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Abstract
Common goals of modern production processes are precision and efficiency.
Typically, they are conflicting and cannot be optimized at the same time.
Multi-objective optimization methods are able to compute a set of good parameters,
from which a decision maker can make a choice for practical situations. For complex
processes, the use of physical experiments and/or extensive process simulations can
be too costly or even unfeasible, so the use of surrogate models based on few
simulations is a good alternative.
In this work, we present an integrated framework to find optimal process

parameters for a laser-based material accumulation process (thermal upsetting) using
a combination of meta-heuristic optimization models and finite element simulations.
In order to effectively simulate the coupled system of heat equation with solid-liquid
phase transitions and melt flow with capillary free surface in three space dimensions
for a wide range of process parameters, we introduce a new coupled numerical 3d
finite element method. We use a multi-objective optimization method based on
surrogate models. Thus, with only few direct simulations necessary, we are able to
select Pareto sets of process parameters which can be used to optimize three or six
different performance measures.

Keywords: Thermal upsetting; Phase transitions; Free surface flow; Finite element
method; Metamodels; Multi-objective optimization

1 Introduction
Modern production technologies follow a strategy of continuous improvement and, as
part of it, producers permanently strive to deliver components with high quality at the
lowest possible cost. Starting by these premises, it is straightforward to see this as an op-
timization problem with multiple objectives, considering the input variables as the man-
ufacturing parameters that can be modified in the production line.

In practice, mapping process parameters towards component outcomes can be a difficult
procedure when based on experimental tests. Sometimes, experimental runs are expen-
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Figure 1 Two-level cold forming process: In the master forming step, a preform is generated by melting the
end of the wire (thermal upsetting) that is calibrated in a subsequent cold forming step

sive and time consuming, making this approach a non-feasible one during production [8].
With appropriate models, numerical simulations can replace expensive experiments.

The combination of optimization methods with computer simulations where simu-
lations are used to transform input parameters (controllable processing variables, or
CPVs) into the relevant performance measures (PMs) is an actual engineering need
[19, 24, 27, 29]. This requires evaluating optimization functionals on a large amount of
candidate solutions, making it a demanding computational task when the simulations are
numerically expensive [16]. This is the case for simulating laser-based material accumu-
lation processes (like the thermal upsetting process shown in Fig. 1), for which we have
developed a suitable new 3d finite element method (FEM), presented and analyzed in de-
tail in [18]. The numerical challenge is to be able to derive robust results for a wide range
of admissible process parameters, therefore a full 3d simulation is necessary that is able to
allow quite general geometrical variations of the time-dependent domain and topological
changes of the time-dependent liquid subdomain. Here, the key aspects of the method
are the two-phase Stefan problem for melting and solidification, an interface-capturing
approach for the solid-liquid phase boundary, and the Navier–Stokes equations including
a free capillary surface in an ALE formulation for the 3d time dependent domain.

To avoid running a large number of expensive simulations, we pursue a strategy to put
together an optimization methodology with surrogate models (also called metamodels),
similar to our implementation for milling processes in [19]. In addition to this former ap-
plication, we are able to use here non-rectangular sets of admissible process parameters,
which correspond to reasonable and effective experimental parameter sets. Metamodels
are mathematical models (Response Surface, Kriging, Artificial Neural Networks, etc.)
that mimic the behavior of the simulation model based on a limited number of obser-
vations [3, 17, 27]. Using metamodels, we reduce the computational effort required to
evaluate PMs at a large amount of combinations of the process parameters.

Throughout this work, we present an integrated framework to find optimal process pa-
rameters for a material accumulation process using a combination of meta-heuristic opti-
mization models and FEM simulations. In this section, we start by describing the material
accumulation process and its inherent optimization needs. In Sect. 2, we present the es-
sential concepts and several details of our 3d finite element method and the numerical
evaluation of PMs. Later, Sect. 3 presents the optimization method for solving the multi-
criteria problems and Sect. 4 contains the setting of two different optimization problems
and the solutions obtained for them, being the main difference in the amount of objec-
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tives pursued during the simulation-optimization cycle. We conclude giving some final
comments in Sect. 5.

1.1 Laser-based material accumulation process
We consider the process to accumulate metallic material using thermal energy input from
a laser to melt material to produce the desired upsetting of a volume portion. This process
has been developed within the Collaborative Research Centre 747 at the University of
Bremen and experimentally investigated in [5–7]. The complete upsetting process consists
of the material accumulation followed by a forming step in a closed die or rotary swaging
to obtain the final component shape. The correct volume accumulation obtained during
the accumulation part is essential to make the forming process possible and the final shape
of the component relies on the good quality of the accumulated material.

Figure 1 shows the thermal upsetting procedure on a thin steel wire with diameter d0 <
1 mm. At the beginning, the wire is partially molten from the bottom by a lateral laser
beam moving upwards on a path of length s in a shielding gas atmosphere.

Since at the micro scale the surface tension exceeds gravitational force (shape-balance
effect [26]), the melt forms a nearly perfect sphere. Due to the one-sided heat application,
the solid-liquid interface as well as the sphere itself are tilted in direction of the laser beam.
Later, after switching the laser off, overheating of the melt potentially leads to a contin-
uation of the melting process which lasts ideally until a desired height l0. At this stage it
is desirable that the melt releases the tilted shape and reduces its eccentricity before the
temperature decreases and the molten drop solidifies. The latter is desired for the subse-
quent cold forming step in which the solidified preform is calibrated in a closed die or by
rotary swaging, e.g., see Fig. 1.

Now we want to describe and demonstrate the general method applied to a particular
process situation. The task is to generate a spherical material accumulation from a thin
wire made of 1.4301 steel with initial diameter d0 = 0.2 mm, for which the desired molten
length is l0 = 3.0 mm. For this process, there are even experimental results by our collab-
orators from engineering [5, 7].

Our goal will be to optimize the shape of the material accumulation and the efficiency
of the process, both measured by different PMs described in the next section.

1.2 Optimization needs
The nature of the process we are considering includes several parameters that determine
the outcomes of the process. Additionally, there is a series of possible PMs that can be
defined as our objectives in the optimization procedure.

From the practitioner’s standpoint, the input parameters that are commonly used to
control the process are the ones related to the application of the laser on the component.
Hence, we define our input CPVs to be the laser power P [W], the translational velocity
of the laser v [mm/s], and the length of the laser path s [mm].

As PMs we can define several quantities of practical interest and use them either inde-
pendently or in any combination of them. Generally, we distinguish between PMs regard-
ing process efficiency and quality of the product, which typically compete with each other.
Quality is measured in terms of the preforms volume and geometrical shape, which should
be spherical and centered below the wire’s shaft, while process efficiency is measured with
respect to time, energy and the time the laser is used:

Geometry related PMs:
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• minimize the length error |�l| with �l = l – l0, defined as the absolute difference
between the desired length l0 and the obtained molten length l,

• minimize the distance between the barycenters of the preform and a fictional sphere
segment of same volume centered below the wire’s shaft, which can be devided into
its radial and axial components:
– radial error (eccentricity), defined as the barycenters distance in radial direction,
– axial error, defined as the barycenters distance in axial direction,

Efficiency related PMs:
• minimize process time considered as the elapsed time from switching on the laser

until the last molten portion of material solidifies,
• minimize the energy spent during the time the laser is on,
• minimize the laser usage time corresponding to the time in which the laser is

switched on and delivers energy.
It is important to remark that these definitions shouldn’t be seen as exclusive, as other

practical views might lead to different or modified versions of them. Section 2 will present
more details about the simulated process and will clarify on the geometrical quantities to
be minimized in the geometry related objectives mentioned above. The other three objec-
tives result from the process combination among material, laser and the specific setting of
the CPVs. Later on in Sect. 4, results are presented from two case studies with the men-
tioned input parameters but with three and six optimization objectives respectively.

2 Process model and numerical simulation
First, we give a mathematical model of the relevant physical conditions including solid-
liquid phase transitions and free surface melt flow. This is the basis for a finite element
discretization of the coupled system of equations. In this work, we use a slight modifi-
cation of a finite element approach proposed in [18] in order to simulate the material
accumulation process. Since the model and simulation approach is elaborated in detail,
analyzed numerically and also applied to the accumulation process within [18], the fol-
lowing presentation covers only the main aspects.

2.1 Process model
Continuum mechanics are used to model mass and heat transport by coupling conserva-
tion equations for mass, momentum and energy. Assuming a sharp solid-liquid interface
Γls(t) let Ω(t) := Ωl(t)∪Ωs(t)∪Γls(t) ⊂R

3, t ∈ [t0, tN ], denote the time dependent physical
domain as sketched in Fig. 2(left). With n{s,l}(t) denoting the outer normal to Γ{s,l}(t), the
geometrical evolution of each outer boundary part Γ{s,l}(t) is tracked by a suitable condi-
tion for the corresponding normal velocity vn,{s,l}, whereas the interior boundary Γls(t) is
captured based on the melting temperature Tm.

The material movement of particles is described by the material velocity u(t). In the
liquid part, fluid dynamics are modeled by the incompressible Navier–Stokes equations
including surface tension effects and a kinematic boundary condition for the free capillary
boundary. In the solid part, we assume no material movement and a no-slip condition at
the solid-liquid interface:

∂tu + u · ∇u –
1

Re
�u + ∇p = fu(T), ∇ · u = 0 in Ωl(t), (1)
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Figure 2 Left: 2d sketch of the geometrical setting
during melting; Right: Zoom on a 2d sketch of the
discrete geometry in an environment of the triple
junction γ : Adjacent boundaries with
corresponding normal velocities vn,{s,l,ls} in degrees
of freedom are indicated in different colors

σ · nl = –
1

We
Knl, u · nl = vn,l on Γl(t), (2)

u = 0 on Ωs(t) ∪ Γs(t) ∪ Γls(t), vn,s = 0 on Γs(t). (3)

Here, p is the pressure, T is the temperature, fu(T) accounts for buoyancy in Boussinesq-
approximation, σ is the stress tensor, K is the sum of principal curvatures and Re and We
are the Reynolds and Weber numbers.

Energy conservation is modeled by an enthalpy formulation for the two-phase Stefan
problem in the whole domain Ω(t), in which the non-linear relation between enthalpy e
and temperature T is given by the maximal monotone graph

e ∈ β–1(T) = (T – Tm)
cp,{s,l}
cp,l

+ 1{T>Tm}
1

Ste
+ 1{T=Tm}

[
0,

1
Ste

]
, (4)

where the specific heat cp,{s,l} is assumed constant in each subdomain and Ste denotes
the Stefan number. In general, this might yield a mushy region of material that is neither
entirely solid nor liquid. To ensure a sharp solid-liquid interface and the definition of a
liquid subdomain for the flow problem, we assign this region to the solid subdomain:

∂te + u · ∇e –
q{s,l}
RePr

�T = 0, T = β(e) in Ω(t), (5)

q{s,l}
RePr

∇T · n{s,l} = APIL + kSBE
(
T4 – T4

a
)

+ δ(T – Ta) on Γ{s,l}(t), (6)

Ωl(t) =
{

x ∈ Ω(t) : T(x, t) > Tm
}

, Γls(t) = ∂Ωl(t) ∩ Ω(t). (7)

Here, q{s,l} = κ{s,l}/κl is a subdomain dependent constant with respect to heat conductivity
κ{s,l} and Ta is the ambient temperature. Outer boundary heat fluxes include laser heat-
ing with power P, a Gaussian laser distribution IL, and absorption coefficient A, thermal
radiation due to the Stefan–Boltzmann law with Stefan–Boltzmann constant kSB and sur-
face emissivity E , and finally cooling by the surrounding shielding gas with corresponding
heat transfer coefficient δ. The Gaussian laser has a focus diameter of 40 μm and Fres-
nel absorption is assumed. Other general material and process parameters are listed in
Table 1.

Due to buoyancy forces, advectional heat transport and geometrical evolution, the sub-
problems for fluid flow, energy conservation and geometrical evolution are fully coupled.
A critical aspect within the model is the geometrical evolution of the solid-liquid-gas triple
junction γ (t): The evolution of each adjacent boundary part Γ{s,l,ls}(t) is determined by its
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Table 1 General material and process parameters, the material is 1.4301 steel

Variable Value Units

Reynolds number Re ≈ 0.39 [–]
Weber number We ≈ 3.12 · 10–6 [–]
Prandtl number Pr ≈ 0.13 [–]
Stefan number Ste ≈ 4.21 [–]
Absorptivity A = 0.38 [–]
Emissivity E = 0.70 [–]

Ambient Temperature Ta = 20 [◦C]
Melting Temperature Tm = 1400 [◦C]
Specific heat cp,{s,l} = {500, 830} [Jkg–1K–1]
Heat conductivity κ{s,l} = {15, 35} [Wm–1K–1]
Heat transfer coeff. δ = 200 [Wm–2K–1]

corresponding normal velocity vn,{s,l,ls} which overall yields three conditions for the evolu-
tion of γ (t). Since the evolution of Γls(t) is non-material in contrast to the outer boundary
parts, these conditions in general cannot be fulfilled at once. This incompatibility is not
tackled in the model and instead addressed in the numerical approach in the following
subsection.

2.2 Numerical method
For the numerical approximation of the coupled system of nonlinear PDEs, special chal-
lenges are given by the melting and solidification resulting in time-dependent liquid and
solid subdomains with changing topology, the geometric condition for the capillary free
boundary, which results in additional time-dependent changes of the liquid subdomain,
and the interplay between both, leading to a triple junction γ (t) between solid, liquid, and
outer domain, where the solid-liquid interface Γls and the capillary surface Γl meet.

Several approaches are possible for approximation of the free surface flow, like volume-
of-fluid [12, 28] or level set approaches [20, 22], see also [2]. A mathematically very elegant
approach, which nicely fits to the variational FEMs for temperature and fluid flow, is the
introduction of a surface-FE method for the geometric condition (2), based on a weak
formulation and discretization of the surface-Laplace–Beltrami operator [9]. A weak for-
mulation of equation (2) is derived using Knl = –�Γ x = ∇Γ · ∇Γ x where x is the position
vector, �Γ denotes the Laplace–Beltrami operator, and ∇Γ the tangential gradient re-
spectively divergence on Γl(t). Thus, the weak formulation of (1)–(3) with test function v
includes a surface integral

∫
Γl(t)

1
We

Knlv do =
1

We

∫
Γl(t)

∇Γ x · ∇Γ v do ∀v ∈ H1
0 (Γl)d. (8)

Boundary terms on ∂Γl = γ from integration by parts vanish, as the position of the triple
junction is interpreted as a Dirichlet boundary condition for the capillary surface, given
by the position of the solid-liquid interface. For definition of the corresponding finite ele-
ment spaces on Γl , it is possible to use the surface trace of the bulk mesh (giving a (d – 1)-
dimensional mesh from a d-dimensional one). Using the P2–P1 Taylor–Hood element
for discretization of velocity and pressure, based on an unstructured mesh of tetrahedra
S(t), an isoparametric P2 discretization of the geometry is conveniently usable with the
corresponding order of domain approximation. A suitable semi-implicit stable coupling
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between flow computation and geometric capillary condition was introduced in [1]. The
time-dependent domain change of Ωl(t) is covered by an ALE approach, where the mo-
tion of the capillary surface Γl(t) is extended into a smooth parametrization of the whole
domain, leading to an artificial advection term in the equation. An implementation was
the basis of the FORTRAN-code NAVIER [1]. This was already applied for various appli-
cations of free-surface flows in 2d and 3d, but not yet in combination with melting and
solidification.

Thus, for simulation of our material accumulation process, a numerical method for this
combination of free surface flow with solid-liquid phase transitions had to be newly estab-
lished: For the discretization of the two-phase Stefan problem, the enthalpy formulation
(5) is discretized by adapting a nonlinear finite element method for P1 elements from [11].
The corresponding implicit tracking of the interface Γls is preferable for general situations
with variable topology of solid/liquid subdomains. For an interface-capturing approach,
where the interface is represented by lower-dimensional mesh facets, topology changes
are not natural. In each time step, the subproblems for energy, fluid flow, and geometrical
evolution are decoupled from each other, see [18]:

• First, one time step of the Stefan problem is solved, using for advection the old velocity
field on the old domain, which results in a new energy density and temperature.

• Based on the new temperature, we generate a new partition of mesh elements into
solid and liquid ones. An element S is marked as liquid if the temperature is above
melting temperature, T |S > Tm.

• In the liquid subdomain, a new velocity, pressure, and position of the capillary surface
(with a corresponding ALE deformation of the whole liquid subdomain) are computed
by using the weak formulation on the old domain, and using the new temperature for
buoyancy forces. For the numerical solution, the nonlinearity of the convection term
and the incompressibility constraint are decoupled by an operator splitting.

Since we have no material movement in the solid subdomain and the solid-liquid phase
boundary is tackled by an interface-capturing approach, the ALE evolution of the geom-
etry effectively reduces to the liquid subdomain.

Full 3d simulations are needed for our application, due to the process design with lateral
heating, where, e.g., a 2d rotationally symmetric model is not sufficient for an appropriate
simulation. In 3d, with a 2d triangular surface mesh for the capillary free boundary, this
combination of 3d bulk FEM with 2d surface FEM is technically much more involved than
in 2d, where the outer boundary is just a polygon. For a 2d (or rotationally symmetric)
situation with clearly separated melting and solidification times, a direct formulation and
discretization of the Stefan condition with a corresponding ALE-formulation could be
used during melting [18], but in 3d the situation is definitely more complicated, as an ALE
formulation would technically be much more involved, and melting/solidification times
are typically not separated, so switching between different methods is not possible. The
latter is especially the case when process parameters are varied in a wide range, as it will
be needed for the solution of our optimization problem.

In contrast to other free surface flow applications, it is especially important for the 3d
simulations needed here for our process optimization, to take care against a degeneration
of the tetrahedral mesh. This would typically be caused by the ALE mesh deformation
during a drastic change in geometry, like during melting of a thin long cylindrical rod into
a spherical drop, as sketched in Fig. 1. This results even in the ALE approach in mesh
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elements becoming flat and wide over time. To avoid mesh degeneration, an additional
remeshing procedure based on the mesh generator TetGen [21] is used and accompanied
by the edge collapsing approach proposed in [13] in order to coarsen the outer surface
mesh, which TetGen itself is not capable of. Furthermore, the outer boundary of the re-
sulting polygonal mesh is projected onto the isoparametric piecewise quadratic boundary
of the old mesh to minimize the shape and volume error introduced by the remeshing. Ad-
ditionally, each remeshing step needs accompanying transfer operations of data between
different meshes. This is especially important for the flow variables, as the interpolation
of a weakly divergence free velocity field from one mesh to another does not preserve the
weak divergence condition for a new set of test functions. Thus, a subsequent projection
is needed corresponding to the new finite element spaces.

At this point, we will only address the discrete evolution of the solid-liquid interface
Γls(t) in detail due to its major influence on the optimization objectives. For convenience,
we will not add additional indices to indicate discrete quantities and use the same notation
as before. In the discrete problem, (7) is adapted to the triangulation S(t), as mentioned
above, by

Ωl(t) =
⋃{

S ∈ S(t) : T |S > Tm
}

, Γls(t) = ∂Ωl(t) ∩ ◦
Ω(t), (9)

such that a tetrahedron S can change its phase state within one time step. This results in
a discrete evolution of Ωl(t) and Γls(t) and we have T |Γls > Tm as sketched in Fig. 2(right).
The definition allows for topology changes of the subdomains and interface during nucle-
ation of an initial melt as well as solidification. Furthermore, the aforementioned overde-
termination at γ (t) is resolved since we either have vn,s = vn,l = vn,ls = 0 or a singular jump
of γ (t) if a neighboring tetrahedron at the boundary changes its phase. On the bad side,
if this jump introduces a kink to Γl(t), which typically occurs during melting, an artificial
capillary wave due to an imbalance between surface tension and inner forces originates at
the kink. As shown in [18], the strength of these waves is related to the ratio of time step
size and the size of mesh entities in the vicinity of the triple junction γ (t), meaning that a
smaller size of mesh entities should be accompanied with a smaller time step size. Further,
the fluids viscosity can be artificially increased in order to dampen these waves, which has
negligible influence on the heat distribution and final geometrical shape.

Altogether, we have an effective numerical method for simulation of the material accu-
mulation process for a large range of process parameters.

The discretization has of course an effect on the optimization procedure. Due to the dis-
crete evolution of Ωl(t) and Γls(t) we have a discontinuous change of geometrical quan-
tities. Therefore, a small change in input parameters might lead to a jump in geometry
related PMs. The jump size is directly related to the size of mesh entities in the vicinity of
Γls(t) at the end of the melting phase (see Sect. 4.1), which should be as small as possible.
As mentioned before, this would also require a smaller time step size increasing the nu-
merical effort further. In the following, we have chosen the size of mesh entities and time
steps in such a way, that we have a good trade off between jump size in geometry related
PMs and computing time.

2.3 Simulation results
In this subsection, we show some details on the results of the simulated process using the
specific case of Run 12 taken from the initial DOE, cf. Table 2 and Table 4 for values of P,
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Figure 3 Nucleation and melting phase (Run 12): One-sided nucleated melt at t10 = 3.68 ms (left), transition
into a spherical shape at t25 = 9.20 ms (middle) and nearly quasi-stationary melting phase with a spherical
melt tilted towards the impinging laser at t60 = 22.1 ms (right)

v, s and corresponding objective values. At this point we want to highlight, that we have
s = l0 in this particular case.

For visualization, the bottom tip of the wire is shown at different times in Figs. 3–5.
Thereby, the axial dimension of the wire will be denoted by the z-axis with z = 0 marking
the bottom tip of the initial configuration. The radial dimensions are denoted by the x-
and y-axis, in which the laser is impinging from positive y-direction. In order to judge the
symmetry of the resulting preform, the symmetry axis (0, 0, z) of the initial configuration
is indicated by a dashed line in each figure.

The nucleation and beginning of the melting phase is shown in Fig. 3. Each tetrahedron
is shaded in light or dark gray according to it’s phase state. This is accompanied by several
temperature isolines {Tm + Z · 138◦C}, where the melting temperature Tm is marked in
orange. At t10 = 3.68 ms an initial melt is nucleated on the laser side without a significant
geometrical deformation. Due to the ongoing laser irradiation, melting continues and by
heat conduction the whole wire tip melts, with an inclined solid-liquid phase boundary.
Hence, due to surface tension, the formation of a spherical melt drop begins that is tilted
towards the side of energy input as can be seen at t25 = 9.20 ms. This continues and re-
sults in a nearly quasi-stationary evolution, where more material melts and a growing melt
drop is moving upwards. The situation is shown at t60 = 22.1 ms and t100 = 36.8 ms. Latter
is the last time step of laser irradiation and shown in Fig. 4. The 3d visualization is sup-
plemented by perpendicular cross sections showing the fluid’s flow that is predominantly
the spherical melt moving upwards. Due to setup of initial geometry and laser the process
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Figure 4 Laser switch off at t100 = 36.8 ms at height s = 3.0 mm (Run 12): 3d geometry (left) and
corresponding perpendicular cross sections through the symmetry axis showing the velocity field (middle,
right)

Figure 5 Solidification and estimated molten length l (Run 12): 3d geometry at time instant
tmax = t106 = 39.0 ms with maximal melt volume (left) and perpendicular cross sections of the final geometry
at t667 = 246 ms showing the solidification by isolines for Tm at t{106+k·100} = 39.0 ms + k · 36.8 ms with
k ∈ {0, 1, . . . , 5} (middle, right)

should be symmetric to the yz-plane. As can be seen from the xz cross section this is only
approximately the case due to the non-symmetric unstructured tetrahedral mesh.

Even after switching the laser off, melting continues due to overheating of the melt. We
define

tmax = arg max
ti∈t0,...,tN

∣∣Ωl(ti)
∣∣ (10)

as endpoint of the melting phase. As shown in Fig. 5(left) melting continues until time
tmax = t106 = 39.0 ms in this specific case. Due to heat conduction, melting predomi-
nantly continues on the side opposite of the laser which decreases the inclination an-
gle of the solid-liquid phase boundary and hence reduces the tilt of the molten sphere.
In Fig. 5(middle, right), we depict isolines of the melting temperature TM from different
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times. It can be seen that solidification starts at the shaft of the wire and at first, the melt
solidifies at the laser side while melting on the opposite side, which further reduces the
sphere’s tilt. Later on, solidification also starts originating from the free capillary bound-
ary and finally ends at tend = t667 = 246 ms given by

tend = min
{

ti > tmax :
∣∣Ωl(ti)

∣∣ = 0
}

. (11)

At the end, the preform has a nearly spherical shape which is slightly tilted towards the
side of energy input and nearly symmetric to the xy plane.

2.4 Numerical evaluation of PMs
The process should ideally form a perfectly centered sphere segment below the shaft in
which the molten length l equals the desired value l0.

The definition of the molten length l is not straight forward since the solid-liquid phase
boundary is typically inclined and material can solidify on the one side while melting on
the other side. For simplicity, we relate the maximal melt volume |Ωl(tmax)| to a cylinder
of the same volume and diameter d0 to match the wires shape. By taking the height of this
cylinder, we get a mean position of the solid-liquid phase boundary which is given by

l =
4

πd2
0

∣∣Ωl(tmax)
∣∣ (12)

and serves as an approximation for the molten length. We want to recall at this point, that
Ωl(tmax) is given by a subtriangulation according to equation (9) and hence, the discrete
interface Γls(tmax) does typically not coincide with an isoline of the melting temperature
Tm. This way, the molten length is underestimated in the numerical approach depending
on the mesh element size as can be seen in Fig. 5(left).

To compare the shape of the preform to a centered sphere segment below the shaft, we
calculate the center of mass of the preform below l given by

c = (cx, cy, cz)T =
1

|V |
∫

V ={(x,y,z)∈Ω(tend) : z≤l}
(x, y, z) d(x, y, z), (13)

computed via a quadrature formula, and compare it to the center of mass c̃ of the sphere
segment of same volume by

�c = (�cx,�cy,�cz)T = (cx – c̃x, cy – c̃y, cz – c̃z)T (14)

as shown in Fig. 6 for Run 12. Due to the tilt of the sphere �cy has the largest value and the
preform appears smaller on the right hand side. In comparison, �cx is rather small due to
the symmetrical setup and could be neglected. But it also gives an idea for the numerical
approximation error of the geometry. To reflect this, we decided to combine both radial
components taking

�cxy =
√

�c2
x + �c2

y (15)

for the radial shape error in case study 2. �cz reflects the shape error in axial direction and
is only a rough measure for the vertical position due to the calculation of l. Nevertheless it



Bänsch et al. Journal of Mathematics in Industry            (2020) 10:2 Page 12 of 30

Figure 6 Final preform shape (Run 12): The 3d preform shape and its barycenter (•) below l are compared to
a centered fictional sphere segment of the same volume with corresponding barycenter (•). For visualization,
2d cross sections with componont-wise barycenter distance �c = (�cx ,�cy ,�cz )T are shown

is important, since there are input parameters resulting in only a one-sided melting of the
wire. In this case, we have nearly no geometrical change from the initial geometry, which
other objectives might not reflect. An even simpler approach chosen in case study 1 is the
combination into a single shape error measure by

�cxyz =
√

�c2
x + �c2

y + �c2
z . (16)

3 Multiobjective optimization method
The process we presented in Sects. 1 and 2 involves different PMs that exhibit conflicting
behavior. For example, the processing conditions that provide the best quality in terms of
product shape may not correspond to the highest energy efficiency.

When multiple conflicting PMs are involved, optimizing a single objective can result
in solutions that perform poorly for other objectives. Thus, it is not the best approach
to obtain a single solution but rather the set of solutions corresponding to the best com-
promises. For this, we use the following definition for the concepts of non-dominated
solutions and Pareto front as in [10] and [24]:

Definition 1 For the optimization problem of minimizing (f1(x), f2(x), . . . , fm(x)), a feasible
solution x1 is said to dominate x2 if: fi(x1) ≤ fi(x2) for i = 1, . . . , m, and fi(x1) < fi(x2) for
some i ∈ {1, . . . , m}. The non-dominated solutions are known as Pareto solutions. The set
of Pareto solutions is known as Pareto Set (Pset) and the corresponding output values form
the so called Pareto Front (Pfront).

Given a problem with conflicting PMs, we can focus our attention on finding the Pareto
set, and then a decision maker on a particular moment of the process can select the best
solution. This allows for the decision maker to give different weights to the PMs at any
time, once the set of non-dominated solutions is known. Alternatively, one could estimate
the uncertainty of the Pareto front due to variations in the design space; solutions with less
variation are preferred. However, quantifying the uncertainty of the Pareto front requires
extensive sampling over the design space, which makes it computationally intensive, [4].
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A methodology to calculate the so called optimality influence range of the Pareto approx-
imation due to variations in the design space has been proposed in [14]. The optimality
influence range is a hyper-rectangle that encloses all the objective variations with an angle.
Binois et al. [4] used conditional simulations of Gaussian process (Kriging metamodels) to
estimate the Pareto front and a measurement of uncertainty of the approximated Pareto
Front. Despite the fact that the latest uses metamodels to estimate the Pareto front and a
measurement of uncertainty it is still computationally expensive.

In this work, we used the metamodel-based multiobjective simulation optimization
method introduced in [23] to optimize two case studies for the material accumulation
process described in previous Sections.

The method is schematically shown in Fig. 7 and starts by performing an experimental
design to generate a set of initial data points, and a simulation run is performed at each
point.

Then the set of best compromises between all performance measures is found using
Definition 1, and it is called Incumbent Pareto Front.

For the initial experimental design, we use a central composite design, which is one of
the most commonly chosen method when the interest is in a complete coverage of the
searching space and a regression model is to be fitted. The initial set of points for an n
dimensional space is of size 2n + 2n + 1. The approximation obtained with this design
performs very well when the optimization functional does not have strong oscillations
and even better when it is a smooth functional (which is the case for the simulation results
of our material accumulation process, besides the small jumps in geometry related PMs
mentioned in Sect. 2).

Given the incumbent Pareto front obtained from the simulations at the initial data
points, the main iteration steps are the following:

1. Use all available simulated data to fit a metamodel for each PM.
2. Use the metamodels to estimate the value of the PMs for a large set of input

combinations.
3. Identify the best compromises between all PMs. Call the corresponding Pareto Front,

Predicted Pareto Front. The corresponding CPVs settings are the predicted Pareto Set
(P̃set).

4. Evaluate the predicted Pareto Set using the simulation code.
5. Update the incumbent Pareto Front (based only on simulated data) using the new

information.
6. Evaluate stopping criteria.
Using these iterative steps, the metamodels are updated and are used to approximate a

new Pareto Set. The updated models are able to obtain good approximations of the output
responses near the Pareto Front at each iteration. The metamodels make use of all initial
points and the new points added at each iteration during step 4. It might happen that the
number of solutions on the predicted Pareto Set is larger than the remaining number of
total simulation runs allowed (N left

sim), or it is larger than the maximum number of simula-
tions allowed per iteration (Nmax

sim ). If this is the case, a subset of min{N left
sim, Nmax

sim } solutions
is selected based on a Maximin distance criterion using the predicted Pareto Front.

Jin et al. [15] compared several sequential sampling techniques for metamodeling based
optimization. In [15] is recommended to sample 4n (if n < 6) and 3n if n ≥ 6 points, where
n is the number of CPVs, at each iteration. Here, the number of points that are sample
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Figure 7 Multiobjective optimization method flow diagram for the laser-based material accumulation
process

at each iteration corresponds to the number of solutions on the predicted Pareto front.
However, if the number is large it is restricted to a value of 3n. This value corresponds to
Nmax

sim and is taken independently of the experimental design points.
At each iteration a series of stopping criteria are evaluated and if at least one is met, the

method stops and reports the incumbent Pareto Solutions, otherwise, the new simulated
points are added to the existing set of data points and a new iteration begins. The stopping
criteria we used in this implementation are:

• Stop if the total number of simulation (N total
sim ) allowed is reached

• Stop if the coefficient of determination R2 of all models is larger than 1 – ε

• Stop if no new Pareto solutions are found
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It has been shown in [23] that this multiobjective optimization method is able to approx-
imate a set of Pareto solutions without having to evaluate a large number of simulations.
15q has been shown to be a good upper limit for the total number of simulations (N total

sim ),
where q = max{m, n}.

4 Optimization of a laser-based material accumulation process
For optimization, we consider the example process described at the end of Sect. 1.1,
namely the generation of a spherical material accumulation by melting exactly 3.0 mm
of a wire with diameter 0.2 mm. We present two optimization case studies of the laser-
based material accumulation process. The objective is to produce parts with an optimal
shape in an efficient way. Regarding the amount of objectives considered, the first case
study considers three simultaneous PMs, while the second case study includes a total of
six PMs. Both cases have three CPVs, namely laser power (P), laser path length (s), and
laser velocity (v):

• With constant laser velocity and path length, a high laser power uses more energy and
generates a higher temperature, leading to more molten material, and time needed for
cooling is longer. On the other hand, a low laser power may introduce not enough
energy to melt the full wire diameter or even any material at all.

• The laser path length is connected to the amount of molten material. But, depending
on the laser power and velocity, typically a part of the wire is molten which is longer
than the path length.

• With constant laser power and path length, a lower laser velocity leads to a higher
temperature and subsequently a longer cooling time, while a very fast velocity can
lead again to the introduction of not enough energy to melt the full wire.

The parameter range of the CPVs is based on experimental results in [5, 7]. In both works,
for a fixed diameter d0 an optimal laser velocity vopt is determined for several laser pow-
ers and a linear regression model is formulated to gain a functional relationship. vopt

is in this context optimal with respect to energy efficiency by maximizing the ratio l/E
experimentally. It should be noted that vopt barely depends on the laser path length s
which is neglected in the regression model. For d0 = 0.2 mm the linear regression model
yields

vopt = 1.6P – 14.5 (17)

for the optimal laser velocity, cf. [5]. Due to vopt’s inherent energy efficiency, the molten
sphere is typically barely overheated and the same applies for the solid shaft. After
the laser is switched off, solidification starts almost immediately and hence we have
l ≈ s but the inclination angle of the solid-liquid phase boundary as well as the tilt
of the sphere decrease only slightly. This quality problem might be overcome by de-
creasing vopt and therefore increase the energy to achieve further melting after the laser
is switched off. So in order to attain a specific molten length l0 the laser path length
must be decreased to s < l0 while decreasing vopt appropriately. To achieve the desired
molten length of l0 = 3.0 mm we consider a laser path length as low as s = 2.0 mm.
For this case we have validated by several simulations, that without changing the laser
velocity nearly twice the laser power is needed compared to s = 3.0 mm, since energy
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Figure 8 Optimization inputs feasible region

losses are much higher. We reflect this for this special case in the functional relationship
by

v = 1.6P
(

s – 1
2

)
– 14.5 (18)

which gives (17) for s = l0 = 3.0 mm.
Now, we want to build a neighbourhood to define our searching space as a band around

this area. For this, we take upper and lower limits given as the ±25% bounds, it is

vlb = 0.75 ·
[

1.6P
(

s – 1
2

)
– 14.5

]
, (19)

vub = 1.25 ·
[

1.6P
(

s – 1
2

)
– 14.5

]
. (20)

The parameter ranges for P and s were taken as [20 W, 100 W] and [2 mm, 3 mm], re-
spectively. The lower and upper limits of v are defined by vlb and vub (see Equations (19)
and 20), respectively. Thus, the range of v is different at distinct values of P and s and, as
a consequence, the optimization search space is not a cube. The shaded region on Fig. 8
shows the search space. By selecting this process window, constructed around the area
where experiments suggested an energy efficient process, we restrict our optimization
methodology to a relatively small input domain, allowing for a higher precision. We also
avoid including solutions far away from the interesting non-linear search space defined by
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equations (19) and (20) that might potentially mislead the construction of the metamod-
els.

4.1 Simulation setting for optimization
Since all simulations are starting with the same geometry, the cylindrical wire with diame-
ter d0 = 0.2 mm and length 10.0 mm is only triangulated once. The unstructured uniform
tetrahedral mesh is generated using TetGen and subsequently inserted edge midpoints at
the outer boundary are projected to the cylindrical shape giving an isoparametric piece-
wise quadratic approximation. The initial mesh consists of 9806 elements. As mentioned
in Sect. 2, the spatial discretization has a discontinuous impact onto the geometry related
PMs. Assuming a molten length of 3.0 mm, around 30% of all elements are molten. This
results in relative volume change of 0.034% for each newly molten element according to
(12), which is only a small jump in the PM for the length error |�l|. If an element at the
outer boundary is molten or barely not molten during the melting phase, the barycenter c
of both corresponding final geometries differs slightly. The difference is related to the edge
length on the outer boundary as well as the molten volume. With a typical edge length of
60 μm we observe changes in �cxy around 10 μm and even smaller changes in the axial
component �cz . All these jumps can be reduced by choosing a finer spatial discretization.

Remeshing is performed to avoid numerical issues due to degeneration of tetrahedra.
However, this has no significant impact on the number of elements. Time step size has
been chosen constant and differently in each simulation, such that the duration of laser
heating lasts exactly 100 time steps. This ensures a similar deformation per time step in
most simulation runs.

Further process and material parameters are the same as for Run 12 presented in Sect. 2
and have already been listed in Table 1.

The running time of the simulations depends mostly on the flow problem, such that the
size of the molten volume has a major impact. Using a workstation with four CPUs (Intel
i7-3770, 3.4 GHz) handling up to six simulations simultaneously, runtime ranges between
30 minutes and 10 hours for a single simulation.

4.2 Case study 1: optimization of shape and energy
The first case study has three PMs and three CPVs. The optimization objectives, as de-
scribed in Sect. 1.2, are: minimize length error (|�l|) [mm], minimize the sum of radial
error and axial error (�cxyz) [μm], and minimize energy (E) [J].

For the multiobjective optimization algorithm we used the following parameters: as sug-
gested in [23], the maximum number of evaluations allowed was set to N total

sim = 3×15 = 45;
the maximum number of runs per iteration was set as Nmax

sim = 3 × 3 = 9; and the lower
bound for R2 was set at 98% (ε = 0.02).

The optimization procedure is as follows:
Initialization
1. Run initial experimental design

First an experiment is designed and run to collect an initial set of data points. As
suggested in [25] a Central Composite Design (CCD) with one central point is used.
The design was generated as follows: first an inscribed CCD of three factors with
ranges [–1, 1] was constructed. Then, the values of P and s were mapped to their
original ranges. After that, for each pair of P and s, the range of v was calculated
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Table 2 Case Study 1: Results of initial experimental design and derived quantities

Run P s v �l �cxyz E l – s l/E P/v
[W] [mm] [mm/s] [mm] [μm] [J] [mm] [mm/J] J/mm

1∗ 36.91 2.21 18.19 0.7196 1.05 4.49 1.508 0.83 2.03
2 36.91 2.21 24.33 0.1568 4.45 3.35 0.945 0.94 1.52
3 36.91 2.79 32.78 0.3109 15.49 3.14 0.522 1.05 1.13
4∗ 36.91 2.79 43.84 –0.1795 16.16 2.35 0.032 1.20 0.84
5 83.09 2.21 56.49 0.2535 40.58 3.25 1.042 1.00 1.47
6 83.09 2.21 75.55 –0.2420 26.58 2.43 0.547 1.13 1.10
7∗ 83.09 2.79 89.33 0.0857 29.08 2.59 0.297 1.19 0.93
8∗ 83.09 2.79 119.47 –0.3757 79.37 1.94 –0.164 1.35 0.70
9 20.00 2.50 9.50 0.2205 13.08 5.26 0.721 0.61 2.11
10 100.00 2.50 105.50 –0.2308 21.40 2.37 0.269 1.17 0.95
11 60.00 2.00 33.50 0.1986 3.90 3.58 1.199 0.89 1.79
12∗ 60.00 3.00 81.50 –0.1090 68.55 2.21 –0.109 1.31 0.74
13 60.00 2.50 43.13 0.4456 3.17 3.48 0.946 0.99 1.39
14∗ 60.00 2.50 71.88 –0.4870 31.94 2.09 0.013 1.20 0.83
15∗ 60.00 2.50 57.50 –0.0532 9.07 2.61 0.447 1.13 1.04

using equations (19) and (20). Finally, the scaled value of v is mapped according to
the corresponding range. The values of the CPVs and corresponding PMs are shown
on Table 2. Figure 10 shows the initial DOE points as cyan dots. Figure 11 shows the
corresponding PMs values using the same cyan color.

2. Find incumbent Pareto Front
After all data has been collected, the incumbent Pareto Front is identified. The

incumbent Pareto solutions, from the initial points, are solutions 1, 2, 4, 7, 8, 11–15.
Main Iteration, k = 1
1. Form a surrogate model per performance measure

At this step, a surrogate model is fitted for each PM using all available simulated
data. However, since we know the formula for energy (objective 3),

E =
P × s

v
, (21)

we only fitted a surrogate model for the first two objectives. The fitted models are
Multiple Linear Regression (MLR) models with one degree of freedom.

The coefficients of determination R2 of the surrogate models are R2
1 = 0.9673 (�l)

and R2
2 = 0.9999 (axial + radial error).

2. Evaluate surrogate models at a uniform grid of input combinations
Both surrogate models and equation (21) are evaluated at a grid of points on the

feasible region. The grid of points was constructed with 100 equally spaced levels for
each CPV. However, only the combinations that lied within ± 25% of Equation (18)
were considered. In total 157,781 solutions were evaluated. Figure 9 shows the
evaluation of the models.

The optimization method is implemented in Octave and ran in a PC (Intel
i5-8250U, 1.6 GHz). Performing Step 1 and 2 of the optimization takes few seconds,
so if we compared it with the time it will take to run thousands of simulations,
metamodels are a very efficient way to represent simulation data for an optimization
algorithm. Even for the best possible scenario of simulations taking only 30 minutes
to compute, a similar global evaluation would need years of computational work to
be done.
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Figure 9 Case Study 1: Predictions of metamodels iteration k = 1. Note: Energy is calculated using Equation
(21)

3. Find approximated Pareto Set and Front
Now, the Pareto Front of the predicted solutions is found, it consist of 7257

solutions. Since the maximum number of simulations allowed per iteration Nmax
sim = 9,

9 solutions were selected using a max-min distance criteria algorithm with 1000
iterations. This is, 1000 subsets of 9 points were randomly selected out of the 7257
points and the set for which the minimum distance between two points is the
maximal was selected. The distances are calculated based on the input values (CPVs).

4. Evaluate selected predicted Pareto Solutions
Table 3 shows the input and output values of the 9 new runs. Figures 10 and 11

show the input and output results as dark green circles.
5. Update Incumbent Pareto Front

The incumbent Pareto Front is updated comparing the initial incumbent Pareto
Front and the 9 additional runs. The new Pareto solutions are 1, 4, 7, 8, 12, 14, 15, 16,
18, 19, 21, 22, 23, and 24.

6. Evaluate Stopping Criteria
Next, the stopping criteria are evaluated. The criteria used here are: (1) stop if the

maximum number of simulations allowed was reached (no, 24 < 45); (2) stop if R2 of
all models is larger than 1 – ε = 0.98 (no, R2

1 = 0.9673 and R2
2 = 0.9999); (3) stop if no

new Pareto solutions were found (no, new solutions were found). Since none of the
stopping criteria were met, a new (main) iteration is needed.

On the second iteration, new metamodels were fitted using all available data (24 simu-
lations). The R2 of the new models are R2

1 = 0.9999 and R2
2 = 0.9949 respectively. Later, the

models were used to predict a new Pareto front which had 2852 solutions, however only
9 were evaluated. The corresponding input and output values are shown on Table 3 (runs
25–33). Afterwards, the incumbent Pareto front was updated and the new Pareto solu-
tions are 1, 4, 7, 8, 12, 14, 15, 16, 18, 19, 21, 22, 23, 24, 27–33. Then, the stopping criteria



Bänsch et al. Journal of Mathematics in Industry            (2020) 10:2 Page 20 of 30

Table 3 Case Study 1: Evaluation of selected predicted Pareto solutions and derived quantities,
iterations k = 1 (runs 16–24) and k = 2 (runs 25–33)

Run P s v �l �cxyz E l – s l/E P/v
[W] [mm] [mm/s] [mm] [μm] [J] [mm] [mm/J] J/mm

16∗ 36.16 2.89 44.94 –0.1476 30.29 2.32 –0.036 1.23 0.80
17 41.82 2.43 32.16 0.1693 29.24 3.17 0.735 1.00 1.30
18∗ 51.52 2.53 46.77 –0.0082 21.91 2.78 0.467 1.08 1.10
19∗ 57.98 2.53 57.72 –0.1198 2.80 2.54 0.355 1.14 1.00
20 66.87 2.51 68.68 –0.1810 19.86 2.44 0.314 1.16 0.97
21∗ 89.50 2.95 156.31 –2.3755 175.73 1.69 –2.325 0.37 0.57
22∗ 90.30 2.49 116.15 –0.5962 28.42 1.94 –0.091 1.24 0.78
23∗ 95.96 2.59 132.58 –0.5483 52.90 1.87 –0.134 1.31 0.72
24∗ 96.77 2.55 110.67 –0.3243 29.20 2.23 0.130 1.20 0.87

25 65.25 3.00 72.33 0.2082 20.50 2.71 0.208 1.19 0.90
26 74.14 3.00 81.46 0.2734 13.64 2.73 0.273 1.20 0.91
27∗ 87.88 2.47 99.72 –0.3816 5.40 2.18 0.144 1.20 0.88
28∗ 89.49 3.00 159.97 –2.5515 112.34 1.68 –2.551 0.27 0.56
29∗ 93.54 2.60 130.75 –0.5173 60.11 1.86 –0.113 1.34 0.72
30∗ 94.34 2.70 141.71 –0.4854 81.51 1.80 –0.182 1.40 0.67
31∗ 98.38 2.99 172.75 –2.3875 171.07 1.70 –2.377 0.36 0.57
32∗ 100.00 2.37 112.50 –0.5043 7.95 2.11 0.122 1.18 0.89
33∗ 100.00 2.43 123.45 –0.6117 6.04 1.97 –0.046 1.21 0.81

Figure 10 Case Study 1: Values of controllable process variables for the initial experimental design (cyan),
iteration k = 1 (dark green) and iteration k = 2 (olive green). The red circle around the dots mark the runs
belonging to the final Pareto set

were evaluated and since the R2 of both models are larger than 0.98 the method stopped
and the final Pareto solutions are reported.

Report Final Incumbent Solutions
The final Pareto solutions are identified with an (∗) next to the run number on Tables 2

and 3 and are marked with a red circle on Figs. 10 and 11.
This concludes the simulation-optimization procedure and delivers a set of solutions

that represent the best compromises between all PMs. Now, practitioners can select the
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Figure 11 Case Study 1: PMs values of initial experimental design (cyan), iteration k = 1 (dark green) and
iteration k = 2 (olive green). The red circle around the dots mark the runs belonging to the final Pareto front

best one, depending on the current needs and the priorities they want to grant to each of
the PMs.

4.3 Case study 2: optimization for shape and process efficiency
To further improve the laser-based material accumulation process, we now consider six
objectives. Three PMs are related to shape quality and 3 more relevant to process effi-
ciency. Objective 1 corresponds to minimize length error (|�l|) [mm], objective 2 mini-
mize radial error (�cxy) [μm], objective 3 minimize axial error (�cz) [μm], objective 4
minimize process time (tend) [s], objective 5 minimize energy (E) [J] used and objective 6
minimize the laser usage time [ms]. Objectives 1, 2, 3 and 4 were measured as described
in Sect. 1.2 and 2.4. Objectives 5 and 6 are calculated using equations (21) and (22) respec-
tively.

laser usage =
s
v

× 1000. (22)

In this case study, the same CPVs of Case 1 were used. The range of the CPVs and fix
variables was kept the same.

As in Case Study 1, the optimization was conducted following the flow chart in Fig. 7.
The optimization parameters used here are: maximum number of simulations N total

sim =
15 × 6 = 90; maximum number of simulations per iteration Nmax

sim = 3 × 6 = 18; and the
lower bound for R2 was set again at 98% (ε = 0.02).

The initial design of experiments is the same as in Case Study 1. Table 4 shows the val-
ues of the CPVs and the corresponding PMs evaluations. The initial Pareto solutions are
solutions 1–4, 6–8, 10–15.

After the initial data is collected, a MLR model was fitted to estimate objectives 1 to 4
and objectives 5 and 6 were calculated using equations (21) and (22) respectively.
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Table 4 Case Study 2: Results of initial experimental design. A star in the first column indicates that it
is a final Pareto solution

Run P s v �l �cxy �cz Process E Laser usage
[W] [mm] [mm/s] [mm] [μm] [μm] time [ms] [J] [ms]

1∗ 36.91 2.21 18.19 0.7196 0.8957 0.5506 433.88 4.49 121.54
2∗ 36.91 2.21 24.33 0.1568 0.8987 4.3581 376.23 3.35 90.88
3 36.91 2.79 32.78 0.3109 15.0270 3.7534 362.40 3.14 85.07
4∗ 36.91 2.79 43.84 –0.1795 16.0777 1.5913 291.34 2.35 63.61
5 83.09 2.21 56.49 0.2535 40.5365 1.8794 338.20 3.25 39.14
6∗ 83.09 2.21 75.55 –0.2420 26.3521 3.4772 293.27 2.43 29.27
7∗ 83.09 2.79 89.33 0.0857 29.0608 1.1673 299.05 2.59 31.22
8∗ 83.09 2.79 119.47 –0.3757 75.9127 23.1769 195.14 1.94 23.34
9 20.00 2.50 9.50 0.2205 12.3180 4.4034 497.37 5.26 263.16
10 100.00 2.50 105.50 –0.2308 19.9958 7.6273 278.20 2.37 23.70
11∗ 60.00 2.00 33.50 0.1986 0.1739 3.9001 355.82 3.58 59.70
12∗ 60.00 3.00 81.50 –0.1090 66.6995 15.8253 245.15 2.21 36.81
13∗ 60.00 2.50 43.13 0.4456 0.2729 3.1601 366.96 3.48 57.97
14∗ 60.00 2.50 71.88 –0.4870 31.9317 0.6542 247.30 2.09 34.78
15∗ 60.00 2.50 57.50 –0.0532 7.9411 4.3791 303.48 2.61 43.48

The R2 of the four metamodels are 0.96729, 0.99866, 0.95088, and 0.99997, respectively.
Then, the PM values of 157,781 solutions were estimated (see Case Study 1, main iter-
ation, Step 2 as reference) and the predicted Pareto Front was identified. The predicted
Pareto Front at iteration k = 1 had 46,708 solutions, however only 18 were simulated. The
selection was performed as in Case Study 1. Solutions 16 to 33 on Table 5 show the cor-
responding input and output values. The incumbent Pareto front is then updated and the
new Pareto solutions are 1–4, 6–8, 10–16, 18–33. Since, none of the stopping criteria are
met a new iteration began.

A total of 3 iterations and 69 simulation runs were performed until the method stopped.
Table 5 shows the results of the additional runs. Solutions 16 to 33 are for iteration 1, 34
to 51 for iteration 2, and 52 to 69 from iteration 3. The methods stopped because the R2

of all metamodels was larger that the lower limit.
The final Pareto solutions correspond to simulation runs 1, 2, 4, 6–8, 11–15, 18–28, 30–

33, 35–38, 40, 42, 44, 46–51, 53–62, 64, 65, 67–69 and are marked by an (∗) next to the
solution number on Tables 4 and 5.

The final Pareto Set is shown graphically on Figs. 12. It is denoted by the red circled
solutions.

4.4 Comments on the optimization results
For Case Study 1 (Sect. 4.2), we have chosen two PMs for measuring the shape quality
of the produced components and one more for the used energy needed on the process.
It is important to mention that a process with correct molten length can be achieved by
choosing an appropriate velocity v for a laser power P and path length s given within the
CPVs feasible region. Further, a fast moving laser with high power usually leads to better
energy efficiency, since the time for heat transport in distant regions and boundary fluxes
is shorter.

Looking at Tables 2 and 3, runs 21, 28 and 31 give the minimal values of energy. These
runs are special, since the applied energy per unit length P

v < 0.58 J
mm is too low in order

to establish the formation of a larger molten volume. Instead, only the region around the
laser’s impinging spot is melting and solidifying shortly afterwards. The opposite side of
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Table 5 Case Study 2: Evaluation of selected predicted Pareto solutions. Iterations are divided by
horizontal lines. Iteration 1: solutions 16 to 33, Iteration 2: 33 to 51, Iteration 3: 52 to 69

Run P s v �l �cxy �cz Process E Laser usage
[W] [mm] [mm/s] [mm] [μm] [μm] time [ms] [J] [ms]

16 35.35 2.51 33.99 –0.1259 18.9614 6.2589 311.76 2.61 73.70
17 49.90 2.18 33.99 0.0822 24.8656 10.8807 344.71 3.20 64.19
18∗ 49.90 2.54 52.25 –0.2156 5.6817 0.8054 290.20 2.42 48.53
19∗ 53.13 2.37 46.77 –0.1091 25.1997 2.4081 307.57 2.70 50.75
20∗ 53.94 2.97 85.11 –1.6574 0.4341 478.3233 105.03 1.88 34.89
21∗ 54.75 2.63 66.85 –0.3791 44.9556 5.0348 256.53 2.15 39.29
22∗ 63.64 2.60 77.81 –0.3833 24.5226 3.5034 253.24 2.12 33.36
23∗ 65.25 2.62 85.11 –0.4678 33.2967 5.0032 230.85 2.01 30.74
24∗ 66.06 2.23 52.25 –0.0218 1.4280 12.3484 319.60 2.82 42.73
25∗ 66.06 2.26 65.03 –0.3948 7.2521 1.1002 280.10 2.30 34.79
26∗ 74.14 2.34 81.46 –0.4587 38.3614 0.9513 252.87 2.13 28.77
27∗ 78.99 2.88 90.59 0.0049 26.3575 4.2562 293.01 2.51 31.78
28∗ 87.07 2.24 86.94 –0.4137 1.4837 2.2683 268.51 2.25 25.79
29 87.07 2.68 117.97 –0.4491 53.1142 9.8716 226.00 1.98 22.69
30∗ 89.50 2.82 96.06 0.1170 12.5026 4.3378 300.99 2.63 29.34
31∗ 93.54 2.93 159.97 –2.2449 0.2254 227.3149 67.02 1.71 18.31
32∗ 98.38 2.45 105.19 –0.3005 0.2400 3.9460 268.81 2.30 23.33
33∗ 100.00 2.66 96.06 0.2074 24.5266 1.4533 322.17 2.77 27.65

34 29.70 2.99 24.86 0.5677 32.4914 1.8269 408.92 3.57 120.27
35∗ 43.43 2.97 48.59 0.1526 3.6120 4.8132 311.67 2.65 61.11
36∗ 48.28 2.95 59.55 –0.0506 35.7041 6.3111 283.81 2.39 49.53
37∗ 57.17 2.85 65.03 –0.0030 25.9235 2.2283 289.99 2.50 43.81
38∗ 63.64 2.89 79.63 –0.1301 31.8396 1.6049 270.27 2.31 36.28
39 69.29 2.24 50.42 0.1363 21.4663 4.6353 321.10 3.08 44.47
40∗ 70.10 2.84 88.76 –0.1998 0.9327 2.7809 261.26 2.24 31.98
41 70.10 2.97 72.33 0.3310 19.4154 3.7056 327.64 2.88 41.06
42∗ 78.99 2.57 99.72 –0.4796 12.5994 3.9512 237.23 2.03 25.73
43 79.80 2.31 55.90 0.3092 19.1094 7.3058 343.88 3.30 41.38
44∗ 80.61 2.85 130.75 –1.8735 0.1271 381.8099 75.81 1.76 21.79
45 81.41 2.16 46.77 0.4455 0.6707 3.0974 358.19 3.76 46.22
46∗ 85.45 2.53 72.33 0.2835 0.3908 1.6543 340.41 2.98 34.91
47∗ 85.45 2.88 139.88 –1.9057 0.2091 367.6946 71.80 1.76 20.58
48∗ 93.54 2.57 107.02 –0.3093 48.1271 1.2762 263.48 2.24 23.97
49∗ 95.15 2.06 52.25 0.3811 15.2397 0.2559 346.68 3.75 39.44
50∗ 99.19 2.91 139.88 –0.2351 74.7555 11.2608 215.66 2.06 20.80
51∗ 99.19 2.95 127.10 –0.1003 12.5657 4.7182 259.21 2.30 23.21

52 28.08 2.02 10.25 –0.3540 2.8358 2.4017 405.85 5.53 197.02
53∗ 48.28 2.94 74.16 –0.9304 1.8047 886.3475 145.87 1.91 39.64
54∗ 53.13 2.95 77.81 –0.2435 99.7576 25.4293 202.43 2.01 37.91
55∗ 74.95 2.79 110.67 –0.4035 101.1778 20.9598 184.90 1.89 25.19
56∗ 79.80 2.84 125.28 –1.1145 2.3559 716.2545 83.38 1.81 22.66
57∗ 84.65 2.95 119.80 –0.2084 85.2085 25.9385 207.79 2.08 24.62
58∗ 85.46 2.97 136.23 –1.5395 0.3145 524.8515 78.70 1.86 21.80
59∗ 86.26 2.71 125.28 –0.4241 79.7294 19.6772 184.75 1.86 21.61
60∗ 87.07 2.01 55.90 0.0949 21.1008 5.4781 333.35 3.13 35.96
61∗ 88.69 2.63 116.15 –0.4445 30.6019 5.3633 235.61 2.01 22.61
62∗ 91.11 2.92 136.23 –0.2447 48.5104 0.9139 193.50 1.95 21.43
63 92.73 2.99 119.80 –0.1034 55.0695 10.4963 263.55 2.31 24.96
64∗ 93.54 3.00 149.01 –1.4214 0.5304 577.4269 82.75 1.88 20.13
65∗ 94.34 2.91 128.93 –0.2180 78.6193 14.0482 218.64 2.13 22.56
66 95.96 2.26 101.54 –0.4763 9.4468 5.5457 262.71 2.14 22.28
67∗ 100.00 2.12 81.46 –0.1803 4.3243 3.2005 296.08 2.60 26.04
68∗ 100.00 2.69 130.75 –0.3969 4.7074 4.3802 236.32 2.05 20.55
69∗ 100.00 2.89 165.44 –1.9310 0.2932 358.7323 61.29 1.75 17.46



Bänsch et al. Journal of Mathematics in Industry            (2020) 10:2 Page 24 of 30

Figure 12 Case Study 2: Values of CPV for the initial experimental design (cyan), iteration k = 1 (dark green),
iteration k = 2 (olive green), and iteration k = 3 (yellow). The red circle around the dots mark the runs
belonging to the final Pareto set

the wire is never molten in this case, resulting in nearly no deformation with respect to the
wire’s initial geometry. Regarding the other two PMs, this is reflected by a non absolute
value �l < –2.37 mm and �cxyz > 112.3 μm in which the latter is merely determined by
the axial component.

A molten sphere is formed for P
v > 0.66 J

mm which is the case in all other runs. First we
look at solutions with l ≤ s which correspond to runs 8, 12, 16, 22, 23, 29, 30 and 33. In
these runs l is typically a bit smaller than s since solidification starts almost immediately
after the laser is switched off. This prevents the melt from releasing it’s tilted shape as
shown in Sect. 2.3 for Run 12.

With exception of Run 33, which is an extreme case with l – s only being –0.046 mm,
we have �cxyz ∈ [28.42, 81.51] for the shape error indicating now the strength of the final
preform’s tilt. On the other hand we have the best energy efficiency in these runs with
l
E ≥ 1.21 mm

J (Run 33), which is worse for all other runs.
Further grouping regarding �cxyz is difficult, since the discretization error for �cxyz is

typically ±10 μm for the underlying mesh but can go up to about 40 μm in worst cases
as can be seen in Run 5. In general, the preform’s tilt and therefore �cxyz decreases with
increasing molten length over the laser path length l – s, which as a trade-off results in a
worse l

E ratio. The worst energy efficiency with l
E ≤ 1.0 J

mm is achieved by Runs 1, 2, 5, 9,
11 and 13 for which we have l – s > 0.44 mm and, due to numerical approximation errors,
�cxyz < 13.1 μm except for the aforementioned Run 5.

For Case 2 in Sect. 4.3, we considered the PMs of axial and radial errors separately (in-
stead as the sum of them as in Case 1) and included two more PMs that are connected to
the efficiency of the real process. In total, we have three geometrical PMs measuring the
length, axial, and radial errors, complemented by efficiency PMs measuring the process
time, used energy, and laser time.
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Figure 13 Case Study 2: PMs values of initial experimental design (cyan), iteration k = 1 (dark green), iteration
k = 2 (olive green), and iteration k = 3 (yellow). The red circle around the dots mark the runs belonging to the
final pareto front. Left: PMs 1, 2, and 3. Right: PMs 4, 5, and 6

It is remarkable how our optimization method succeeds in finding the Pareto front using
metamodels reaching values of R2 > 0.98 and avoiding the simulative effort for combina-
tions of CPVs far away from the Pareto set.

The three dimensional visualizations in Fig. 13 show how for some points in the Pareto
front, the values for a single PM might be very large. For example, the axial error shows
some extremely large values, but these points are still part of the optimal solutions as they
deliver values of almost zero length error and small values on the other four PMs.

Although it might be expected that the last three PMs are similar, the simulated cases
have shown that the relations between their values are not easy to correlate. This might
be confirmed observing the shape of the Pareto front regarding these three PMs in the
left plot from Fig. 13, where no clear linear relation can be derived among the three PM
values.

Analogous to Case 1, we have no formation of a molten sphere for P
v < 0.65 J

mm in runs
20, 31, 44, 47, 53, 56, 58, 64 and 69. This is reflected best by the axial error �cz > 227.3 μm,
for which in all other runs �cz < 26.0 μm holds. Further, l – s < 0 holds for runs 8, 12, 21,
23, 29, 38, 40, 42, 50, 51, 54, 55, 57, 59, 61, 62, 63, 65 and 68. Here we have again the
best energy efficiency with l

E ≥ 1.22 mm
J and �cxy lies, except for runs 40, 42, 51 and 68,

within [30.6, 101.2] indicating the preform’s tilt. Least energy efficiency with l
E ≤ 1.0 J

mm
is achieved by runs 1, 2, 5, 9, 11, 13, 17, 45, 49, 52 and 60 yielding l – s > 0.62 mm and
�cxy < 21.1 μm with exception of Run 5.

4.5 Relation of metamodel output to experimental results
We want to relate our metamodel output to the experimental results mentioned already at
the beginning of this section. vopt, given by (17), has been determined from several exper-
iments in which l ≈ s holds. Hence, we should have |�l| ≈ 0 for s = 3.0 mm. In the follow-
ing, we will relate our results from Case study 2 close to s = 3.0 mm to vopt by considering
Pareto solutions with s ∈ [2.8 mm, 3.0 mm] and metamodels for several PMs evaluated at
s = 3.0 mm.

The simulation’s ability to reproduce experimental results is shown in the right plot of
Fig. 14. As mentioned before, |�l| ≈ 0 should be observed for all pairs (P, v) of simulated
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Figure 14 Case Study 2. Left: Predicted Length error [mm] at s = 3.0 mm using last metamodel (iteration
k = 3). Right: Length Error of Final Pareto Solutions with s ≥ 2.8 mm. In both cases, the length error is shown as
indicated by the color bar and the solid line corresponds to vopt

Pareto solutions with s being close to 3.0 mm. For the simulated pairs (P, v) with small val-
ues of |�l|, in almost any case the velocity v is smaller than vopt. This is on the one hand
due to s < 3.0 mm in most cases and on the other hand due to the systematic underesti-
mation of l in the numerical approach. Overall, simulation results are in good agreement
with experimental results.

Further, the metamodel can be used to predict the value of PMs for CPV values that have
not been simulated. Of course, the prediction quality depends on the distribution of CPVs
during optimization. Exemplary, the left plot in Fig. 14 shows the metamodel prediction
for different pairs (P, v) with a fixed values of s = 3.0 mm. At this stage it is important to
notice that the metamodels purely rely on the known values coming from simulated CPVs
combinations. In this sense, they achieve very good fits in the areas where the objectives
have dominant solutions, it is, close to the Pareto set. Nevertheless, the predicted values
from the metamodels might show very large and even unrealistic values when evaluated
at CPVs far away from the Pareto set.

In the left plot of Fig. 15 the radial error |�cxy| is shown for the same Pareto solutions as
before, which is generally increasing for decreasing energy per unit length P/v. The only
exception for this is, if P/v is too low to establish the formation of a molten sphere. In this
case we have |�cxy| ≈ 0 but we have |�cz| 
 0 for the axial error as shown in the right
plot of Fig. 15.

Finally, we take a look at Process time, which is the only efficiency related PM we have
that requires a metamodel. Figure 16 contains the predicted process time values using the
metamodel and the values of the computed process time for the simulated points belong-
ing to the Pareto set with s > 2.8 mm. It can be seen that Process time is highly correlated
to the signed distance to the vopt line. The physical interpretation for this is, that over-
heating the melt above the melting temperature has the most significant impact on the
overall process time since melting continues after laser switch-off and subsequent solid-
ification is slower. Furthermore, a high laser power coupled with a corresponding high
velocity generally results in a short duration of laser heating and hence a shorter Process
time. However, the impact is less significant compared to the effect of overheating.
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Figure 15 Case Study 2: Radial Error (left) and Axial Error (right) of Final Pareto Solutions with s≥ 2.8 mm. The
color of each dot indicates the radial and axial error, respectively. Solid line corresponds to vopt

Figure 16 Case Study 2. Left: Predicted Process time [s] at s = 3.0 mm using last metamodel (iteration k = 3).
Right: Process Time of Final Pareto Solutions with s ≥= 2.8 mm. In both cases, the process time is shown as
indicated by the the color bars and the solid line corresponds to vopt

5 Summary and conclusion
In this work we have dealt with the simulation based optimization for a material accu-
mulation process. Starting with a general description of our simulation strategy based
on physical models for the solid-liquid phase change and the corresponding changes in
the geometrical shape of a three-dimensional domain, we presented the details of a new
combination of numerical methods to conduct a FEM simulation solving for temperature,
evolution of solid-liquid interphase, and also the moving boundaries of the time depen-
dent 3d domain, that is capable to deal with various geometric and topological changes
which may happen due to a large range of process parameters.

Further, the optimization method has been described, defining the precise steps to con-
struct an efficient optimization procedure with results for multiple objectives by main-
taining only a relatively small amount of FEM simulations. Our method is based on the
use of a sequential surrogate modeling that makes use of few simulation results to emulate
a general description of the mapping between CPVs and PMs.

We presented the results of applying our methodology to two case studies by considering
first three and then six different PMs. The goal was to find the CPVs that optimize all of
the defined PMs simultaneously. In general, the method was able to approximate a Pareto
Front keeping only a modest number of computed FEM simulations, which is critical for
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the cases of interest where a single simulation or experimental run needs up to 10 hours
to be computed.

Specially, for the second case study, we managed to solve a six dimensional variable space
computing only 69 simulations. This might be considered from the perspective of the so
called curse of dimensionality in which one might think that on a six-dimensional space
approximated by only two points in each dimension, there is a total of 26 = 64 points. But
describing any function in a single dimension by using only two points leaves plenty of pos-
sibilities out of the analysis. Statistically speaking, analyzing a higher dimensional space
requires a sampling of the searching space that grows exponentially with the dimension.
However, we managed to construct a full search of the space by using only 69 evaluations.

In both case studies we finish the process with a fixed set of optimal soutions that might
be used by the practitioners to select during the setup of a real process. In the future, we
would like to consider how to account uncertainty on the Pareto front and use it as an
additional factor on the decision making process.

Furthermore, we were able to connect the resulting values of our metamodels with al-
ready published experimental data where a linear relation of efficient combinations of laser
power and velocity was found, cf. Figs. 14 and 15. This shows not only that the simulation
offers a good fit with the experiments, but also that the metamodels can be used to de-
scribe the experimental values as well.

The optimization of industrial processes via physical models and numerical methods
involves typically the solution of coupled systems of (nonlinear) equations. For our appli-
cation, we have to cope with a coupled system of nonlinear PDEs in 3d, where the time
dependent domain is part of the solution. For the optimization procedure, a rather wide
range of process parameters has to be studied and the numerical method has to be robust
in order to give reasonable results for all admissible sets of parameters. We presented a
numerical method that is based on variational principles, especially for the free capillary
surface of the liquid subdomain, and is able to derive performance measures for all ad-
missible parameters. Nevertheless, time-dependent 3d simulations consume quite a lot of
computing time. Here, the chosen optimization method based on meta-models is able to
derive solutions for the multi-objective optimization problem with only very few actual
simulations necessary. The framework presented in the previous chapters demonstrates
that it is possible to optimize processes involving complex scenarios and corresponding
numerical simulations while using only a reasonable amount of computing time. Addi-
tionally, the experiments show quite robust results of the optimization method, even with
non-smooth data from numerical (discretized) simulations.
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