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Abstract
Soft rough based on covering SRC theory has become a useful and well-known area
of research in theories of uncertainty. The present work follows up on this flourishing
research topic. We introduce a new model of SRC in a fusion of soft set theory SST
and rough set depending on covering CRS. We put forth a definition of soft rough
covering approximation space SCAS via neighborhood concept. Some axiomatic
systems of our model of SRC are discussed. We study the relationship between our
model of SRC and three other SRC-models. An algorithm for reduction of the
attributes of the information systems using SCAS is established. Based on the
theoretical discussion, we set forth some applications of our model which will be
helpful in decision making process via SRC theory.
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1 Introduction
Probability theory, fuzzy set theory FST and rough set theory RST are familiar method-
ologies for addressing ambiguity and uncertainty. Pawlak [1] established RST as a ad-
vantageous technique to treat with inexact and mysterious issues. Currently, RST has
attracted researchers in various fields such as: information processing, knowledge dis-
covery, data analysis, control and pattern recognition [2, 3]. First, RST was built on the
equivalence relation for the granulation of the universe. Second, many researchers gen-
eralized RST by generalizing the equivalence relation. Covering-based rough set models
CRS-models is one of the significant generalizations of Pawlak’s rough sets. CRS is more
realistic technique that help the researcher to investigate fuzziness and ambiguous of the
issues.

Molodtsov [4] has developed a new method for studying fuzziness and vagueness called
soft sets theory SST . Although SST embeds fuzzy sets theory FST , it differs from it.
Moreover, SST is different from RST and the other theories of uncertainty. For exam-
ple,we require a huge number of experiments to test the stability of the system in prob-
ability theory. The lack of resources for parametrization [4] may be the reason for the
difficulties associated with these theories of vagueness. SST is not subject to the diffi-
culties mentioned above because it has sufficient parameters. Although SST deals with
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fuzziness and vagueness, it has sufficient techniques for parameterizations. The previous
advantages of SST make it popular among professionals and researchers working in vari-
ous fields. Some theoretical studies Some theoretical studies on SST and its applications
can be found in [5–14].

Feng et al. [15] put forth a likely combination of RST and SST , although RST and SST
have distinct approaches to fuzziness. The authors proposed soft rough set concept by
parametrization the subsets instead of using the equivalence classes to obtain the lower
and upper approximations of the subsets. A connection between N-soft sets and rough
structures of various kinds is given by Alcantud et al. [16]. Many researchers studied SST
from different approaches such as soft-type algebraic structures and soft topological struc-
tures [17–20].

Soft rough covering set theory SRC has various applications in different industries.
Some of the applications is decision support systems which can be widely used in many
types of industrial decision making on different levels [21]. SRC can be used in new ma-
terials design and investigating of material properties [22]. SRC can be used in technical
diagnosis of mechanical things via vibroacoustics manifestation [23]. SRC is related to
neural networks which has many interesting applications in intelligent control for indus-
trial processes [24].

Three types of different soft rough covering models SRC-models are put forth by Li
et al. [25] and Yuksel et al. [26, 27]. Their models are considered a combination of SST-
models and CRS-models. They discussed an important properties of SRC-models. Inter-
est in SRC was sparked by these studies and SRC has turned into a significant and benefi-
cial area of research in fuzziness. Zhan et al. [28, 29] introduced two models of multigran-
ulation rough fuzzy sets and three classes of intuitionistic fuzzy models based on covering
while covering based multigranulation fuzzy rough set types is introduced [30] using fuzzy
neighborhoods. Zhang et al. [31] generalized fuzzy rough sets by coimplication operators
(R-coimplicators and T-coimplicator). In our paper, we set forth SST-models based on
CRS via neighborhood concept.

This paper follows the study of SRC theory. We introduce in Sect. 2 some notions from
Pawlak’s RST , SST and give three models of soft rough set depending on covering as well.
Through Sect. 3, we set forth a new model of soft rough based covering. Decision making
via soft rough depending on covering is presented in Sect. 4.

2 Basic terminology and results
Soft rough sets based on covering SRC model is a combination between soft sets theory
and rough sets theory depending on covering. Yuksel et al. [27] and Li et al. [25] have
presented three models of SRC and studied their properties. Through this section, we
give basic terminology of RST and SST . We review the definitions of these kinds of SRC-
models and discuss their properties as well. Throughout this paper U denotes a finite non-
empty set. By X c we mean the complement set of X in U .

Throughout this section, consider R is a relation of equivalence on U . Hence, U/R =
{Y2,Y1,Y3, . . . ,Ym} is a partition on U , where R is a relation of equivalence which gener-
ates the classes of equivalence Y1,Y2,Y3, . . . ,Ym. With respect to soft set, consider U is a
universe set, A is a set of parameters on U , P(U ) is the power set of U .

Definition 2.1 [32] Assume that R is a relation of equivalence on a nonempty set U . For
any X1 ⊆ U , the set R(X1) =

⋃{Yi ∈ U/R : Yi ⊆ X1} is called the lower approximation
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(Lapprox) of X1 and the set R(X1) =
⋃{Yi ∈ U/R : Yi ∩X1 �= ∅} is called the upper approxi-

mation (Uapprox) of X1.

Theorem 2.1 [32] Let K = (U ,R) be an approximation structure and X1,X2 ⊆ U . Hence:
(1) R(U ) = R(U ) = U ;
(2) R(∅) = R(∅) = ∅;
(3) R(X1) ⊆X1 ⊆ R(X1);
(4) X1 ⊆X2 ⇒ R(X1) ⊆R(X2) and (R(X1) ⊆R(X2));

(5L) R(X1 ∩X2) = R(X1) ∩R(X2) and R(X1) ∪R(X2) ⊆R(X1 ∪X2);
(5H) R(X1 ∩X2) ⊆R(X ) ∩R(X2) and R̂(X1) ∪R(X2) = R(X1 ∪X2);

(6) R(X c
1 ) = (R(X1))c and R(X c

1 ) = (R(X1))c, where (X c
1 ) is the complement of X1;

(7) R(X1) = R(R(X1)) and R(X1) = R(R(X1)).

Definition 2.2 [33], [34] Consider C is a family of subsets of the universe U . We call C a
covering of U if ∪C = U where none subset in C is empty.

Definition 2.3 [33], [34] Suppose that C is a covering of the non-empty set U . Then, the
structure (U ,C) is called rough approximation space depending on covering (RASC).

Definition 2.4 [4] Consider the mapping F : A → P(U). The structure G = (F ,A) is
called soft set on U . The soft set is a full soft set if

⋃
e1∈AF (e1) = U .

Definition 2.5 [35], [36] We say that S = (U ,G) is a soft rough covering approximation
space SCAS, where we fix a soft set G = (F ,A) on the universe set U .

For B ⊆ U , we have the following two operators:
Lapprox(B) = {u1 ∈ U : ∃e1 ∈AS.T .u1 ∈F (e1) ⊆ B}
Uapprox(B) = {u1 ∈ U : ∃e1 ∈AS.T .u1 ∈F (e1),F (e1) ∩B �= ∅}.
Two operators are called the soft P-lower and P-upper approximation of B, re-

spectively. B is called soft-definable if Lapprox(B) = Uapprox(B), if else it is Feng-soft
rough(Feng-SR-set).

Definition 2.6 [36], [27] Suppose that S = (U ,G) is a soft rough covering approximation
space (SCAS). For each y1 ∈ U , the mapping ζ : U → P(A) is defined by ζ (y1) = {e1 ∈
A|y1 ∈ {(e1)}.

For B ⊆ U , we have the following two operators:
Lapprox(Bζ ) = {x1 ∈ U |ζ (x2) �= ζ (x1)} for each x2 ∈ B
Uapprox(Bζ ) = {x1 ∈ U |ζ (x2) = ζ (x1)} for some x2 ∈ B are called lower and upper MSR-

approximation ofB, respectively. B is called MS-definable if Lapprox(Bζ ) = Uapprox(Bζ ), oth-
erwise it is an MSR-set.

Definition 2.7 Let S = (U ,G) be a soft rough covering approximation space SCAS. Con-
sider X1 ⊆ U , hence FS(X1) =

⋃{F (e1) : e1 ∈ A,F (e1) ⊆ X1} is called the soft lower ap-
proximation based on covering of X1 and the soft upper approximation based on covering
of X1 is defined as FS(X1) =

⋃{F (e1) : e1 ∈A,X1 ∩F (e1) �= ∅}. The operator RS(X1) is de-
fined as RS(X1) = FS(X1) ∪ {F (e1) : F (e1) ∩ (X1 – FS(X1)) �= ∅,∀e1 ∈A}.

The operator FS(X1) is called Li-soft lower approximation based on covering and the
operator FS(X1) is called Li-soft upper approximation based on covering. If FS(X1) =
FS(X1), then the set X1 is Li-SRC definable, if else X1 is Li-SRC.
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Theorem 2.2 [37] Let S = (U ,G) be a SCAS and X1,X2 ⊆ U . Hence:
(1) FS(U ) = FS(U ) = U ;
(2) FS = FS(∅) = ∅;
(3) FS(X1) ⊆X1 ⊆FS(X1);
(4) X1 ⊆X2 ⇒ (FS(X1) ⊆FS(X2)) and (FS(X1) ⊆FS(X2));

(5L) FS(X1 ∩X2) ⊆FS(X1) ∩FS(X2) and FS(X1) ∪FS(X2) ⊆FS(X1 ∪X2);
(5H) FS(X1 ∩X2) ⊆FS(X1) ∩FS(X2) and FS(X1) ∪FS(X2) = FS(X1 ∪X2);

(6) [FS(X1)]c ⊆FS(X c
1 ) and [FS(X1)]c ⊆FS(X c

1 );
(7) FS(FS(X1)) = FS(X1) and FS(X1) ⊆FS(FS(X1));
(8) FS(F (e1)) = F (e1), for each e1 ∈A.

Definition 2.8 [26] Consider S = (U ,G) is a SCAS, X1 ⊆ U . For x ∈ U , the two operators
SS(X1) = FS(X1), SS(X1) = FS(X1)

⋃{Mds(x) : x ∈X1 –FS(X1)} are called Yul-soft lower
approximation based on covering and Yul-soft upper approximation based on covering,
respectively. The set X1 is called Yul-SRC definable if SS(X1) = SS(X1),otherwise it is
Yul-SRC.

Definition 2.9 [27] Consider the structure S = (U ,G) represents a SCAS, X1 ⊆ U . ∀x1 ∈
U :the two operators T S(X1) = FS(X1), T S(X1) =

⋃{Mds(x) : x ∈ X } are called Yul et. al.’s
second SRC-model. The set X1 is called Yul2-SRC definable if T S(X1) = T S(X1), other-
wise it is Yul2-SRC.

3 A new model of soft rough depending on covering
Throughout this section, we put forth a new model of soft rough depending on covering
via the concept of soft minimal neighborhood. The properties of the new model and some
illustrative examples are given. We discuss the relationship between different kinds of soft
rough based on coveringSRC. Four different types of topologies are derived from different
models of SRC.

Definition 3.1 Let S = (U ,G) be a SCAS, U = {x1, x2, x3, . . . , xn} and A = {e1, e2, e3, . . . , em}.
ThenMNS(xi) =

⋂{F (ej) : xi ∈F (ej),∀xi ∈ U}, i = 1, 2, 3, . . . , n and j = 1, 2, 3, . . . , m is called
minimal soft neighborhood of xi.

Definition 3.2 Suppose that S = (U ,G) is a SCAS, x1 ∈ U . For any X1 ⊆ U , the soft cover-
ing lower approximation and the soft covering upper approximation are defined as follow,
respectively:

MS(X1) =
{

x1 ∈ U : MNS(x1) ⊆X1
}

,

MS(X1) =
{

x1 ∈ U : MNS(x1) ∩X1 �= ∅}
.

Example 3.1 Let (U ,G) be a SCAS where G = (F ,A) is soft set define in Table 1.

From Table 1, the minimal soft neighborhood is calculated as the following: MNS(x1) =
{x1, x2}, MNS(x2) = {x1, x2}, MNS(x3) = {x3}, MNS(x4) = {x4, x5}, MNS(x5) = {x5},
MNS(x6) = {x3, x5, x6}. Let X1 = {x3, x4, x6}, so MS(X1) = {x3, x5} and MS(X1) = {x3, x4,
x5, x6}.
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Table 1 G = (F ,A)

Û a1 a2 a3 a4 a5

x1 1 1 1 0 0
x2 1 1 1 0 0
x3 0 1 0 1 1
x4 0 0 1 1 0
x5 0 0 1 1 1
x6 0 0 0 1 1

Theorem 3.1 Let S = (U ,G) be a SCAS and X1,X2 ⊆ U . Hence:
(1) MS(U ) = MS(U ) = U ;
(2) MS(∅) = MS(∅) = ∅;
(3) MS(X1) ⊆X1 ⊆MS(X1);
(4) X1 ⊆X2 ⇒ (MS(X1) ⊆MS(X2)) and (MS(X1) ⊆MS(X2));
(5) MS(X1 ∩X2) = MS(X1) ∩MS(X2) and MS(X1 ∪X2) = MS(X1) ∪MS(X2);
(6) (MS(X1))c = MS(X c

1 ) and (MS(X1))c = MS(X c
1 );

(7) MS(MS(X1)) = MS(X1) and MS(MS(X1)) = MS(X1);
(8) MS(F (e1)) = F (e1), ∀e1 ∈A.

Proof It is obvious to prove parts 1 and 2. The proof of other parts is discussed in the
following:

(3) Take x1 ∈MS(X1), then x1 ∈MNS(x1) and MNS(x1) ⊆X1. Hence x1 ∈X1 and
MS(X1) ⊆X1. Also, Select x1 ∈X1, x1 ∈MNS(x1), then MNS(x1) ∩X1 �= ∅.
Therefore, x1 ∈MS(X1) and X1 ⊆MS(X1)

(4) Take x1 ∈MS(X1), x1 ∈MNS(x1) ⊆X1 ⊆X2. Then, x1 ∈MS(X2) and
MS(X1) ⊆MS(X2). Similarly, MS(X1) ⊆MS(X2)).

(5) MS(X1 ∩X2) = {x1 ∈ U : MNS(x1) ⊆ (X1 ∩X2)} = {x1 ∈ U : MNS(x1) ⊆X1} and
{x1 ∈ U : MNS(x1) ⊆X2} = {x1 ∈ U : MNS(x1) ⊆X1} ∩ {x1 ∈ U : MNS(x1) ⊆X2} =
MS(X1) ∩MS(X2). Similarly, MS(X1 ∪X2) = MS(X1) ∪MS(X2)

(6) Select x1 /∈MS(X c
1 ) ⇔ {x1 ∈ U : MNS(x1) ∩X c

1 = ∅} ⇔ {x1 ∈ U : MNS(x1) ⊆
X1} ⇔ x1 ∈MS(X1) ⇔ x1 /∈ [MS(X1)]c. Therefore, MS(X c

1 ) = [MS(X1)]c.
Similarly, (MS(X1))c = MS(X c

1 ).
(7) We need to prove MS(MS(X1)) ⊆MS(X1) and MS(X1) ⊆MS(MS(X1)). From

(5), the first inclusion is obvious. Secondly, let x1 ∈MS(X1),then MNS(x1) ⊆X1

and MS(MNS(x1) ⊆MS(X1). Let x2 ∈MNS(x1), then MNS(x2) ⊆MNS(x1) and
x2 ∈MS(MNS(x1)). Hence, MNS(x1) ⊆MS(MNS(x1)) ⊆MS(X1). Thus,
x1 ∈MS(MS(X1)). Therefore, MS(X1) ⊆MS(MS(X1)). Similarly,
MS(MS(X1)) = MS(X1)

(8) Since MS(F (e1)) ⊆F (e1). We need to prove F (e1) ⊆MS(F (e1)). Pick x1 ∈F (e1).
Thus x1 ∈MNS(x1) ⊆F (e1). Hence x1 ∈MS(F (e1)). Therefore
F (e1) ⊆MS(F (e1)). �

Remark 3.1 Let S = (U ,G) be a SCAS and X1,X2 ⊆ U . Thus, the following equalities do
not hold generally:

(IL) MS(X1) ∪MS(X2) = MS(X1 ∪X2);
(IH) MS(X1 ∩X2) = MS(X1) ∩MS(X2);

Remark 3.1 is shown throughout the next example.
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Example 3.2 Suppose that S = (U ,G) is a SCAS,A = {a1, a3, a2, a5, a4}, U = {x1, x3, x2, x6,
x5, x4, x8, x7}, F (a1) = {x1, x3, x6}, F (a2) = {x3, x2, x7, x6}, F (a3) = {x3, x2, x8, x7}, F (a4) =
{x1, x4, x5, x6}, F (a5) = {x5, x4, x8, x7}. Hence, MNS(x1) = {x1, x6}, MNS(x2) = {x3, x2, x7},
MNS(x3) = {x3}, MNS(x4) = {x5, x4}, MNS(x5) = {x4, x5}, MNS(x6) = {x6}, MNS(x7) =
{x7}, MNS(x8) = {x7, x8}. Suppose that X1 = {x3, x2, x1}, X2 = {x1, x8, x7} and X1 ∪ X2 =
{x1, x3, x2, x8, x7}. ThusMS(X1) = {x3},MS(X2) = {x8, x7},MS(X1)∪MS(X2) = {x3, x8, x7}
and MS(X1 ∪ X2) = {x3, x2, x8, x7}. Also, X1 ∩ X2 = {x1}, MS(X1) = {x1, x3, x2, x6},
MS(X2) = {x1, x2, x7, x8}, MS(X1) ∩MS(X2) = {x2, x1} and MS(X1 ∩X2) = {x1}.

The next theorem shows the relationship among different kinds of lower and upper op-
erators.

Theorem 3.2 Suppose that S = (U ,G) is a SCAS and X1 ⊆ U . Hence: the following axioms
are satisfied:

(i) FS(X1) ⊆MS(X1),
(ii) MS(X1) ⊆FS(X1),

(iii) SS(X1) ⊆ T S(X1) ⊆FS(X1)

Proof
(i) Take x ∈FS(X1), then there exists F (a1) ⊆X1, a1 ∈A such that x ∈F (a1). So,

x ∈MNS(x) ⊆F (a1) ⊆X1. Therefore, x ∈MS(X1) and FS(X1) ⊆MS(X1).
(ii) Select x ∈MS(X1), then x ∈MNS(x) ∩X1 �= ∅. So, there exists F (a1), a1 ∈A such

that x ∈MNS(x) ⊆F (a1). Thus, x ∈F (a1) ∩X1 �= ∅ and x ∈FS(X1). Hence
MS(X1) ⊆FS(X1).

(iii) From definitions SS(X1) = FS(X1)
⋃{MdS(x) : x ∈X1 – FS(X1)}, T S(X1) =

⋃{MdS(x) : x ∈X1} =
⋃{MdS(x) : x ∈FS(X1)}⋃{MdS(x) : x ∈X1 – FS(X1)}.

This leads to SS(X1) ⊆ T S(X1). T S(X1) ⊆FS(X1) is obvious by the definitions of
the operators. �

In general, the equality equation doesn’t hold in the above theorem as shown in the next
examples.

Example 3.3 According to Example 3.2, consider X1 = {x2, x3, x1}. So FS(X1) = ∅,
MS(X1) = {x2}, FS(X1) = U and MS(X1) = {x2, x1, x6, x3}. Therefore, FS(X1) ⊆ MS(X1)
and MS(X1) ⊆FS(X1).

From Example 3.3, we conclude the reverse inclusion doesn’t hold in general as
MS(X1) � FS(X1) and FS(X1) � MS(X1). Therefore, the equality doesn’t hold as well.

Example 3.4 Suppose that S = (U ,G) is a SCAS, U = {x2, x1, x4, x3}, A = {a2, a1, a4, a3, a5},
F (a1) = {x1, x2, x3}, F (a2) = {x1, x3}, F (a3) = {x2, x4}, F (a4) = {x4, x3}, F (a5) = U . So,
MNS(x1) = {x1, x2}, MNS(x2) = {x2}, MNS(x3) = {x1, x3}, MNS(x4) = {x4}. Consider X1 =
{x3, x1}, hence FS(X1) = U , T S(X1) = {x3, x1} and T S(X1) ⊆ FS(X1). Let X2 = {x2}, so
SS{x2} = {x2, x4}, T S(X2) = Û and SS(X2) ⊆ T S(X2).

Theorem 3.3 Suppose that S = (U ,G) is a SCAS, X1 ⊆ U . FS(X1) = MS(X1) if and only
if MS(X1) is union of F (ai) for each ai ∈A, i = 1, 2, . . . , n.
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Proof Firstly; suppose that FS(X1) = MS(X1), then MS(X1) =
⋃{F (ai) : F (ai) ⊆ X1},

∀ai ∈A, i = 1, 2, . . . , n. Conversely; suppose that MS(X1) is union of F (ai) for each ai ∈A,
i = 1, 2, . . . , n. So MS(X1) = F (a1) ∪ F (a2) ∪ F (a3) ∪ · · · ∪ F (an), F (ai) ⊆ X1. Hence,
F (ai) ⊆FS(X1) and MS(X1) =

⋃{F (ai)} ⊆FS(X1). By Theorem 4.2. FS(X1) ⊆MS(X1),
then FS(X1) = MS(X1). �

Theorem 3.4 Let S = (U ,G) be a SCAS, X1 ⊆ U . FS(X1) = MS(X1) if and only if G forms
a partition.

Proof Consider that G is a partition. Then, ∀a1, a2 ∈ A, F (a1) ∩F (a2) = ∅. Hence, ∀x1 ∈
U , x1 ∈ F (a1), MNS(x1) = F (a1). So, FS(X1) =

⋃{F (a1) : X1 ∩ F (a1) �= ∅} = {x1 ∈ Û :
MNS(x1) ∩ X1 �= ∅} = MS(X1). Conversely, suppose that FS(X1) = MS(X1), F (a1) ∩
F (a2) �= ∅, ∀a1, a2 ∈ A. Hence, RS(F (a1)) = F (a1). But RS(a1) = FS(a1), so FS(F (a1)) =
F (a1). SinceF (a2) ⊆FS(F (a1)) andRS(F (a2)) = F (a2). Therefore,RS(F (a2)) = F (a2) �

F (a1) ⊆ FS(F (a2)). This leads to contradiction and hence F (a1) ∩F (a2) �= ∅, G is a par-
tition. �

Definition 3.3 Let S = (U ,G) be a SCAS, X1 ⊆ U . Then the covering soft positive region,
the covering soft negative region and the covering soft boundary region of X1 are defined
respectively:

POSSC(X1) = MS(X1),
NEGSC(X1) = Û – MS(X1),
BNDSC(X1) = MS(X1) – MS(X1) It is obvious that if MS(X1) = MS(X1), then

BNDSC(X1) = ∅ and X1 is soft covering exact set. The accuracy measure of the approx-
imation is defined by

ηSC(X1) =
|MS(X1)|
|MS(X1)|

Example 3.5 Continued Example 3.2, the accuracy measure of the approximation

ηSC(X1) =
|{x3}|

|{x1, x3, x2, x6}| =
1
4

.

The accuracy measure of the approximation

ηSC(X2) =
|{x8, x7}|

|{x1, x2, x7, x8}| =
1
2

Definition 3.4 Let S = (U ,G) be a SCAS, X1 ⊆ U . Then
(i) X1 is roughly SC-definable if MS(X1) �= ∅ and MS(X1) �= U ,

(ii) X1 is internally SC-undefinable if MS(X1) = ∅ and MS(X1) �= U ,
(iii) X1 is externally SC-undefinable if MS(X1) �= ∅ and MS(X1) = U ,
(iv) X1 is totally SC-undefinable if MS(X1) = ∅ and MS(X1) = U ,

Definition 3.5 Suppose that S = (U ,G) is a SCAS, G = (F ,A), X1 ⊆ U . Then the mem-
bership degree based on soft rough of X1 is defined by:

μG
X1 (x1,X1) =

|X1 ∩ MNS(x1)|
|MNS(x1)| , ∀x1 ∈ U .
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It is obvious that μG
X1

(x1,X1) is a fuzzy set of U and lies in [0, 1], ∀x1 ∈ U

Example 3.6 Consider Example 4.1, for X1 = {x1, x3, x4, x6, x7}, then membership degree
is μG

X1
(x1,X1) = 1, μG

X1
(x2,X1) = 1

3 , μG
X1

(x3,X1) = 1, μG
X1

(x4,X1) = 1
2 , μG

X1
(x5,X1) = 1

2 ,
μG
X1

(x6,X1) = 1, μG
X1

(x7,X1) = 1, μG
X1

(x8,X1) = 1
2 .

Theorem 3.5 Let S = (U ,G) be a SCAS, X1 ⊆ U . Then,
(i) μG

X1
(x,X1) = 1 ⇔ x ∈ POSSC(X1), ∀x ∈ U ;

(ii) μG
X1

(x,X1) = 0 ⇔ x ∈ NEGSC(X1), ∀x ∈ U ;
(iii) 0 < μG

X1
(x,X1) < 1 ⇔ x ∈ BNDSC(X1), ∀x ∈ U .

Proof
(i) μG

X1
(x,X1) = 1 ⇔ MNS(x) ⊆X1 ⇔ x ∈MS(X1) ⇔ x ∈ POSSC(X1), ∀x ∈ U ,

(ii) μG
X1

(x,X1) = 0 ⇔ MNS(x) ∩X1 = ∅ ⇔ x /∈MS(X1) ⇔ x ∈ NEGSC(X1), ∀x ∈ U ,
(iii) 0 < μG

X1
(x,X1) < 1 ⇔ x ∈MS(X1) – MS(X1) ⇔ x ∈ BNDSC(X1), ∀x ∈ U . �

Corollary 3.1 Let S = (U ,G) be a SCAS, X1 ⊆ U and X1 is an exact set. Then, ∀x ∈ U :
(i) μG

X1
(x,X1) = 1 ⇔ x ∈X1,

(ii) μG
X1

(x,X1) = 0 ⇔ x /∈X1.

Example 3.7 Suppose that an expert in the car industry wants to evaluate various car
models. Let U = {c1, c2, c3, c4, c5, c6} are the selected cars and A = {a1, a2, a3, a4, a5} is a set
of parameters related to the cars, such that a1 refers to “performance”, a2 to “beautiful”, a3

to “luxurious”, a4 to “less fuel” and a5 to “security”. Consider (U ,G) is a soft rough covering
approximation space SCAS, where G = (F ,A) is soft set define in Table 2.

So, MNS(c1) = {c1, c5}, MNS(c2) = {c2, c5}, MNS(c3) = {c3, c5}, MNS(c4) = {c4, c5},
MNS(c5) = {c5}, MNS(c6) = {c2, c3, c5, c6}. Suppose the set of “Excellent” cars is X1 =
{c2, c5}, hence MS(X1) = {c2, c5} and MS(X1) = {c2, c3, c4, c5, c6}. Then the accuracy mea-
sure is

ηSC(X1) =
|{c2, c5}|

|{c2, c3, c4, c5, c6}| =
2
5

From the previous example, we deduce that our SRC-model can be used for industrial
purposes. Our model helps the experts in the evaluation of car’s models and the expert
can measure the accuracy of his evaluation. We believe that application will be helpful for
the experts in process of car’s industry and will support their evaluation process.

Table 2 (G =F ,A)

U a1 a2 a3 a4 a5 Result

c1 1 0 1 1 0 Good
c2 1 1 0 1 1 Excellent
c3 0 1 1 0 1 Good
c4 1 0 1 0 1 Good
c5 1 1 1 1 1 Excellent
c6 0 1 0 0 1 Poor
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4 An attribute reduction via soft rough based on covering
Throughout this section, we introduce an example as an application for our approach.
We introduce an algorithm for reduction of the attributes of the information systems via
SCAS. An attribute reduction supports the process of decision making.

Example 4.1 Suppose that U = {p2, p1, p4, p3, p5, p6, p7, p8, p8, p9, p10} is a set of pilots. They
are trained with respect to five attributes A = {a1, a2, a3, a4, a5}. An expert had evaluated
them to determine whether they are sufficiently well trained with respect to these at-
tributes or not. The results of evaluation are shown in the following information system
Table 3.

Then F (a1) = {p1, p5, p4, p10, p8}), F (a2) = {p3, p2, p9, p7}), F (a3) = {p3, p2, p7, p4, p9}),
F (a4) = {p1, p6, p5, p8}) and F (a5) = {p3, p2, p6, p5, p9, p10}). Consider the set of accepted pi-
lots X1 = {p4, p3, p7, p9}. So, MS(X1) = {p4}, MS(X1) = {p3, p2, P4, p9, p7} and BNDSC(X1) =
{p3, p2, p7, p9}. We remove an attribute for each following case, hence the approximations
operators are calculated as shown in the following Table 4.

Case 1: If the attribute a1 is removed, then MS(X1) = ∅, MS(X1) = {p3, p2, p4, p7, p9},
BNDA–a1

SC (X1) = {p3, p2, p4, p7, p9}. Hence, BNDSC(X1) �= BNDA–a1
SC (X1).

Case 2: If the attribute a2 is removed, then MS(X1) = {p4}, MS(X1) = {p3, p2, p4, p7, p9},
BNDA–a2

SC (X1) = {p3, p2, p7, p9}. Then BNDSC(X1) = BNDA–a2
SC (X1) and a2 is a superfluous

attribute.
Case 3: If the attribute a3 is removed, then MS(X1) = ∅, MS(X1) = {p3, p2, p4, p7, p9},

BNDA–a3
SC (X1) = {p3, p2, p4, p7, p9}. Then BNDSC(X1) �= BNDA–a3

SC (X1).
Case 4: If the attribute a4 is removed, then MS(X1) = {p4}, MS(X1) = {p3, p2, p4, p7, p6,

p9, p8}, BNDA–a4
SC (X1) = {p3, p2, p7, p6, p9, p8}. Then BNDSC(X1) �= BNDA–a4

SC (X1).
Case 5: If the attribute a5 is removed, then MS(X1) = {p4}, MS(X1) = {p3, p2, p4, p9, p7,

p10}, BNDA–a5
SC (X1) = {p3, p2, p9, p7, p10}. Then BNDSC(X1) �= BNDA–a5

SC (X1).

Table 3 Evaluation a set of pilots

U a1 a2 a3 a4 a5 Decision

p1 1 0 0 1 1 Reject
p2 0 1 1 0 1 Reject
p3 0 1 1 0 1 Accept
p4 1 0 1 0 0 Accept
p5 1 0 0 1 1 Reject
p6 0 0 0 1 1 Reject
p7 0 1 1 0 0 Accept
p8 1 0 0 1 0 Reject
p9 0 1 1 0 1 Accept
p10 1 0 0 0 1 Reject

Table 4 Algorithm for reduction of attributes using soft rough based on covering

Algorithm An attribute reduction using soft rough based on covering

Step 1 Input S = (U ,G), G = (F ,A),A is a set of attributes which symbolize table’s information
Step 2 CalculateMS(X1),MS(X1), BNDSC (X1) for the of accepted pilots
Step 3 Remove an attribute ai from the setA, and generateMS(X1),MS(X1), BNDSC (X1) using A – {ai}
Step 4 Reiterate step 3 for all attributes ofA
Step 5 IfMS(X1),MS(X1), BNDSC (X1) are equal for step 2 and step 3, then the attribute ai is superfluous

and is not important in decision making
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From Algorithm 4, we deduce that the attribute a2 is superfluous attribute and is not
essential in the decision making of the accepted pilots. Hence reduct of attributes A is
denoted by redcut A = {a1, a3, a4, a5}.

5 Conclusion
The utility of the uncertainty theories is how to make a decision in problems with am-
biguity or missing information. We explain fuzzy set theory FST , rough set theory RST
and soft set theory SST and their generalizations among the theories of uncertainty. In
our paper, we have developed a new of SRC-model combining SST and RST-based on
covering. Compression between our model and existing models is discussed. We put forth
an application for our model that can be helpful in the process of decision making. In fu-
ture work, we will set forth other combinations among FST , RST and SST which are
important for the problems of lack of information and fuzziness.
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