
Hahne et al. Journal of Mathematics in Industry            (2023) 13:6 
https://doi.org/10.1186/s13362-023-00134-5

R E S E A R C H Open Access

Parallel-in-time optimization of induction
motors
Jens Hahne1* , Björn Polenz2, Iryna Kulchytska-Ruchka3, Stephanie Friedhoff1, Stefan Ulbrich2 and
Sebastian Schöps3

*Correspondence:
jens.hahne@math.uni-wuppertal.de
1Department of Mathematics,
Bergische Universität Wuppertal,
Gaußstr. 20, 42119, Wuppertal,
Germany
Full list of author information is
available at the end of the article

Abstract
Parallel-in-time (PinT) methods were developed to accelerate time-domain solution
of evolutionary problems using modern parallel computer architectures. In this paper
we incorporate one of the efficient PinT approaches, in particular, the asynchronous
truncated multigrid-reduction-in-time algorithm, into a bound constrained
optimization procedure applied to an induction machine. Calculation of an optimal
motor geometry with respect to its efficiency in the steady state is thus parallelized at
each iteration of the optimization algorithm. As a result, a more efficient motor model
is obtained about 11 times faster compared to optimization using the standard
sequential time stepping.
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1 Introduction
Modern corporate design of electromagnetic devices such as electric motors is based on
computer-aided optimization of several key performance indicators such as, e.g., output
power, losses, overall efficiency, etc. In this way, customer requirements can be incorpo-
rated already within the early design stages before a physical prototype is manufactured. In
order to create an optimal digital prototype, one typically has to perform transient simula-
tions of various multi-physical effects (e.g., magnetic and mechanical) in the time domain.
Such calculations are often very time consuming due to the need to resolve the arising
high-frequency field components, which despite their small amplitudes, can lead to big
losses. Parallel-in-time (PinT) methods such as Parareal [1] or multigrid-reduction-in-
time (MGRIT) [2] are powerful tools for an acceleration of these development stages, as it
is shown for an induction motor in [3] and [4], respectively. The MGRIT algorithm is based
on multilevel reduction [5] principles applied to the time dimension. In this process, time
integration is applied in parallel to temporal subdomains at the finer levels and serially over
the entire time interval at the coarsest level. One of the key advantages of the algorithm is
its non-intrusive nature, which allows existing time integrators to be reused and embed-
ded in a time-parallel framework. A variant of the MGRIT algorithm, the asynchronous
truncated multigrid-reduction-in-time algorithm (AT-MGRIT) [6], uses multiple inde-

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13362-023-00134-5
https://crossmark.crossref.org/dialog/?doi=10.1186/s13362-023-00134-5&domain=pdf
https://orcid.org/0000-0002-7711-7894
mailto:jens.hahne@math.uni-wuppertal.de
http://creativecommons.org/licenses/by/4.0/


Hahne et al. Journal of Mathematics in Industry            (2023) 13:6 Page 2 of 16

pendent overlapping local coarse grids at the coarsest level to increase the parallelism of
the MGRIT algorithm.

In this paper, we optimize the geometry of a three-phase squirrel-cage induction mo-
tor with respect to its efficiency in the steady state. For this, a derivative-free algorithm
BOBYQA for bound constrained optimization is used, which is based on quadratic in-
terpolation [7, 8]. Each iteration of the optimization procedure includes the PinT time-
domain computation with AT-MGRIT until the steady state of the machine is obtained.
The mechanical power and the Joule losses are calculated at the post-processing step and
used for the construction of the objective function, which is optimized in terms of the
rotor bars size, i.e., their width and height.

This paper is organized as follows. In Sect. 2 we provide a mathematical partial differen-
tial equation (PDE) model of the electromagnetic phenomena taking place in an induction
motor and discretize it using space- and time-domain numerical methods. Section 3 for-
mulates an optimization problem in terms of the motor’s efficiency in the steady state and
describes the overall optimization procedure based on a time-domain solution. In Sect. 4
we describe the AT-MGRIT method for accelerated PinT solution, which can be used at
each iteration of the optimization algorithm. Application of the proposed methodology to
a four-pole induction machine is illustrated in Sect. 5. Finally, the paper is completed with
a conclusion in Sect. 6.

2 Simulation of induction machines
Electric motors are electric devices that transform electrical energy into mechanical en-
ergy. In this paper we consider a specific type of motors called three-phase induction mo-
tors, which are among the most widespread electric motors within the power range under
500 kW.

Three-phase induction motors are supplied with a three-phase voltage source vk given
by

vk(t) = Û sin
(
2π ft – (k – 1) · 2π/3

)
, k = 1, 2, 3, (1)

illustrated in Fig. 1, where f is the frequency and Û is the amplitude (or peak value) of volt-
age. The windings carrying three-phase voltage are placed into the stator slots in the outer
part of the motor called stator as depicted in Fig. 2 for a two-dimensional (2D) induction
motor model.

The inner part of the considered induction motor is a squirrel-cage rotor, which consists
of solid conductor bars, placed into the rotor slots and connected at both ends by the
conducting end rings. The stator and rotor are separated by the air gap, which is traversed
by the magnetic flux and allows for a current flow in the rotor bars. As a result, the Lorentz
force acts on the squirrel cage and makes the rotor rotate with a mechanical speed ωmech.
Finally, the produced electromagnetic torque TEM is transferred to the mechanical load
through a shaft placed in the very inner part of the motor.

Solution of a dynamical system like an electric motor excited with a periodic signal (1)
typically consists of a transient part, followed by a (periodic) steady state taking place once
the transients are eventually damped out. The steady-state operating characteristics such
as rotational speed and torque are important design criteria, especially during initial de-
sign stages [9]. Figure 3 illustrates the time-domain torque evolution of an induction motor
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Figure 1 Three-phase voltage of frequency f = 50 Hz and amplitude Û = 311.1 V

Figure 2 Cross-section of a four-pole squirrel-cage
induction machine [9, 10]. The geometry is given by the
“im_3kw” model at onelab.info

Figure 3 Torque produced in a linear “im_3kw” induction machine model excited with a three-phase voltage
supply (1) of frequency f = 50 Hz and amplitude Û = 311.1 V. The simulation is performed using the GetDP
library [11]

rotating at the constant speed ωmech = 1420 rpm. There, the steady state is reached at the
tenth period of length T = 0.02 s, i.e., on the interval [(q – 1)T , qT] = [0.18, 0.2] s, with
q = 10. In this section we provide the theoretical basis and numerical approaches for the
time-domain simulation of electromagnetic energy converters.

http://onelab.info/
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2.1 Mathematical model
The electromagnetic fields in induction motors are commonly modeled by a magneto-
quasistatic (MQS) approximation of Maxwell’s equations [12], which is suitable for low-
frequency applications provided the wavelength is much larger than the problem size [13].
The MQS setting neglects the displacement currents as they are outweighed by the mag-
netic effects and the Joule losses. One can then derive for the magnetic vector potential
(MVP) A the eddy current problem

σ
∂A
∂t

+ curl(ν curl A) = Js in � × (0, Tend], (2)

with � ⊂R
3 denoting an open, bounded, simply connected domain with Lipschitz bound-

ary and Tend > 0. Here σ = σ (x) ≥ 0 denotes the electric conductivity, ν = ν(x, | curl A|) > 0
is the magnetic reluctivity, and Js is the source current density defined by

Js(x, t) =
3∑

k=1

χ k(x)ik(t), (3)

with each χ k(x) ∈R
3 denoting a winding function [14], which spatially distributes the cur-

rent ik(t) ∈R flowing through the kth stranded conductor. The three-phase input voltage
(1) is coupled to the eddy current equation (2) via the relation [15, Sect. 6]

vk(t) = Rkik(t) +
∫

�

χ k(x) · ∂A
∂t

(x, t) d�, k = 1, 2, 3, (4)

with Rk denoting the DC resistance of the stator stranded conductors. For a complete for-
mulation we include the homogeneous Dirichlet boundary condition and an initial con-
dition (IC)

n × A(x, t) = 0, (x, t) ∈ � × [0, Tend], (5)

A(x, 0) = A0, x ∈ �, (6)

where n denotes the outward normal vector to the boundary � = ∂�. Combining the equa-
tions (2) and (4), one obtains a coupled field-circuit system, which we will discretize in the
following Sect. 2.2.

Remark 1 For the simulation of electric motors one often assumes that they are invariant
under translation in the axial x3-direction. In this case, 2D models in the x1x2-plane as the
one from Fig. 2 are considered. This leads to the setting

Js(x, t) =
[
0, 0, Js,3(x1, x2, t)

]�, A(x, t) =
[
0, 0, A3(x1, x2, t)

]�, (7)

which transforms the equation (2) for the vector quantity A into the equation

σ
∂A3

∂t
– div(ν grad A3) = Js,3, (x1, x2, t) ∈ �2D × (0, Tend], (8)

for the scalar quantity A3, where �2D ⊂R
2 is an open, bounded, simply connected domain

with Lipschitz boundary, [9].
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2.2 Numerical solution
A standard approach to solve a space-time dependent system is the method of lines, where
one first discretizes the problem in space using, e.g., the finite element method (FEM), and
then integrates the resulting time-dependent system using a numerical time integrator
such as, e.g., the implicit Euler method.

Discretization of the coupled system (2)–(4) in space using FEM with d degrees of free-
dom leads to a time-dependent system on (0, Tend]

Mσ

da
dt

(t) + Kν

(
a(t)

)
a(t) – Xi(t) = 0, (9a)

X� da
dt

(t) + Ri(t) = v(t), (9b)

with respect to a(t) ∈ R
d and i(t) = [i1(t), i2(t), i3(t)]� ∈ R

3. Here Mσ and Kν(·) are the
(d × d)-dimensional mass and curl-curl matrices, respectively. Matrix X ∈ R

d×3 is given
by

Xjk =
∫

�

χ k(x) · wj(x) d�, j = 1, . . . , d, k = 1, 2, 3,

with basis functions wj from the Hilbert space H(curl;�), see [16]. The matrix R ∈R
3×3 is

a diagonal matrix of resistances Rk and v(t) = [v1(t), v2(t), v3(t)]� ∈ R
3 is the three-phase

input voltage given by (1). Additionally, we have the prescribed ICs

a(0) = a0, i(0) = i0, (10)

which together with the system (9a)–(9b) form an initial-value problem (IVP). The equa-
tion (9a) is in general a system of index-1 differential-algebraic equations (DAEs), since
the matrix Mσ is singular when the considered domain � includes non-conducting re-
gions, i.e., regions where σ = 0. Therefore, implicit methods have to be applied for the time
integration [17]. The implicit Euler discretization of the space-discrete system (9a)–(9b)
starting from the given values a0 and i0 with the step size δT = Tend/Nt reads

1
δT

Mσ [aj – aj–1] + Kν(aj)aj – Xij = 0, (11a)

1
δT

X�[aj – aj–1] + Rij = vj, (11b)

where aj and ij denote approximate solutions at time step tj = jδT , with j = 1, . . . , Nt . Since
the equation (11a) is nonlinear, a linearization approach, e.g., the Newton method [18],
has to be applied at each time step. In [3] it was shown that the implicit Euler method
has an implicit projection property that the consistency of initial values known from DAE
theory is not an issue.

2.3 Quantities of interest
The electromagnetic torque induced in the air gap and exerted on the rotor can be calcu-
lated using the formula [19], [20, Sect. 1.5]

TEM =
∫

S
r × σ · dS =

∫

S
r × (σ · n) dS, (12)



Hahne et al. Journal of Mathematics in Industry            (2023) 13:6 Page 6 of 16

where S is the surface enclosing the rotor, r is the position vector connecting the rotor
origin to S, n is the unit normal vector to S, and σ is the Maxwell stress tensor [21, Sect. 6.3]
given by

σ ij = ν0
(
BiBj – 0.5|B|2δij

)
, i, j = 1, 2, 3, (13)

with the reluctivity in vacuum ν0, the magnetic flux density B given by B = curl A, and the
Kronecker delta δij. The product of the produced torque and the rotational speed defines
the mechanical power Pmech, i.e.,

Pmech = TEMωmech. (14)

Since a part of the input power is lost as heat, it is important to calculate also the Joule
losses. For the 2D-setting from Remark 1 and length 
3 of the motor in the axial x3-
direction, these losses are given by

Ploss =
∫

�2D

σ

(
∂A3

∂t

)2


3 d�2D, (15)

where A3 denotes the x3-component of the MVP A, see (7). The considered quantities of
interest can be calculated in a post-processing step of the simulation and will be used in
an optimization procedure described in Sect. 3.

3 Optimization
In the optimization we use the height h and width w of the rotor bars as optimization
variables and parametrize the domain � = �(p) with these two parameters p = (h, w). Our
goal is to find the optimal width and height of the rotor bars, such that our objective func-
tion J is minimal under the constraint that the design variables lie in a set of admissible
designs Dad. Additionally, we require that the state equations (2) and (4) together with the
boundary and initial conditions (5)–(6) are fulfilled. As an objective function we consider:

min
A3,p

J(A3, p) := –
Pout(A3, p)
Pin(A3, p)

, (16)

with

Pout(A3, p) =
∫ qT

(q–1)T
Pmech(A3, p) dt, (17a)

Pin(A3, p) =
∫ qT

(q–1)T

[
Pmech(A3, p) + Ploss(A3, p)

]
dt, (17b)

where q ∈ N represents the period at which the steady state is reached and T > 0 is the
length of the period (e.g., q = 10 and T = 0.02 s in Fig. 3). The objective J can be seen
as a negative measure of efficiency, as it is given by the quotient of the output and the
input power on the right-hand side in (16). Since Pmech and Ploss involve integrals over the
parametrized domain (see (14), (12), and (15)), they depend on the design p. They both
depend on the solution A3 of the state equation, which depends on the design p itself.



Hahne et al. Journal of Mathematics in Industry            (2023) 13:6 Page 7 of 16

Figure 4 A flowchart of the steady-state optimization procedure with respect to the rotor bar parameter p. It
includes a (PinT) time-domain calculation over the interval [0,qT ], where the steady state is reached at the qth
period of length T > 0

In the optimization, we know [22] that for every admissible design p, there is a unique
solution to our state equation, which we call A3(p) and consider the reduced problem

min
p

Ĵ(p) := J
(
A3(p), p

)
subject to p ∈ Dad, (18)

which does not involve the state equation as a constraint anymore and where

Dad :=
{

p = (h, w) ∈ R
2 : hl ≤ h ≤ hu, wl ≤ w ≤ wu

}
(19)

with hl, hu, wl, wu ∈R.
To solve the optimization problem, we use the derivative-free optimization algorithm

Py-BOBYQA [8], which is a Python implementation of BOBYQA [7]. The idea of this
algorithm is to use a model for the objective function and improve the model in every it-
eration to make it approximate the minimum of the objective function sufficiently. Specif-
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ically, a quadratic interpolation polynomial Q(k)(s) ≈ Ĵ(p(k) + s) around the current iter-
ate p(k) is used, which coincides with the true objective function on an interpolation set
Y = {y0 = p(k), . . . , ym–1}:

Q(k)(yj – y0) = c + gT (yj – y0) +
1
2

(yj – y0)T H(yj – y0) = Ĵ(yj), j = 0, . . . , m – 1 (20)

with c ∈R, g ∈R
n and H ∈R

n×n.
To improve the model, the current model Q(k) is minimized inside a trust-region {s ∈

R
n : ‖s‖2 ≤ �(k)}, where �(k) > 0 is the trust-region radius:

min
s

Q(k)(s) s.t. ‖s‖2 ≤ �(k). (TRS)

The initial trust-region radius �(0) is user supplied and has to fulfill p(0) + �(0)v ∈ Dad for
all v ∈ R

2 with ‖v‖2 = 1. It is called trust-region, because we hope, that when the radius
�(k) is small enough, we can trust the model Q(k) in a neighborhood of our current point
p(k).

The quality of the step s computed by solving (TRS) is assessed by calculating the ratio

R(k) =
actual reduction

predicted reduction
=

Ĵ(p(k)) – Ĵ(p(k) + s)
Q(k)(0) – Q(k)(s)

. (21)

If R(k) exceeds a predefined threshold the step is accepted, one of the interpolation points
yi ∈ Y is replaced by p(k+1) = p(k) + s (the elements of Y then get reordered, such that
y0 = p(k+1)), the model Q(k) is updated and the trust-region radius is enlarged. If R(k) is
small or negative, which is the case when the true objective does not decline, or the model
is a bad predictor, the step is rejected (p(k+1) = p(k)) and the trust-region radius �(k) is
reduced, since the model was inaccurate on the former trust-region. The algorithm ter-
minates when the trust-region radius becomes smaller than a predefined tolerance �(end).

A flowchart of the optimization procedure, which iteratively updates the parameter p
based on the time-domain calculation until the steady state, is illustrated in Fig. 4.

For a symmetric matrix H , the modelQ(k) has m = 1
2 (n+1)(n+2) degrees of freedom and,

thus, m interpolation points and objective evaluations (right hand side (20)) are needed
to compute the model. For every evaluation of the objective function Ĵ(p) = J(A3(p), p)
we have to solve our state equation, which is expensive. We therefore want to use as few
interpolation points as possible and the idea of BOBYQA is to use only m = 2n + 1 and
eliminate the rest of the degrees of freedom by requiring that the Hessian of the interpo-
lation polynomial has minimal curvature. To compute such a minimal curvature model,
the following optimization problem has to be solved:

min
c,g,H

1
4
‖H – Hprev‖2

F

s.t. Q(k)(yj – y0) = Ĵ(yj), j = 0, . . . , m – 1
(22)

When computing the initial model, we set Hprev = 0. The initial interpolation set is chosen
as Y = {p(0), p(0) ±�(0)e1, p(0) ±�(0)e2}, where ei is a zero vector with a one in the ith entry.
When the set Y is poised for interpolation, the solution to (22) is given by the solution of
a linear system in dimension m + n + 1 (see [23] for details).
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What we have omitted in the description of Py-BOBYQA is, that the algorithm has a
model improvement phase, in which the geometry of the interpolation set is improved
when necessary, see [23].

By describing the geometry of the rotor bars with two design variables and using m =
2n + 1 degrees of freedom for the quadratic model, we still have to solve the discrete time-
domain problem (11a)–(11b) for five different designs to compute an initial interpolation
model and one time in every optimization iteration. As this is the most expensive part in
the optimization, we use a PinT algorithm to accelerate the solution of the discrete time-
domain problem (11a)–(11b), which we describe in the following Sect. 4.

4 AT-MGRIT
Consider an IVP of the form

u′(t) = f
(
t, u(t)

)
, t ∈ (0, Tend], u(0) = g0, (23)

which arises, for example, after the spatial discretization of a space-time PDE. We dis-
cretize (23) on a uniform temporal grid tj = jδT , j = 0, 1, . . . , Nt , where Nt is the number of
time steps, δT = Tend/Nt and uj ≈ u(tj). Let �j be a time integrator which propagates the
solution uj–1 from time point tj–1 to time point tj, including all problem-dependent forc-
ing terms. Considering a one-step time integration method such as, e.g., implicit Euler,
the time-discrete problem is given by

uj = �j(uj–1), j = 1, 2, . . . , Nt ,

or, considering all time points at once, we obtain the space-time system

A(u) ≡

⎡

⎢⎢
⎢⎢
⎣

u0

u1 – �1(u0)
...

uNt – �Nt (uNt–1 )

⎤

⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎣

g0

0
...
0

⎤

⎥⎥
⎥⎥
⎦

≡ g. (24)

We now describe the AT-MGRIT algorithm for the time-parallel solution of the problem
(24).

AT-MGRIT is an iterative method for solving IVPs using multigrid reduction techniques
[5]. It is therefore based on a hierarchy of temporal grids, restriction and prolongation
operators for the transfer between temporal grids, and relaxation schemes. For a given
(fine) time grid T (0) = {jδT (0) : j = 0, 1, . . . , N (0)

t }, with N (0)
t = Nt , and a given coarsening

factor m̃ > 1, we define a splitting of all time points into F- and C-points, such that every
m̃th point is a C-point and all others are F-points. The C-points define a global coarse
grid T (1) = {jδT (1) : j = 0, 1, . . . , N (1)

t } with time-step size δT (1) = m̃δT (0). For the coarse-
grid operator we choose a re-discretization of the problem with step size δT (1), although
other approaches such as coarsening in space [24–26] can also be used. Applying this
strategy recursively for L > 1 levels, we obtain a multi-level hierarchy of time grids T (
)

with 
 = 0, 1, . . . , L – 1. At the coarsest level, we define N (L–1)
t + 1 overlapping local coarse

grids based on the global grid T (L–1). For a given distance ñ ∈ N, the ith local coarse grid
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Figure 5 Example of a three-level time grid hierarchy for the AT-MGRIT algorithm for N(0)
t = 21, m̃ = 2 and

ñ = 3. C-points are represented by long markers and F-points by short markers

Figure 6 Example of F- and C-relaxation for a temporal grid with 9 time points. Independent blocks of F- and
C-points (gray boxes) can be updated simultaneously

is given by

T (L–1,i) =
{

jδT (L–1) : j ∈ [
max(0, i – ñ + 1), i

]}
.

An example of a three-level time-grid hierarchy for N (0)
t = 21, m̃ = 2 and ñ = 3 is shown in

Fig. 5. Note that all space-time problems associated with the local grids are independent
of each other and can be solved simultaneously.

We define two types of relaxation schemes, the so-called F-relaxation and the so-called
C-relaxation. The F-relaxation propagates the solution from a C-point to all subsequent
F-points up to the next C-point. Similarly, the C-relaxation propagates the solution to a
C-point. Figure 6 illustrates the actions of F- and C-relaxation. Both relaxation schemes
are highly parallel and can be applied simultaneously to each interval of F- or C-points,
respectively. For the transfer between global temporal grids, we define restriction as an
injection at C-points and the “ideal” prolongation, corresponding to the transpose of an
injection at C-points followed by an F-relaxation. For the transfer from the global tempo-
ral grid to the local time grids at the coarsest level, we define both restriction and prolon-
gation as injection.

Using the full approximation storage framework [27], the multilevel AT-MGRIT algo-
rithm can be written as in Algorithm 1. There, A(
)u(
) = g(
) and A(
,i)u(
,i) = g(
,i) specifies
the space-time system of equations on levels 
 = 0, 1, . . . , L – 1 and on the local coarse grids
i = 0, 1, . . . , N (
)

t , respectively. The transfer between the global temporal grids is given by
the operators R(
)

I and P(
) and the transfer from the global temporal grid to the local grids
at the coarsest level by the operators R(
,i)

I and P(
,i)
I . The relaxation scheme of the method

can be controlled by the parameter ν , where ν = 1, i.e., an F-relaxation followed by a C-
relaxation and another F-relaxation is a typical choice for the AT-MGRIT algorithm.
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Algorithm 1 AT-MGRIT(
)
1: Repeat
2: If 
 is the coarsest level:
3: For i = 0 to N (
)

t :
4: Restrict to local grids
5: v(
,i) = R(
,i)

I (v(
))
6: g(
,i) = R(
,i)

I (g(
))
7: Solve local problem A(
,i)(u(
,i)) = g(
,i)

8: Update u(
) = P(
,i)
I u(
,i)

9: Else
10: Apply F-relaxation to A(
)(u(
)) = g(
)

11: Apply ν times CF-relaxation to A(
)(u(
)) = g(
)

12: Inject the approximation and its residual to the coarse grid
13: u(
+1) = R(
)

I (u(
))
14: v(
+1) = R(
)

I (u(
))
15: g(
+1) = R(
)

I (g(
) – A(
)u(
))
16: Compute right-hand side g(
+1) = A(
+1)(v(
+1)) + g(
+1)

17: Solve on next level: AT-MGRIT(
 + 1)
18: Correct using ideal interpolation: u(
) = u(
) + P(
)(u(
+1) – v(
+1))
19: Until stopping criterion is reached

Note that all components of the algorithm are highly parallel and can be executed simul-
taneously. The algorithm solves for the exact discrete solution of the fine temporal grid
after N (0)

t /(2m̃) iterations for FCF-relaxation. Furthermore, the algorithm is equivalent to
the MGRIT method [2] if ñ = N (L–1)

t + 1 and equivalent to Parareal [1] for L = 2, ν = 0, and
ñ = N (1)

t + 1, [6].

5 Numerical experiments
In this section we apply the optimization procedure described in Sect. 3 combined with
the AT-MGRIT algorithm from Sect. 4 to an induction machine. For this, we consider
one pole of the 2D four-pole squirrel-cage motor model depicted in Fig. 2, imposing
periodic boundary conditions due to the symmetry [10]. A constant rotational speed
ωmech = 1420 rpm and a nonlinear material behavior are chosen for the problem setting.
PinT simulation of this machine model was already performed, e.g., in [3, 4], which we
now incorporate into a geometry optimization framework.

The motor is excited with a three-phase sinusoidal voltage supply of frequency f = 50 Hz
and amplitude Û = 311.1 V given by

vrel
k (t) = r(t)vk(t), k = 1, 2, 3, (25)

where vk is defined in (1) and

r(t) =

⎧
⎨

⎩
0.5(1 – cos(0.5π ft)), t ∈ [0, 2T),

1, t ∈ [2T , Tend]
(26)
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Figure 7 One phase vrel
1 (t) of the voltage (25) on interval [0, 0.2] s with frequency f = 50 Hz and amplitude

Û = 311.1 V

is an initial ramp-up used on the first two periods of length T = 1/f = 0.02 s to reduce the
transient response [10]. One phase of the applied signal (25) is shown in Fig. 7.

The time-domain simulation is performed by solving (11a)–(11b) on a (fine) temporal
grid with Nt = 16,384 points and end point Tend = 0.2 s. This corresponds to time stepping
with a step size of δT ≈ 1.2 · 10–5 s, starting from a homogeneous IC for the MVP, i.e.,
a0 = 0 in (10). Within this setting, the steady state is reached at the period q = 10 up to the
tolerance of < 5 · 10–4 in terms of the relative error

ε(q – 1) =
|T (q)

EM,avg – T (q–1)
EM,avg|

|T (q)
EM,avg|

, with T (q)
EM,avg =

1
Np

qNp∑

i=1+(q–1)Np

TEM(ti)

denoting the average torque at the period q and Np = �Nt/q� being the number of time
steps per period.

Based on the steady-state behavior of the induction motor, our goal is to optimize the
rotor bars size, in particularly, their width and height using the objective function (18).
For this, we set

hl = 0.007, hu = 0.015, wl = 0.0015, wu = 0.0035

as the admissible design bounds in (19), choose h(0) = 0.01425 and w(0) = 0.002 as an initial
design depicted in Fig. 9 (left) and set the initial trust-region radius to �(0) = 10–4. For each
objective function evaluation, we generate a mesh representation of the current geometry
using Gmsh [28, 29], where each mesh, depending on the geometry, consists of approx-
imately 4,500 degrees of freedom. Afterwards the AT-MGRIT algorithm of the Python
package PyMGRIT [4, 30] is called based on a two-level strategy with m̃ = 64, ñ = 100, and
F-relaxation. The time integration on the temporal grids of AT-MGRIT is done by means
of the external GetDP library [11], which implements the implicit Euler method for the
time stepping and the Newton method with damping as a nonlinear solver. Furthermore,
we choose an initial guess for the AT-MGRIT algorithm based on a global coarse grid
solve. This choice was shown in [6] to be a promising setting for the simulation of this
model, since too large time steps on the coarse grid can otherwise lead to divergence of
at least one nonlinear solve in GetDP. The AT-MGRIT algorithm terminates when the
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Figure 8 Optimization process over iterations: negative objective function values (left) and geometries (right)

maximums norm of the relative difference of the Joule losses of two successive iterations
is less than 1%, see [4] for details.

The calculations were performed on an Intel Xeon Phi cluster consisting of four 1.4 GHz
Intel Xeon Phi processors. The code can be found in the PyMGRIT repository [30]. The
implementation uses a master/worker strategy for the optimization and the simulations,
using one process for the optimization and 256 processes for each simulation, where all
resources are used for temporal parallelization.

5.1 Optimization results
Figure 8 shows the negative values of the objective function evaluated during the optimiza-
tion procedure on the left and an overview of the geometries considered on the right. In
the 26 optimization iterations a total of 31 function evaluations were required: one eval-
uation in every iteration and an additional five in the first iteration for building the initial
quadratic interpolation model. The optimal geometry p̄ with w̄ = 0.00254 and h̄ = 0.01226
was found in the 18th iteration. In the iterations after the minimum was found and added
to the interpolation set, the solution of (TRS) was always a point worse than p̄, resulting in
a negative ratio (21), a rejected step and a reduced trust-region radius. The algorithm then
terminated when the trust-region radius �(k) became smaller than our chosen tolerance
�(end) = 10–6. Figure 9 shows the two geometries for the initial design (left) and the opti-
mal design (right). Different structures of the geometry of the rotor bars (orange) can be
seen: the bars in the optimal design are less high and significantly wider than those in the
initial design. Overall, the optimal design increases the negative of the objective function
and thus the efficiency of the electrical machine from 87.22% to 87.57%. Figure 10 gives
a detailed comparison of the torque (left) and the Joule losses (right) between the initial
and the optimal design in the steady state. Compared to the original design, both values
were increased, with an average increase of 16.25% in torque and 20.03% in Joule losses
for the optimal design.

In each step of the optimization algorithm we use the AT-MGRIT algorithm to simulate
the corresponding geometry. To determine the effect of the time-parallel method com-
pared to sequential time-stepping for solving the problem, we count the calls of the time
integrator for both methods. In each iteration of the optimization algorithm, we achieve
a theoretical speedup of up to 11.67 by using AT-MGRIT compared to the standard se-
quential time-stepping. Note that for this application, counting the serial solves of the AT-
MGRIT algorithm is a reasonable measure to determine the theoretical speedup, since the
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Figure 9 Grid view of the initial design (left) and the optimal design (right)

Figure 10 Torque (left) and Joule losses (right) for the initial and the optimal designs of a nonlinear “im_3kw”
induction machine model

computational cost dominates the runtime cost of the algorithm and the communication
cost is negligible compared to the computational cost.

6 Conclusion
In this paper we incorporated a parallel-in-time solution approach into a box constrained
shape optimization of an induction motor. Each iteration of the optimization algorithm
includes a time-domain solution until the steady state, which we parallelize using the
asynchronous truncated multigrid-reduction-in-time method. The objective function is
a measure of the motor’s efficiency and is constructed from the calculated steady-state
characteristics such as the produced torque and the Joule losses. Thanks to the time paral-
lelization an optimal geometry is obtained about 11 times faster compared to the standard
sequential time stepping.
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