
Wang et al. Journal of Mathematics in Industry (2020) 10:13
https://doi.org/10.1186/s13362-020-00080-6

R E S E A R C H Open Access

A new nonmonotone adaptive trust region
line search method for unconstrained
optimization
Xinyi Wang1, Xianfeng Ding1* and Quan Qu1

*Correspondence: fxxd@163.com
1School of Science, Southwest
Petroleum University, Chengdu,
China

Abstract
This paper proposes a new nonmonotone adaptive trust region line search method
for solving unconstrained optimization problems, and presents a modified trust
region ratio, which obtained more reasonable consistency between the accurate
model and the approximate model. The approximation of Hessian matrix is updated
by the modified BFGS formula. Trust region radius adopts a new adaptive strategy to
overcome additional computational costs at each iteration. The global convergence
and superlinear convergence of the method are preserved under suitable conditions.
Finally, the numerical results show that the proposed method is very efficient.

Keywords: Unconstrained optimization; Trust region method; Nonmonotone
adaptive; Convergence

1 Introduction
Consider the following unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f : Rn → R is a twice continuously differentiable function. Trust region method is
one of prominent class of iterative methods. The basic idea of trust region methods as
follows: at the current step xk , the trial step dk is obtained by solving the subproblem:

min
d∈Rn

mk(d) = gT
k d +

1
2

dT Bkd, (2)

‖d‖ ≤ �k ,

where fk = f (xk), gk = ∇f (xk), Gk = ∇2f (xk), Bk be a symmetric approximation of Gk , �k is
trust region radius, and ‖ · ‖ is the Euclidean norm.

To evaluate an agreement between the model and the objective function, the most or-
dinary ratio is defined as follows:

ρk =
fk – f (xk + dk)

mk(0) – mk(dk)
, (3)

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13362-020-00080-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13362-020-00080-6&domain=pdf
mailto:fxxd@163.com

Wang et al. Journal of Mathematics in Industry (2020) 10:13 Page 2 of 12

where the numerator is called the actual reduction and the denominator is called the pre-
dicted reduction. The ratio ρk is used to determine whether the trial step dk is accepted.
Given μ ∈ [0, 1], if ρk < μ, the trial step dk is not successful and the subproblem (2) should
be resolved with a smaller radius. Otherwise, dk is acceptable and the radius should be
increased.

It is well-known that monotone techniques may slow down the rate of convergence,
especially in the presence of the narrow curved valley. The monotone techniques that
require the objective function to be decreased at each iteration. In order to overcome
these disadvantages, Grippo et al. [1] proposed a nonmonotone technique for Newton’s
method in 1986. In 1998, Nocedal and Yuan [2] proposed a nonmonotone trust region
method with line search techniques, the step size αk satisfies the following inequality:

f (xk + αkdk) ≤ fl(k) + σαkgT
k dk , (4)

where σ ∈ (0, 1). The general nonmonotone term fl(k) is defined by fl(k) = max0≤j≤m(k){fk–j},
in which m(0) = 0, 0 ≤ m(k) ≤ min{m(k – 1) + 1, N} and N ≥ 0 is an integer constant.

However, the general nonmonotone strategy does not sufficiently employ the current
value of the objective function f . It seems that the nonmonotone term has well perfor-
mance far from the optimum. In order to introduce a more relaxed nonmonotone strategy,
Ahookhosh et al. [3] introduced a modified nonmonotone term in 2002. More precisely,
for σ ∈ (0, 1), the step size αk satisfies the following inequality:

f (xk + αkdk) ≤ Rk + σαkgT
k dk , (5)

where the nonmonotone term Rk is defined by

Rk = ηkfl(k) + (1 – ηk)fk , (6)

in which ηk ∈ [ηmin,ηmax], with ηmin ∈ [0, 1), and ηmax ∈ [ηmin, 1].
One knows that an adaptive radius avoid the blindness of updating the initial trust region

radius, and may cause the decrease in the total number of iterations. In 1997, Sartenear
[4] proposed a new strategy for automatically determining the initial trust region radius.
In 2002, Zhang et al. [5] proposed a new scheme to determine trust region radius as fol-
lows: �k = cp‖̂B–1

k ‖‖gk‖. To avoid calculating the inverse of the matrix Bk and an estima-
tion of ̂B–1

k in each iteration, Li [6] proposed an adaptive trust region radius as follows:
�k = ‖dk–1‖

‖yk–1‖ ‖gk‖, where yk–1 = gk – gk–1. Inspired by these facts, some modified versions of
adaptive trust region methods have been proposed in [7–14].

This paper is organized as follows. In Sect. 2, we describe the new algorithm. The global
and superlinear convergence of the algorithm are established in Sect. 3. In Sect. 4, numer-
ical results are reported, which show that the new method is effective. Finally, conclusions
are drawn in Sect. 5.

2 New algorithm
In this section, a new adaptive nonmonotone trust region line search algorithm is pro-
posed. Here, based on the method of Li [6], we proposed a adaptive trust region radius as

Wang et al. Journal of Mathematics in Industry (2020) 10:13 Page 3 of 12

follows:

dk ≤ �k := ck
‖dk–1‖
‖yk–1‖ ‖gk‖, (7)

ck is an adjustment parameter. Prompted by the adaptive technique, the proposed method
has the following well properties: it is convenient to adjust the radius by using the adjust-
ment parameter ck , and the algorithm also reduces the related workload and calculation
time.

On the basis of considered discussion, at each iteration, a trial step dk is obtained by
solving the following trust region subproblem:

min
d∈Rn

mk(d) = gT
k d +

1
2

dT Bkd, (8)

‖d‖ ≤ �k := ck
‖dk–1‖
‖yk–1‖ ‖gk‖,

where yk–1 = gk – gk–1. The matrix Bk is updated by a modified BFGS formula [11],

Bk+1 =

⎧

⎨

⎩

Bk + zk zT
k

zT
k dk

– Bk dkdT
k Bk

dT
k Bk dk

, yT
k dk > 0,

Bk , yT
k dk ≤ 0,

(9)

where dk = xk+1 – xk , yk = gk+1 – gk , zk = yk + tk‖gk‖dk , tk = 1 + max{– yT
k dk

‖gk‖‖dk‖ , 0}.
Considering advantage of the Ahookhosh’s nonmonotone term, the best convergence

behavior can be obtained by adopting a stronger nonmonotone strategy away from the
solution and a weaker monotone strategy closer to the solution. We defined a modified
form of trust region ratio as follows:

ρ̂k =
Rk – f (xk + dk)

fl(k) – fk – mk(dk)
, (10)

As seen, the effect of nonmonotonicity can be controlled in (10) by numerator and de-
nominator.

Now, we list the new adaptive nonmonotone trust region line search algorithm as fol-
lows:

Algorithm 2.1 (New nonmonotone adaptive trust region algorithm)
Step 0. Given initial point x0 ∈ Rn, a symmetric matrix B0 ∈ Rn × Rn. The constants

0 < μ1 < μ2 < 1, 0 < ηmin ≤ ηmax < 1, 0 < β1 < 1 < β2, 0 < δ1 < 1 < δ2, N > 0 and
ε > 0 are also given. Set k = 0, c0 = 1.

Step 1. If ‖gk‖ ≤ ε, then stop. Otherwise, go to Step 2.
Step 2. Solve the subproblem (8) to obtain dk .
Step 3. Compute Rk and ρ̂k respectively.
Step 4.

ck+1 :=

⎧

⎪

⎨

⎪

⎩

β1ck , if ρ̂k < μ1,
ck , ifμ1 ≤ ρ̂k < μ2,
β2ck , if ρ̂k ≥ μ2.

Wang et al. Journal of Mathematics in Industry (2020) 10:13 Page 4 of 12

Step 5. If ρ̂k ≥ μ1, set xk+1 = xk + dk and go to Step 6. Otherwise, find the step size αk

satisfying (5). Set xk+1 = xk + αkdk , go to Step 6.
Step 6. Update the trust region radius by �k+1 = ck+1

‖xk+1–xk‖
‖gk+1–gk‖ ‖gk+1‖ and go to Step 7.

Step 7. Compute the new Hessian approximation Bk+1 by a modified BFGS formula (9).
Set k = k + 1 and go to Step 1.

Assumption 2.1
H1. The level set L(x0) = {x ∈ Rn|f (x) ≤ f (x0)} ⊂ Ω , where Ω ∈ Rn is bounded. f (x) is

continuously differentiable on the level set L(x0).
H2. The matrix Bk is uniformly bounded, i.e., there exists a constant M1 > 0 such that

‖Bk‖ ≤ M1, ∀k ∈ N ∪ {0}.

Remark 2.1 If f is a twice continuously differentiable function, then H1 implies that ∇f is
continuous and uniformly bounded on Ω . Hence, there exists a constant L such that

∥

∥∇f (x) – ∇f (y)
∥

∥ ≤ L‖x – y‖, ∀x, y ∈ Ω (11)

3 Convergence analysis
Lemma 3.1 There is a constant τ ∈ (0, 1), the trial step dk satisfies the following inequali-
ties:

mk(0) – mk(dk) ≥ τ‖gk‖min

{

�k ,
‖gk‖
‖Bk‖

}

, (12)

gT
k dk ≤ –τ‖gk‖min

{

�k ,
‖gk‖
‖Bk‖

}

. (13)

Proof The proof is exactly similar to the proof of Lemma 6 and Lemma 7 of [15] and here
is omitted. �

Lemma 3.2 Suppose that Assumption 2.1 holds, then we have,

fl(k) – fk – mk(dk) ≥ β
pk
1 ‖gk‖2

2M1
, (14)

where pk is the iteration of the solution to subproblem from the previous trial step dk–1 to
the currently acceptable trial step dk .

Proof According to Step 4 of Algorithm 2.1, the trust region radius satisfies �k ≥ ck
‖gk‖
‖Bk‖ ≥

β
pk
1 ‖gk‖
‖Bk‖ ≥ β

pk
1 ‖gk‖

M1
. Thus, according to ‖dk‖ ≤ �k , we assume that dk = β

pk
1 ‖gk‖

M1
is a feasible

solution to trust region subproblem. Therefore, we obtain,

fl(k) – fk – mk(dk) ≥ mk(0) – mk(dk)

≥ –
(

gT
k dk +

1
2

dT
k Bkdk

)

≥ –
(

gT
k dk +

1
2

dT
k Bkdk

)

Wang et al. Journal of Mathematics in Industry (2020) 10:13 Page 5 of 12

=
β

pk
1 ‖gk‖2

M1
–

β
pk
1 ‖gk‖2

2M1

=
β

pk
1 ‖gk‖2

2M1
. (15)

�

Lemma 3.3 Suppose that the sequence {xk} is generated by Algorithm 2.1. Then we have,

Rk ≤ fl(k). (16)

Proof Using Rk = ηkfl(k) + (1 – ηk)fk and fk ≤ fl(k), we have

Rk ≤ ηkfl(k) + (1 – ηk)fl(k) = fl(k). �

Lemma 3.4 Suppose that Assumption 2.1 holds. Step 4 and Step 5 of Algorithm 2.1 are
well-defined.

Proof Set dk = β
pk
1 ‖gk‖

M1
is a solution of subproblem (8) corresponding to pk = p.

Firstly, we prove that ρ̂k ≥ μ1, for sufficiently large p. Using Lemma 3.1, Lemma 3.2 and
Taylor’s formula, we have

|ρ̂k – 1| =
∣

∣

∣

∣

Rk – f (xk + dk)
fl(k) – fk – mk(dk)

– 1
∣

∣

∣

∣

=
|Rk – f (xk + dk) – fl(k) + fk + mk(dk)|

fl(k) – fk – mk(dk)

≤ |fk – f (xk + dk) + mk(dk)|
fl(k) – fk – mk(dk)

≤ o(‖dk‖2)
β

p
1

2M1
‖gk‖2

→ 0 (p → ∞).

Therefore, we have ρ̂k ≥ μ1, for sufficiently large p. This implies that Steps 4 and 5 of
Algorithm 2.1 are well-defined. �

Lemma 3.5 Suppose that Assumption 2.1 holds and the sequence {xk} is generated by Al-
gorithm 2.1. The sequence {fl(k)} is (not monotonically increasing) convergent.

Proof The proof is exactly similar to the proof of Lemma 2.1 and Corollary 2.1 in [3] and
here is omitted. �

Lemma 3.6 Suppose that the sequence {xk} is generated by Algorithm 2.1. Using ‖dk‖ ≤
�k , there exists a constant κ such that ‖dk‖ ≤ κ‖gk‖.

Proof From (7) and ‖dk‖ ≤ �k , we observe that

‖dk‖ ≤ ck
‖dk–1‖
‖yk–1‖ ‖gk‖. (17)

Thus, setting κ = ck
‖dk–1‖
‖yk–1‖ . �

Wang et al. Journal of Mathematics in Industry (2020) 10:13 Page 6 of 12

Lemma 3.7 Suppose that Assumptions 2.1 holds, and the sequence {xk} is generated by
Algorithm 2.1. For ρk < μ1, the step size αk satisfies the following inequality:

αk ≥ 2ρτ (σ – 1)
M1κ

min

{

1,
1

κM1

}

. (18)

Proof Set α = αk
ρ

, where ρ ∈ (0, 1). According to Step 5 of Algorithm 2.1 and (5), it is easy
to show that

Rk + σαgT
k dk < f (xk + αdk). (19)

Using the definition of Rk and Taylor expansion, we have

fk + σαgT
k dk ≤ Rk + σαgT

k dk

≤ f (xk + αdk)

≤ fk + αgT
k dk +

1
2
α2dT

k ∇2f (ξ)dk

≤ fk + αgT
k dk +

1
2
α2M1‖dk‖2,

where ξ ∈ (xk , xk+1). Thus,we get

–(1 – σ)gT
k dk ≤ 1

2
αM1‖dk‖2, (20)

On the other hand, form ‖dk‖ ≤ κ‖gk‖ and (13), we can write

gT
k dk ≤ –τ‖gk‖min

{

�k ,
‖gk‖
‖Bk‖

}

≤ –τ
‖dk‖

κ
min

{

‖dk‖,
‖dk‖
κM1

}

≤ –τ
1
κ

min

{

1,
1

κM1

}

‖dk‖2. (21)

Hence, combining above inequality and (20), we have

–(1 – σ)
τ

κ
min

{

1,
1

κM1

}

‖dk‖2 ≤ M1

2ρ
αk‖dk‖2. (22)

Thus, we can obtain (18). �

Lemma 3.8 Suppose that Assumption 2.1 holds and the sequence {xk} is generated by Al-
gorithm 2.1, then we have,

lim
k→∞

f (xl(k)) = lim
k→∞

f (xk). (23)

Proof From Lemma 3.3, we know that Algorithm 2.1 generates an infinite sequence {xk}
satisfying ρ̂k ≥ μ1, we obtain,

fl(k) – f (xk + dk)
fl(k) – fk – mk(dk)

>
Rk – f (xk + dk)

fl(k) – fk – mk(dk)
≥ μ1.

Wang et al. Journal of Mathematics in Industry (2020) 10:13 Page 7 of 12

Then,

fl(k) – f (xk + dk) ≥ μ1
(

fl(k) – fk – mk(dk)
)

≥ μ1
(

mk(0) – mk(dk)
)

. (24)

Replacing k by l(k) – 1, we can write

fl(l(k)–1) – fl(k) ≥ μ1
(

ml(k)–1(0) – ml(k)–1(dl(k)–1))
)

.

Combine Lemma 3.8 with the above inequality, we get

lim
k→∞

(

ml(k)–1(0) – ml(k)–1)(dl(k)–1))
)

= 0. (25)

According to Assumption 2.1 and (12), we have

ml(k)–1(0) – ml(k)–1(dl(k)–1) ≥ τ‖gl(k)–1‖min

{

�l(k)–1,
‖gl(k)–1‖
‖Bl(k)–1‖

}

≥ τ‖gl(k)–1‖min

{

‖dl(k)–1‖,
‖dl(k)–1‖

κM1

}

≥ τ

κ
min

{

1,
1

κM1

}

‖dl(k)–1‖2

= ω‖dl(k)–1‖2 ≥ 0,

where ω = τ
κ

min{1, 1
κM1

}. It follows from (25) that

lim
k→∞

‖dl(k)–1‖ = 0 (26)

The reminder of the proof is similar to a theorem of [1] and here is omitted. �

On the basis of the above lemmas and analysis, we can obtain the global convergence
result of Algorithm 2.1 as follows:

Theorem 3.1 (Global convergence) Suppose that Assumption 2.1 holds and the sequence
{xk} is generated by Algorithm 2.1. Then we have,

lim
k→∞

‖gk‖ = 0. (27)

Proof We assume that dk be the solution of subproblem (8) corresponding to pk = p, and
we have an infinite sequence {xk} satisfying ρ̂k ≥ μ1.

fl(k) – f (xk + dk)
fl(k) – fk – mk(dk)

>
Rk – f (xk + dk)

fl(k) – fk – mk(dk)
≥ μ1.

According to Lemma 3.2, we have,

fl(k) – f (xk + dk) ≥ μ1
(

fl(k) – fk – mk(dk)
) ≥ μ1

β
p
1

2M1
‖gk‖2.

This above inequality and Lemma 3.8 indicate that (27) holds. �

Wang et al. Journal of Mathematics in Industry (2020) 10:13 Page 8 of 12

We will prove the superlinear convergence of Algorithm 2.1 under suitable conditions.

Theorem 3.2 (Superlinear convergence) Suppose that Assumption 2.1 holds and Algo-
rithm 2.1 generated the sequence {xk} converges to x∗. Moreover, assume that ∇2f (x∗) is
positive definite matrix and ∇2f (x) is Lipschitz continuous in a neighborhood of x∗. If
‖dk‖ ≤ �k , where dk = –B–1

k gk , and

lim
k→∞

‖(Bk – ∇2f (x∗)dk‖
‖dk‖ = 0. (28)

Then the sequence {xk} converges to x∗ superlinearly, that is,

∥

∥xk+1 – x∗∥
∥ = o

(∥

∥xk – x∗∥
∥

)

. (29)

Proof From (28) and ‖dk‖ ≤ �k , we obtain

lim
k→∞

‖(∇2f (x∗) – Bk)dk‖
‖dk‖ = lim

k→∞
‖gk + ∇2f (x∗)dk‖

‖dk‖ . (30)

Using Taylor expansion, there exists tk ∈ (0, 1) such that

gk+1 = gk + ∇2f (xk + tkdk)dk

= gk + ∇2f
(

x∗)dk +
(∇2f (xk + tkdk) – ∇2f

(

x∗)dk
)

.

Thus, we can obtain that

‖gk+1‖
‖dk‖ ≤ ‖gk + ∇2f (x∗)dk‖

‖dk‖ +
∥

∥∇2f (xk + tkdk) – ∇2f
(

x∗)∥
∥.

From (28) and ∇2f (x∗) is Lipschitz continuous in a neighborhood of x∗, we get

lim
k→∞

‖gk+1‖
‖dk‖ = 0. (31)

Note that by Theorem 3.1, it is implied that

gk → 0 as k → ∞,

and thus, we have dk → 0. We can obtain

lim
k→∞

‖dk‖ = 0, (32)

then,

g
(

x∗) = lim
k→∞

gk = 0. (33)

Combine ∇2f (x∗) is a positive definite matrix and (33). Then, there exists a constant ς > 0,
and k0 ≥ 0 such that

‖gk+1‖ ≥ ς
∥

∥xk+1 – x∗∥
∥, ∀k ≥ k0.

Wang et al. Journal of Mathematics in Industry (2020) 10:13 Page 9 of 12

Thus, we obtain

‖gk+1‖
‖dk‖ ≥ ς

‖xk+1 – x∗‖
‖dk‖ ≥ ς

‖xk+1 – x∗‖
‖xk+1 – x∗‖ + ‖xk – x∗‖ ≥ ς

1
1 + ‖xk –x∗‖

‖xk+1–x∗‖
.

Combine above inequality with (31), we get limk→∞ ‖xk –x∗‖
‖xk+1–x∗‖ = 0. So the proof is com-

pleted. �

4 Preliminary numerical experiments
In this section, we perform numerical experiments on Algorithm 2.1. A set of uncon-
strained test problems are selected from [16]. The simulation experiment uses MAT-
LAB 9.4, the processor uses Intel (R) Core (TM), 2.00 GHz, 6 GB RAM. Take exactly the
same value for the public parameters of these algorithms: μ1 = 0.25,

μ2 = 0.75, β1 = 0.25, β2 = 1.5, c0 = 1, N = 5. The matrix Bk is updated by (9). The stop-
ping criterions are ‖gk‖ ≤ 10–6 and the number of iterations exceeds 5000. We denote the
number of gradient evaluations by “ni”, the number of function evaluations by “nf ”.

For convenience, we use the following notations to represent the algorithms:
SNTR: Standard nonmonotone trust region method [17].
ATRG: Nonmonotone Shi’s adaptive trust region method with qk = –gk [18].
ATRN: Nonmonotone Shi’s adaptive trust region method with qk = –B–1

k gk [18].
NLS: New nonmonotone adaptive trust region line search method.

For standard nonmonotone trust region method, we update �k by the following formula

�k+1 =

⎧

⎪

⎨

⎪

⎩

0.75�k , if ρ̂k < μ1,
�k , if μ1 ≤ ρ̂k < μ2,
1.5�k , if ρ̂k ≥ μ2.

Table 1 shows that the experiments were conducted to compare NLS and the standard
trust region method with a different initial radius. One knows that an initial radius has a
significant influence on the numerical results in the standard trust region methods. More-
over, the total number of iterations and function evaluations of the new algorithm are
partly less than the standard nonmonotone trust region method. We also know that NLS
outperforms with ATRG, ATRN respect to the total number of function evaluations and
the total number of gradient evaluations. The performance profiles given by Dolan and
More [19] are used to compare the efficiency of the three algorithms. Figures 1–2 give the
performance profiles of the three algorithms for the number of function evaluations, and
the number of gradient evaluations, respectively. As the figures show that Algorithm 2.1
grows up faster than the other algorithms. Therefore, we can deduce that the new algo-
rithm is more efficient and robust than the other considered trust region algorithms for
solving unconstrained optimization.

5 Conclusions
In this paper, a new nonmonotone adaptive trust region line search method is presented
for unconstrained optimization problems. A new nonmonotone trust region ratio is in-
troduced to enhance the effective of the algorithm. A new trust region radius is proposed,
which relaxes the condition of accepting a trial step for the trust region methods. The-
orem 3.1 and Theorem 3.2 have been shown that the proposed algorithm can preserve

Wang et al. Journal of Mathematics in Industry (2020) 10:13 Page 10 of 12

Table 1 Comparison between adaptive trust region methods and a new method.

Problem n nf /ni

SNTR
�0 = 0.1

SNTR
�0 = 10

SNTR
�0 = 100

ATRG ATRN NLS

Ext. Rose 4 690/353 475/243 364/185 168/88 94/65 70/57
Ext. Beale 4 504/254 27/14 29/15 41/21 27/14 19/18
Penalty i 2 129/67 38/21 34/19 33/18 47/26 29/19
Pert. Quad 6 151/80 33/17 31/16 41/21 31/16 29/1
Raydan 1 10 1445/762 40/21 40/21 40/21 40/21 22/15
Raydan 2 4 251/128 14/8 14/8 13/8 13/8 11/6
Diagonal 1 4 112/58 21/11 21/11 21/11 21/11 13/12
Diagonal 2 2 289/147 18/10 18/10 16/9 16/9 19/10
Diagonal 3 10 128/66 33/17 33/17 43/22 33/17 28/15
Hager 10 134/69 29/15 29/15 27/14 27/14 31/16
Gen. Trid 1 20 1234/618 49/25 45/23 50/26 51/26 37/23
Ext. Trid 1 20 65/35 16/9 33/17 16/9 16/9 24/16
Ext. TET 50 195/103 17/9 17/9 16/9 17/9 17/9
Diadonal 4 50 798/429 29/15 19/10 7/4 7/4 6/5
Ext. Him 50 134/69 20/11 25/13 58/44 28/15 18/10
Gen. White 50 666/363 271/151 719/384 382/200 312/186 243/142
Ext. Powell 4 892/455 654/329 – 264/133 237/125 157/98
Full. He. FH3 10 106/55 13/7 11/6 13/7 13/7 8/7
Ext. BD1 100 278/143 33/19 31/17 41/23 268/151 26/19
Pert. Quad 200 290/165 141/72 104/53 188/96 99/51 41/38
Ext. Hie 16 1821/1000 – – 240/143 198/137 119/60
Quad. QF1 4 683/377 17/9 17/9 17/9 15/8 11/10
FLET34 50 24/13 167/101 225/127 183/110 168/98 210/108
ARWHEAD 200 172/91 44/25 56/30 55/42 21/14 24/13
NONDIA 200 75/38 102/52 71/36 116/61 63/32 63/32
DQDRTIC 200 363/191 50/27 54/29 43/23 36/25 27/23
EG2 10 458/234 25/14 25/14 24/14 24/14 14/14
Bro. Trid. 200 2797/1504 1609/827 356/187 404/216 268/176 258/133
A. Per. Quad 16 253/133 43/22 45/23 61/34 41/31 43/32
Pert. Trid 20 252/135 59/30 57/29 79/47 57/42 56/43
LIARWHD 50 114/60 – 295,148 257/176 255/167 249/132
Ext. DENSCH 100 71/37 34/18 51/26 239/154 50/26 239/154
HIMMELH 4 58/31 91/61 90/56 19/18 75/41 17/16
ENGVAL1 10 165/90 71/38 71/37 65/35 63/34 50/36
EDENSCH 100 1265/633 27/15 3073/1583 21/12 23/13 35/18

Figure 1 Performance profile for the number of
function evaluations (nf)

Wang et al. Journal of Mathematics in Industry (2020) 10:13 Page 11 of 12

Figure 2 Performance profile for the number of
function evaluations (ni)

global convergence and superlinear convergence, respectively. Numerical experiments
have been done on a set of unconstrained optimization test problems of [16]. They showed
practical efficiency of the proposed algorithm.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The main idea of this paper was proposed by WXY and DXF. QQ prepared the manuscript initially and performed all the
steps of the proofs in this research. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 7 November 2019 Accepted: 27 March 2020

References
1. Grippo L, Lamparillo F, Lucidi S. A nonmonotone line search technique for Newton’s method. SIAM J Numer Anal.

1986;23:707–16.
2. Nocedal J, Yuan Y. Combining trust region and line search techniques. In: Yuan Y, editor. Advances in nonlinear

programming. Dordrecht: Kluwer Academic; 1996. p. 153–75.
3. Ahookhoosh M, Amini K, Peyghami M. A nonmonotone trust region line search method for large scale

unconstrained optimization. Appl Math Model. 2012;36(1):478–87.
4. Sartenaer A. Automatic determination of an initial trust region in nonlinear programming. SIAM J Sci Comput.

1997;18(6):1788–803.
5. Zhang XS, Zhang JL, Liao LZ. An adaptive trust region method and its convergence. Sci China Ser A, Math.

2002;45(1):620–31.
6. Li D. A trust region method with automatic determination of the trust region radius. Chin J Eng Math.

2006;23(5):843–8.
7. Shi ZJ, Wang HQ. A new selfadaptive trust region method for unconstrained optimization. Technical report. College

of Operations Research and Management, Qufu Normal University; 2004.
8. Shi ZJ, Guo JH. A new trust region method for unconstrained optimization. J Comput Appl Math. 2008;213(1):509–20.
9. Kimiaei M. A new class of nonmonotone adaptive trust-region methods for nonlinear equations with box constraints.

Calcolo. 2017;3:769–812.
10. Amini K, Shiker MAK, Kimiaei M. A line search trust-region algorithm with nonmonotone adaptive radius for a system

of nonlinear equations. 4OR. 2016;4(2):132–52.
11. Shan-min P, Lan-ping C. A new family of nonmonotone trust region algorithm. Math Pract Theory.

2011;2011(10):211–8.
12. Reza Peyghami M, Ataee Tarzanagh D. A relaxed nonmonotone adaptive trust region method for solving

unconstrained optimization problems. Comput Optim Appl. 2015;61:321–41.
13. Zhou Q, Hang D. Nonmonotone adaptive trust region method with line search based on new diagonal updating.

Appl Numer Math. 2015;91:75–88.
14. Wang XY, Ding XF, Qu Q. A new filter nonmonotone adaptive trust region method for unconstrained optimization.

Symmetry. 2020;12(2):208.
15. Sang Z, Sun Q. A self-adaptive trust region method with line search based on a simple subproblem model. J Comput

Appl Math. 2009;232(2):514–22.
16. Andrei N. An unconstrained optimization test functions collection. Environ Sci Technol. 2008;10:6552–8.

Wang et al. Journal of Mathematics in Industry (2020) 10:13 Page 12 of 12

17. Gu NZ, Mo JT. Incorporating nonmonotone strategies into the trust region for unconstrained optimization. Comput
Math Appl. 2008;55:2158–72.

18. Ahookhosh M, Amini K. A nonmonotone trust region method with adaptive radius for unconstrained optimization.
Comput Math Appl. 2010;60:411–22.

19. Dolan ED, More JJ. Benchmarking optimization software with performance profiles. Math Program. 2002;91:201–13.

	A new nonmonotone adaptive trust region line search method for unconstrained optimization
	Abstract
	Keywords

	Introduction
	New algorithm
	Convergence analysis
	Preliminary numerical experiments
	Conclusions
	Competing interests
	Authors' contributions
	Publisher's Note
	References

