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Abstract
Volatile electrical energy prices are a challenge and an opportunity for small and
medium-sized companies in energy-intensive industries. By using electrical energy
storage and/or an adaptation of production processes, companies can significantly
profit from time-depending energy prices and reduce their energy costs.
We consider a time-discrete optimal control problem to reach a desired final state

of the energy storage at a certain time step. Thereby, the energy input is discrete
since only multiples of 100 kWh can be purchased at the EPEX SPOT market. We use
available price estimates to minimize the total energy cost by a rounding based
dynamic programming approach. With our model non-linear energy loss functions of
the storage can be considered and we obtain a significant speed-up compared to the
integer (linear) programming formulation.

Keywords: Discrete control problem; Rounding-based dynamic programming;
Volatile energy market; Approximation algorithm; Mixed-integer programming

1 Introduction
The climate targets for Germany to become climate-neutral by 2045, which were rein-
forced in 2021, imply that the ambitions for expanding renewable energy must be further
increased. As a result, the share of volatile power generation will rise and energy storage
will become increasingly important. In 2020, there were already almost 300 hours with
negative electricity prices on the day-ahead market [www.epexspot.com]. This results,
among other things, from the oversupply by renewable power generation. The reversal of
the trend for an increasing number of negative electricity prices can be significantly in-
fluenced by energy storage. Energy storage systems can assume different functions in the
energy system. In multi-use approaches, it is increasingly being investigated how battery
storage can be used in times when it is not required for its primary purpose, such as pri-
mary control power generation or self-supply optimization [1]. One option is basically to
trade energy on EPEX Spot and take advantage of the price spread between two points
in time. Besides mixed-integer optimization models [2], various (approximate) dynamic
programming approaches (see, e.g., [3–7]) are used to determine cost efficient controls of
electrical storages and/or grids. Most approaches therefore use approximate dynamic pro-
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gramming [8] in order to avoid the “curses of dimensionality” by approximating the value
function in each state. In [9] it is shown that the energy storage problem can be solved in
polynomial time in a deterministic setting, while it is an NP-complete problem if prices
and energy production are stochastic.

In this paper we consider a time-discrete optimal control problem of an electrical en-
ergy storage device and present a rounding based dynamic programming approach, which
considers a discrete state space by rounding the energy level in the storage. This also re-
duces the computation time significantly in contrast to the solution of the mixed-integer
programming problem. The rounding of the state space enables us to optimize the control
over longer time periods (up to one year), which is of particular interest for the layout of
the storage device within a retrospective analysis.

The calculations shown here are based on the example of electro-chemical energy stor-
age. In principle, however, these considerations apply to all forms of energy storage (elec-
trical, electromagnetic, electro-chemical, mechanical, thermal and chemical) and the sug-
gested algorithm can be applied analogously.

This paper is organized as follows. In Sect. 2 we present a time-discrete model of an
electrical energy storage devise which takes energy loss during charging, withdrawal, and
self-discharge into account. Based on this model we develop a mixed-integer program-
ming (MIP) formulation for the optimal control of the energy storage. Due the limited
applicability of the MIP for larger instances we present a rounding based dynamic pro-
gramming approach in Sect. 3, which efficiently approximates the problem. Numerical
tests are presented in Sect. 4, including a run-time comparison of the considered mod-
els and a trade-off analysis of the investments in storage devices. Section 5 concludes the
article and gives a brief outlook on future research directions based on our approach.

2 Modeling of an electrical energy storage
The energy market has varying energy prices due to supply and demand reasons. On ac-
count of, e.g., solar or wind energy, prices are relative to the weather, i.e., low costs cor-
relate with using more eco-power. Therefore, storing energy instead of always buying ex-
actly the required amount may be economically as well as ecologically reasonable (see, e.g.,
[10–12]). A comprehensive introduction to dynamical energy prices and their impact on
industrial processes is given in [13].

2.1 Linear programming
Regarding the day-ahead market, trading is only possible at fixed points in time, hence we
define the set of discrete trading dates as T := {1, . . . , m}, m ∈ N. Let then Vt denote the
charge level of an electrical storage at the time of t ∈ T , which is restricted by lower and
upper capacity bounds c, C ∈ R≥0, i.e., c ≤ Vt ≤ C for all t ∈ T . Furthermore, let the initial
and a final fill level be given, denoted by V0 = Vinit and Vm ≥ Vfinal, respectively (see Fig. 1
for a schematic illustration). The lower and upper bounds on the purchased energy per
time step are denoted by l and u (0 ≤ l ≤ u), i.e., l ≤ xt ≤ u for all t ∈ T . The fill level Vt

depends on three quantities, firstly on the purchased energy xt , secondly on the external
energy consumption Zt ∈R≥0 and lastly on the previous fill level Vt–1. Regarding the latter,
we introduce an energy loss function g : R≥0 → R≥0, which is often assumed to be linear,
e.g., g(V ) = (1 – β) V for some given value β ∈ (0, 1).

The efficiency of storing to and withdrawing energy from the storage is modeled by
the efficiency factors ηin,ηout ∈ [0, 1], which are either assumed to be constant factors, or
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Figure 1 Schematic visualization of an electrical energy storage with fill level V for discretized time intervals.
The energy flow is depicted by arrows of different colors. The left energy from previous time intervals (black)
remains in the storage, possibly affected by some energy loss. The purchased energy x can either be fed into
the storage (green) or directly consumed (blue). The required amount of energy Z can also be (partly)
extracted from the electrical storage (red)

depending on the amount of stored/withdrawn energy ηin,ηout : R → [0, 1]. Consequently,
it has to be distinguished whether the consumed energy Zt is taken from the storage or
purchased energy is used directly. Let yt ∈ [0, xt] be the amount of energy stored in time
step t and ζt := Zt –xt +yt the amount of energy loaded from the storage. In total, we obtain
the fill level Vt by

Vt = ηin · yt + g(Vt–1) –
1

ηout
ζt .

To illustrate this formula we consider the two extreme cases: If the energy consumption
Zt in time step t is taken completely from the storage (since there is not energy input in
this time step, i.e., xt = yt = 0) then the energy level in the storage Vt = g(Vt–1) – 1

ηout
Zt

is reduced by 1
ηout

Zt taking into account the energy loss when withdrawing energy from
the storage. On the other hand, if the energy consumption equals the energy input Zt =
xt energy level of the storage is Vt = g(Vt–1) unchanged apart from the time-dependent
energy loss g .

Forecasting models can provide a prognosis about the energy prices pt , t ∈ T for the
period T . For a retrospective analysis, however, we can also consider the true prices, e.g.,
to evaluate the capacity of the energy storage. In the following we will concentrate on
the running energy costs and neglect acquisition and other types of fixed costs. Thus, we
aim to minimize the total costs of purchased energy x = (x1, . . . , xm), i.e., min

∑
t∈T pt xt .

Together with the aforementioned constraints, we formulate the following linear program
(LP):

min
∑

t∈T

ptxt (1a)

s.t. l ≤ xt ≤ u ∀t ∈ T (1b)

c ≤ Vt ≤ C ∀t ∈ T (1c)

V0 = Vinit (1d)

Vt = ηin · yt + g(Vt–1) –
1

ηout
ζt ∀t ∈ T (1e)
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0 ≤ yt ≤ xt ∀t ∈ T (1f)

Zt = (xt – yt) + ζt ∀t ∈ T (1g)

Vm ≥ Vfinal (1h)

ζt ≥ 0 ∀t ∈ T (1i)

Vt ≥ 0 ∀t ∈ T (1j)

(y1, . . . , ym) ∈R
m (1k)

(x1, . . . , xm) ∈ R
m (1l)

It is well known that linear optimization problems are efficiently solvable (in polynomial
time with interior point methods, cf. [14]). However, the energy is often traded in dis-
crete quantities, which makes the energy input x a discrete variable. For example, at the
EPEX SPOT market only multiples of 100 kWh can be purchased. We thus obtain a mixed-
integer (linear) programming problem (MIP).

2.2 Integer programming
Since the energy input can only attain discrete values, we modify equation (1l) in (MIP)
to equation (2c):

min
∑

t∈T

ptxt (2a)

s.t. (1b) – (1k) (2b)

(x1, . . . , xm) ∈ hx ·Nm. (2c)

Thereby, hx ∈ R≥0 denotes the discretization step size of the energy input, i.e., x is re-
stricted to multiples of hx: x ∈ {0, hx, 2 hx, . . .}. In contrast to LPs, MIPs are in general NP-
hard optimization problems, which are solvable by a significant computational effort, e.g.,
using branch and bound based approaches [15]. Moreover, if the energy loss in the stor-
age depends non-linearly on the fill level, one would obtain a mixed-integer non-linear
optimization problem, which are computationally even more demanding.

On that account, we introduce our dynamic programming approach in the following
chapter.

3 Rounding-based dynamic programming
3.1 Dynamic programming
The central idea of dynamic programming is to break down an optimization problem into
a sequence of smaller efficiently solvable subproblems. Thereby, dynamic programming
relies on Bellman’s principle of optimality [16], which states that a solution can only be
optimal if its intermediate solutions (up to a certain state/time) are optimal w.r.t. the corre-
sponding subproblems. Knapsack problems [17] and shortest path problems are the most
prominent examples of optimization problems satisfying Bellman’s principle [18], which
does not hold for all optimization problems. The discrete electrical energy storage prob-
lem (2a)–(2c), however, satisfies Bellman’s principle, since a control xt , yt , t = 1, . . . , τ , of
the storage up to an intermediate time step τ ∈ T with fill level of Vτ can only be extended
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to an optimal solution if there is no other feasible policy reaching this (or a larger) fill level
Vτ at time τ with lower energy cost. The optimal solution of the overall problem can then
be derived from the optimal solutions of these subproblems. Applying Bellman’s recursion
[16] we determine the cheapest way to reach every feasible fill level at time step t based
on the costs at time step t – 1. The optimal control (x∗

1, . . . , x∗
m) for an arbitrary final fill

level can then be reconstructed by a backtracking procedure. Adapted to the previously
introduced electrical storage problem (2a)–(2c), we initialize the recursion for the total
energy costs zt(d) up to time step t to reach a given storage fill level d as

z1(d) :=

⎧
⎨

⎩

p1 · x1(d), if x1(d) mod hx = 0

∞, otherwise,

where x1(d) = (d – g(Vinit) + ζ1
ηout

)/ηin is the amount of energy required to reach the level
of d in the current state. Thereby, we assume that energy is only withdrawn from the
storage when it is not necessary to reach the desired storage level d in time step t, i.e.,
ζt = max{0,ηout(g(Vt–1) – d)}, since it is always preferable to directly consume energy over
its lossy storage. Consequently, in each time step there can be only either charging of the
storage or withdrawel of energy from the storage.

3.2 Rounding in the state space
Since the computational efficiency of dynamic programming algorithms strongly depends
on the size of the state space a straightforward application of the Bellman recursion onto
the discrete storage problem would lead to numerical difficulties. Due to the energy loss
function g it is very unlikely that different policies end up at the same fill level, so the
number of states grows exponentially with increasing number of time steps. In order to
limit the number of states, we discretize the state space, i.e., the fill level of the storage,
with step size hV ∈ R≥0. A similar approach is proposed in [19] on continuous control
problems.

Let

	V
h :=

⎧
⎨

⎩

V , if V mod h = 0

V – (V mod h) + h, otherwise

define the ceil function with respect to some step size h,

�V�h := V – (V mod h)

the corresponding floor function, V ∈ R≥0. In the rounding based dynamic programming
(RBDP) algorithm (Algorithm 1), we underestimate the fill level of the storage, i.e., we
round off in the state space and consider the following adapted recursion formula, by
which we obtain the optimal control to approximately reach a given fill level d at time
step t based on the controls up to the previous time step t – 1:

zt(d) := min
d′∈hV ·N0

{

zt–1
(
d′) + pt xt(d) :

⌊

ηin yt + g
(
d′) –

ζt

ηout

⌋

hV

= d
}

. (3)
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Data: hx, hV ≥ 0, m, Vinit ∈N, Vfinal ∈ hVN, c, C, l, u ≥ 0,
β ,ηin,ηout ∈ [0, 1], Z ∈ [0,∞)m, x : N → [l, u]m,
z : N→ (R∪ ∞)m, A : N → (N∪ ∞)m

Result: x∗ ∈ [l, u]m, V ∈ [c, C]m

for d := c, c + hV , . . . , C do
A1(d) := ∞;
if ((d – g(Vinit) + ζ1/ηout)/ηin) mod hx = 0 and (d – g(Vinit) + ζ1/ηout)/ηin < ub then

x1(d) := (d – g(Vinit) + ζ1/ηout)/ηin ;
z1(d) := x1(d) · p1;

else
z1(d) := ∞;
x1(d) := 0;

for t := 2, . . . , m do
for d := c, c + hV , . . . , C do

zt(d) := ∞;
xt(d) := 0;
At(d) := ∞;
for k := l, l + hx, . . . , u do

ζt := max{Zt – k, 0};
yt := max{k – Zt , 0};
lb := 	g–1(d + Zt – ηin yt + ζt/ηout)
hV ;
ub := 	g–1(d + Zt – ηin yt + ζt/ηout + hV )
hV ;
for W := lb, lb + hV , . . . , ub do

if c ≤ W ≤ C and zt–1(W ) + k · pt < zt(d) then
zt(d) := zt–1(W ) + k · pt ;
xt(d) := k;
At(d) := W ;

d∗ := arg mind∈{Vfinal,...,C} zm(d);
z∗ := zm(d∗);
x∗

m := xm(d∗);
Vm := d∗;
for i = m – 1, . . . , 1 do

d∗ := Ai+1(d∗);
x∗

i := xi(d∗);
Vi := d∗;

Algorithm 1: Rounding based Dynamic Programming

Using this recursion formula we can apply a dynamic programming scheme to compute
the optimal control for each energy level of the storage d = c, c + hV , . . . , C for all time steps
t = 1, . . . , m, and each energy input k, by eliminating dominated states, cf. Algorithm 1. In
the following we assume that l and u are multiples of the discretization hx.

By doing so, the rounding error

ε :=
∣
∣V – �V�hV

∣
∣ =

∣
∣V –

(
V – (V mod hV )

)∣
∣ = (V mod hV ) < hV
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is bounded from above by hV for one single time step. In order to estimate the total error
of our algorithm, we first consider some fill level

Vt =
⌊

ηin yt + g(Vt–1) –
1

ηout
ζt

⌋

hV

= ηin yt + g(Vt–1) –
1

ηout
ζt – εt (4)

with rounding error 0 ≤ εt < hV , t ∈ T . If we assume that the energy loss function g is a
monotonically increasing, linear function, we can derive an explicit bound on the total
rounding error:

Vm = gm(Vinit) +
m∑

i=1

gm–i
(

ηin yi –
1

ηout
ζi – εi

)

,

where gk denotes the k-times iterated function, i.e., g0 = id and gk = g(gk–1) with k ∈ N.
Then, the total rounding error is given by

εtot :=
m∑

i=1

∣
∣
∣
∣
∣
gm–i

(

ηin yi –
ζi

ηout
– εi

)

– gm–i
(

ηin yi –
ζi

ηout

)∣
∣
∣
∣
∣
.

By definition of the function g as g(V ) = (1 – β) V with β ∈ (0, 1), it holds that

εtot =
m∑

i=1

gm–i
(

ηin yi –
ζi

ηout

)

– gm–i
(

ηin yi –
ζi

ηout
– εi

)

<
m∑

i=1

gm–i
(

ηin yi –
ζi

ηout

)

– gm–i
(

ηin yi –
ζi

ηout
– hV

)

=
m∑

i=1

gm–i(hV ) ≤ m · hV . (5)

Since the rounding based dynamic programming algorithms is an exact method on the
discretized state space, the difference between the costs of a solution of RBDP and the cost
of the optimal solution of (2a)–(2c) are at most m hV ·maxt{pt}. The bound in equation (5)
can be computed and subtracted from the upper capacity bound C in order to guarantee
feasibility of the exact solution. Hence, hV should be chosen depending on the maximal
capacity, i.e., �C – εtot�hV � 0.

4 Numerical tests
We implemented the proposed rounding based dynamic programming algorithm, which
can be easily adjusted to different use cases. In a simple setup, we compare our method
against both linear and mixed integer linear programming, w.r.t. the obtained objective
function value z∗, of the respective approach. We further add some experiments that
demonstrate the run-time differences of our method compared to integer programming,
as well as a trade-off analysis that contrasts the computed energy costs with the storage ca-
pacity. The DP is implemented in Python 3.6, the LP in MATLAB and solved with Gurobi,
and the MILP is implemented in Julia and solved with Cbc. All experiments were per-
formed on an Intel(R) Celeron(R) N4000 CPU with 1.10 GHz and 8 GB main memory.
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Table 1 Comparison of different optimization algorithms to minimize the energy costs over one
week (06/15/18–06/21/18) for four different storage capacities. Purchasing exactly the required
amount of energy in each time step, i.e.,without using an electrical storage, costs 13,532 e. Note that
the LP solutions are only given as lower bounds and do not correspond to feasible controls

Capacity 500 1000 2500 5000

LP solution 13,358e 13,224e 12,954e 12,724e
MILP solution 13,388e 13,242e 12,980e 12,738e
DP solution 13,396e 13,250e 12,985e 12,742e

Figure 2 Comparison of the different optimization methods for 01/07/2018 with a constant energy
consumption of 200 kWh. The horizontal red and black lines represent the bounds on the capacity and the
purchased energy, respectively

In our framework there are several parameters to be adjusted. All experiments were
performed with a linear energy loss function, however, different types of functions can be
applied. Further, we assume a constant energy consumption over the overall time period
to obtain interpretable results reflecting the energy costs. According to the nature of the
day-ahead market, we allow to purchase energy in steps of 100 kWh, whereas the storage
is discretized with a step size of 1 kWh, i.e., Vt ∈ Z for all t ∈ T . A finer or coarser dis-
cretization increases the run-time or the rounding error, respectively. In all our numerical
experiments we use a time discretization of 1 h. The storage capacity and the amount of
purchasable energy are lower bounded by 0. The maximal fill level is varied in the follow-
ing experiments, and we restrict the energy that is stored at one time step to be maximum
half of the capacity. The efficiency factors are ηin = 0.9 and ηout = 0.95, the energy loss
factor is β = 0.1.

In Table 1 we compare the results of our approach against linear and mixed-integer lin-
ear programming solutions. Linear programming (LP) achieves the best solutions, since
it considers a relaxation of the discrete problem. However, these solutions are not feasi-
ble energy inputs from the EPEX Spot market. Our dynamic programming (DP) approach
yields only slightly worse solutions compared to the exact optimal solutions of the mixed
integer linear programming (MILP) problem (obtained with coin-or/Cbc [20]). All solu-
tions are computed with initial and final fill level equal to 100 kWh. A visual example for
the method comparison is given in Fig. 2. We observe that all three approaches provide
qualitatively similar results.
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Figure 3 Comparison of the run-time for the DP and the MILP. The run-time is measured in seconds for
different time periods. We observe a linearly and exponentially increasing run-time for the DP and MILP,
respectively

Figure 4 Trade-off analysis of energy costs over (a) one month and (b) one year (in e) vs. storage capacity (in
kWh). The cost is given in comparison to the case without storage, i.e., showing the cost savings

While the run-time of the rounding based dynamic programming algorithm depends
not only on the considered time period, but also on the storage capacity, its discretization
level and the purchasable energy, the run-time of the MILP is only little impaired by varia-
tions of these parameters. However, our approach has the clear advantage compared to the
MILP model that the optimization over longer time periods (months/years) or with finer
time discretizations (15 min/1 min) is possible. For fixed bounds regarding the storage size
and the purchasable energy, its run-time grows only linearly for an increasing number of
time steps, while the run-time of the MILP grows exponentially, see Fig. 3.

We provide a trade-off analysis (Fig. 4) where we consider the solutions of our algorithm
applied to time frames of one month and one year for varying storage capacities going from
0 kWh to 5000 kWh and 1000 kWh, respectively, in steps of 10 kWh. Based on historical
data, previous months or even years can be optimized for several storages and their re-
spective investment costs can be viewed relative to the appropriate energy cost savings.
This multiobjective perspective allows to investigate the potential of further investments
in storage devices, since it shows the gradual cost reduction induced by the increasing
capacity of the storage device. In the case that future energy prices are known either ex-
actly or through forecasting models optimizing several days or weeks jointly improves the
result (Fig. 5).
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Figure 5 Optimizing a number of days at once rather than in sequence improves the result. In this example,
the costs for optimizing both days separately sum up to 6796 e , jointly to 6752 e, assuming a constant
energy consumption of 200 kWh. The horizontal red and black lines represent the bounds on the capacity
and the purchased energy, respectively

Figure 6 Left: Heatmap that illustrates the hourly energy prices per 100 kWh for each day of the year 2018.
Right: Solution of the DP applied to the year 2018, i.e., purchased energy in kWh for each hour of the year

In Fig. 6 we illustrate the solution obtained by the rounding based DP retrospectively
optimizing the energy costs over one year, compared to the hourly energy prices. Here,
we consider a storage with a maximal fill level of 1000 kWh and a constant energy con-
sumption of 200 kWh per hour. We observe that most energy is purchased in the hours
before the two energy price peaks. This demonstrates that our algorithm employs the en-
ergy storage in order to bridge expensive time periods.

5 Conclusions and outlook
In this paper, we show that rounding based dynamic programming is an efficient opti-
mization approach for the optimal control of energy storage devices in the presence of
volatile costs. In comparison to mixed-integer (linear) programming models the run-time
of RBDP is linear in the number of time-steps, which allows us to optimize over larger
time periods. The solution of RBDP is thereby a good approximation of the global opti-
mum obtained by the solution of the MILP model.
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The presented computational experiments use simplified load curves. However, it is
possible to integrate more complicated load curves and feeding plants, as well as sup-
ply from own renewable energy sources. This could be used, for example, to optimize the
energy trading of a medium-sized company with its own photovoltaic system and battery
storage. In addition, this could also be used to calculate the optimal dimensioning of an
energy storage system before the investment.
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