yields the parameter values:

m = 86.35, p = 0.00204 and q = 0.2735. (2)

In Fig. 1(a) the numerical solution of (1) with the parameter values (2) and the data points
(ti, yi) are given. If one decreases n, then at a certain value the parameter estimation pro-
cedure fails. It is due to the fact that then the information matrix gets ill-posed, so that

http://www.sparcs-center.org/grind
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Figure 1 (a) Function y(t) satisfying (1)–(2), given by the solid curve, fits the data ("). (b) Yearly sales (5) are
given by the solid curve. The dashed lines denote the boundaries of the 95% confidence region

no dependable parameter estimation can be made, see also Massiani and Gohs [5]. In this
study the parameters are estimated with linear regression. For small data sets this results
in inaccurate estimates especially for m, see also Fig. 3.

From the point of view of market decision making, one is often interested in yearly
sales:

dyi = yi+1 – yi, (3)

see Fig. 1(b). For our purpose of finding estimates of the boundaries of the confidence
intervals, it suffices to approximate dyi by the derivative y′(ti) with ti = i + 0.5. This ap-
proximation is based on a Taylor expansion of s′(t) at t = i + 0.5:

s(i + 1) – s(i) =
∫ i+1

i
s′(t) dt

=
∫ i+1

i
s′(i + 0.5) + (t – i – 0.5)s′′(i + 0.5)

+ 0.5(t – i – 0.5)2s′′′(i + 0.5) + · · · dt.

Interchanging summation and integration we obtain

s(i + 1) – s(i) = s′(i + 0.5) +
1

24
s′′′(i + 0.5) + · · · . (4)

In Fig. 2 it can be seen that the first term at the right hand side of (4) indeed approximates
the left hand side very well.
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Figure 2 Yearly sales for (1)–(2): exact values (!) for time interval (i, i + 1) given by left hand side of (4) and
approximation (F) by s′(t + 0.5) being the first term of the right hand side

Now, the exact solution of (1) is:

y(t) := s(t) = m
[

1 – exp{–(p + q)t}
1 + (q/p) exp{–(p + q)t}

]
, (5)

so that

s′(t) =
mp(p + q)2 exp{(p + q)t}

[q + p exp{(p + q)t}]2 . (6)

4 Information content of the data
When estimating parameters, using data of only a first part of the time interval of the
evolving process (e.g. for making a forecast), one must have an idea of the information
content of the data as it is used. Again, the availability of an exact solution for (1) makes
such an analysis possible. The sensitivity of the parameter m with respect to the data can
be analysed with a method presented by Kalaba and Spingarn [13]. Assuming that the
other two parameters are fixed, we determine the parameter m from a data set {ti, yi} by
minimizing the penalty function

P(m) =
n∑

i=0

{
yi – y(ti; m)

}2. (7)

The value of m for which the penalty function reaches its minimum value follows from (7)

dP
dm

=
n∑

i=0

2
{

yi – y(ti; m)
}dy(ti; m)

dm
= 0, (8)

where dy(ti; m)/dm denotes the sensitivity function of the solution with respect to the
parameter m at time ti:

S
(
y(ti; m)

)
=

dy(ti; m)
dm

= q
[
exp

{
(p + q)ti

}
– 1

]
/
[
p + q exp

{
(p + q)ti

}]
. (9)
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In a same way, we derive:

S
(
y(ti; p)

)
= mq

[
exp

{
(p + q)ti

}(
(p + q)t – 1

)
+ 1

]
/
[
p + q exp

{
(p + q)ti

}]2

and

S
(
y(ti; q)

)
= m

[
exp

{
(p + q)ti

}(
p(qti + 1) + qt2

i
)

– p
]
/
[
p + q exp

{
(p + q)ti

}]2.

It is remarked that S(y(ti; m)) is independent of m.
Next the dependence upon the data is traced by differentiating (8) with respect to yj.

This dependence comes from m as well as from of yj itself:

2

[

S
(
y(tj; m)

)
–

n∑

i=0

S
(
y(tj; m)

)2 ∂m
∂yi

]

= 0.

This results in the (reverse) sensitivity function

R(m; yj) =
∂m
∂yj

= cmS
(
y(tj; m)

)
with cm =

[ n∑

i=0

S
(
y(ti; m)

)2
]–1

.

The sensitivity R(p; yj) for parameter p is slightly more complicated because y(t; p) is non-
linear in p. Now (8) becomes

dP
dp

=
n∑

i=0

2
{

yi – y(ti; p)
}dy(ti; p)

dp
= 0, (10)

where dy(ti; p)/dp = S(y(ti; p)) being the sensitivity function of the solution with respect
to parameter p. Next the dependence upon the data is again traced by differentiating (10)
with respect to yj:

2S
(
y(tj; p)

)
+ 2

n∑

i=1

yj
∂S(y(tj; p))

∂p
∂p
∂yj

– S
(
y(ti; p)2) ∂p

∂yj
– y(ti; p)

∂S(y(ti; p))
∂p

∂p
∂yj

= 0.

This results in the sensitivity function

R(p; yj) =
∂p
∂yj

= cpS
(
y(tj; p)

)

with

cp =

[ n∑

i=0

S
(
y(ti; m)2) + y(ti; p)

∂S(y(ti; p))
∂p

– yi
∂S(y(ti; p))

∂p

]–1

.

For parameter q the same steps can be followed as for p. So, all in all, the sensitivity func-
tion

R(r; yi) =
∂r
∂yi

with r = m, p and q
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Figure 3 Sensitivity R(t) of the parametersm (solid), p (dashed) and q (dotted) for data point (t, y). See (6)

differs only a multiplicative constant from the sensitivity of the solution with respect to
the parameters which is given by

S
(
y(ti; r)

)
=

dy(ti; r)
dr

.

Instead of the above multiplicative constant we take the constant cr such that

cr =
[∫ 31

t=0
S
(
y(t; r)

)
dt

]–1

and have R(r; yj) = crS
(
y(tj; r)

)
. (11)

With this normalisation we can compare the influence of data points at different times.
This analysis shows that the early observations of the sales curve are more informative
about the internal (q) and external (p) influences, than about the saturation level (m), see
Fig. 3. From a time interval, that starts at t = 0 and ends at t = tn, dependable estimates of
the three parameters can be made for n ≥ 17. Note that t17 lies just before the inclination
point tincl of s(t), which can be derived from (6): s′′(tincl) = 0.

5 Deriving a confidence domain
Allowing model noise we are interested in the dynamics of the system near the solution
(5). More specifically, we study the adequacy of the model in the form of its associated
confidence domain. For that purpose we introduce the tangent linear equation augmented
with white noise proportional to yearly sales s′(t). Doing so, we consider the following
initial value problem

y′(t) = f
(
y(t)

)
with y(t0) = y0 (12)

having the solution y = s(t) = s(t; y0). If y0 is not exactly known, one may be interested in
the evolution of the solution for a slightly different initial value. Thus, we analyse nearby
solutions of the differential equation. Let the perturbed initial value be

y(t0) = y0 + v0. (13)



Grasman and Kornelis Journal of Mathematics in Industry             (2019) 9:2 Page 7 of 10

The perturbation evolves in time as v(t). Substitution of y(t) = s(t) + v(t) in (1) yields

s′(t) + v′(t) = f
(
s(t) + v(t)

)
= f

(
s(t)

)
+

[
f ′(y)

]
y=s(t)v(t) +

1
2
[
f ′′(y)

]
y=s(t)v(t)2 + · · · .

Note that the term at the right hand side has been developed in a Taylor expansion at
y = s(t).

Assuming that the perturbation remains small we cut off this expansion after the second
term. And, since s′(t) = f (s(t)), the equation takes the form of the tangent linear equation

v′(t) =
[
f ′(y)

]
y=s(t)v(t) + βs′(t)ξ (t) with f ′(y) = q – p – 2(q/m)y, (14)

where ξ (t) denotes standard white noise. Note that, through a different transformation,
Skiadas and Giovanis (Eq. (21) at p. 89) arrive at a similar linear equation [14].

Using Ito calculus we reformulate (14) as a time dependent Ornstein–Uhlenbeck pro-
cess, it yields the Langevin equation:

dv(t) =
[
f ′(y)

]
y=s(t)v dt + βs′(t) dW (t), (15)

see Gardiner [15]. In that study it is derived that

Var
[
v(t)

]
= β2

∫ t

0
s′(t′)2

exp

{
2
∫ t

t′
q – p – 2(q/m)s(r) dr

}
dt′ = β2Q(t). (16)

With the formula handling software package Derive 5 we obtain

Q(t) =
m2p2(p + q)4t exp{2(p + q)t}

[q + p exp{(p + q)t}]4 = ts′(t)2. (17)

Using the data the parameter β can be estimated. In (14) it is assumed that the white noise
is proportional to the yearly sales, viz. it is small at the start and end of the sales process.
Visual inspection of our dataset, however, shows substantial deviations from the model
curve in the beginning and end of the sample (see Fig. 4). Apparently, processes are at
work that were not taken up in the model. We account for the potential biasing effect of
these large relative errors, by introducing a weight function s′(ti)/(s′(t0) + · · · + s′(tn)) with
ti = i+0.5 when estimating the parameter β with least squares. Using (3) and (17) we arrive
at the penalty function

P(β) =

[ n∑

j=0

s′(tj)

]–1 n∑

i=0

s′(ti)
[(

dyi – s′(ti)
)2 – β2Q(t)

]2, (18)

which has to be minimised. It results in an estimate

β2 = 0.00141.

In Fig. 1(b) the dashed lines are the boundaries of the 95% confidence interval based on
the empirical rule [16] s′(t) ± 2 Stdev[v(t)] and the assumption that the model is perfect.
The latter is clearly not the case. Thus, we have to take in account the limited accuracy of
the stochastic model for small yearly sales.
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Figure 4 Confidence intervals for yearly sales with past and future separated by the vertical solid line t = 19
(future data unknown): (a) The function y(t) satisfying (1) and (10) is given by the solid curve fitting the data
(") for t ≤ 19. (b) The boundaries of the 95% confidence region (dashed) satisfying (9)–(11)

6 Results
Now, we arrive at the last stage of our proposed methodology in which we derive con-
fidence intervals for the point forecasts of the Bass model. Let us have data (ti, yi) with
ti = 1, 2, . . . , n. In the present example the process of estimating parameters is based on the
numerical solution of (1). This iteration process, based on least squares, only converges
for tn ≥ 17. So point estimates of future sales can only made for the years thereafter. It is
seen that at t = 17 the curve of Fig. 1(a) is just before the inclination point. The confidence
interval we may compute with (16) does only give satisfying results for t ≥ 19, just after
the inclination point. Therefore, we consider the case tn = 19. Using the data for t ≤ 19 we
obtain the following estimates for the parameters

m = 74.75, p = 0.001393 and q = 0.3209, (19)

which gives point estimates for the cumulated and yearly sales for t > 19, see respectively
Figs. 4(a) and 4(b). Now, based on (16), we obtain from the data of the past (t ≤ 18.5)

β2 = 0.00110. (20)

It leads to acceptable 95% confidence intervals up to t = 26.5 for the yearly sales. After that
we arrive in a region where s′(t) gets small bringing about larger relative errors.

7 Discussion and conclusions
In this study we introduce confidence intervals in a way different from the commonly
used definition in statistics, where a point estimate of a quantity is obtained by the mean
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of a sample of that quantity. Then a 95% confidence interval contains about 95% of the
set of data points. Here the point estimate of a quantity is obtained from a model that is
fitted with data of other quantities of the system. Consequently, if the model is not perfect,
the number of data points within the 95% confidence interval may differ more from 95%
than expected. It is noted that the confidence interval obtained from the data for t ≤ 18.5
does not differ much from the confidence interval obtained from the complete data set
(t ≤ 30.5). This is due to the fact that once the inclination point is reached, information
has been gained from low yearly sales up to high yearly sales: after the inclination point a
same route is taken in the opposite direction.

It is remarked that with the Bass model reliable future sale estimates can be made near
the inclination point. Near this point the curve of cumulated sales looks close to a straight
line. A linear forecast based on local data may result in a large overestimation of required
stocks. The Bass model quite well reduces this risk.

With respect to our empirical analysis, it is noted that both at the beginning and in the
end when yearly sales are small the model does not agree with the market observations.
Apparently, the model does not cover buying actions different from the assumed innova-
tive and imitational traits. Promotion of products or special discounts may be responsible
for such deviant behaviour.

The parameter estimation has been carried out with the numerical solution of the Bass
equation. Since this first order differential equation has a smooth solution, a high accuracy
can be achieved. The optimal values of the parameters were found using the Levenberg-
Marquardt method (MATLAB). When the information matrix is ill-posed this approxi-
mation process does not converge so that no estimate can made. In this way it is found
at which stage of the process sufficient data from the past are available in order to make
a dependable forecast. Note that with linear regression [17] highly uncertain parameter
values are found for data sets that cover only a small initial time interval. In the example
of steam iron sales the point estimate could be made just before arriving at the inclination
point and a confidence interval came within reach just after this point. If the behaviour of
the buyers does not meet the requirements of the Bass model, then the computed confi-
dence interval should be discarded. This applies to episodes with low yearly sales at the
beginning and at the end.

By guarantying the exclusion of bad estimates and giving expected variances, our way of
estimating parameters yields accuracy and precision in the new-product sales forecasting
process. Doing so, benefits the investment decisions of companies regarding the introduc-
tion of new products. Our methodological framework may also be of use in optimal stock
management [18].
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