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Abstract
The escalating process of urbanization has raised concerns about incidents arising
from overcrowding, necessitating a deep understanding of large human crowd
behavior and the development of effective crowd management strategies. This study
employs computational methods to analyze real-world crowd behaviors,
emphasizing self-organizing patterns. Notably, the intersection of two streams of
individuals triggers the spontaneous emergence of striped patterns, validated
through both simulations and live human experiments. Addressing a gap in
computational methods for studying these patterns, previous research utilized the
pattern-matching technique, employing the Nelder-Mead Simplex algorithm for
fitting a two-dimensional sinusoidal function to pedestrian coordinates. This paper
advances the pattern-matching procedure by introducing Simulated Annealing as
the optimization algorithm and employing a two-dimensional square wave for data
fitting. The amalgamation of Simulated Annealing and the square wave significantly
enhances pattern fitting quality, validated through statistical hypothesis tests. The
study concludes by outlining potential applications of this method across diverse
scenarios.

Keywords: Pedestrian dynamics; Human-crowd motion; Geometric patterns; Stripe
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1 Introduction
Gathering of a large number of people is generally known as a crowd. With the increased
rate of urbanisation, the world has experienced several catastrophic incidents with death
tolls, resulting from overcrowding at social gatherings. The death toll was 21 in Love Pa-
rade music festival in Duisburg, Germany in 2010 (Fig. 1), 3 during a stampede in UEFA
Champions League Final in Turin, Italy (with 1500+ injured) in 2021, 150 in Halloween
celebrations in Seol, South Korea in 2022 and unfortunately the list goes on. The deadliest
crowd accidents belong to the annual Hajj pilgrimage in Mecca and Mina, Saudi Arabia,
killing 5000+ people in a span of about 25 years. Most of these incidents are consequences
of poor crowd management by the organisers.

Research on the motion of a crowd finds its importance in providing efficient techniques
for crowd management. In urban spaces, in most of the cases, the crowd is basically a
group of pedestrians walking through the streets, traffic-signal junctions, railway or metro
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Figure 1 Crowd disaster in Duisburg, Germany during Love Parade music festival in 2010. The crowd trapped
under the tunnel tried to escape, which later resulted in stampedes. Images taken as screenshots at 11:10
(left) and 12:54 (right) from https://www.youtube.com/watch?v=rq5bcWOjdrU

stations, shopping malls, sports stadiums etc. During emergency situations (such as fire,
earthquakes, sudden appearance of a gunman etc.), successful evacuation of the crowd
needs well-researched preventive measures. However, even without an emergency escape
situation, managing a large crowd is definitely a challenging job, e.g. when a large number
of people come out of a stadium after a sports event.

When exposed to specific settings, individuals in a crowd have a ‘natural’ method of or-
ganising and structuring themselves. This self-organisation in crowds enables researchers
to investigate and comprehend its underlying behaviour, that is consistent with the crowd’s
‘natural’ behaviour. Self-organisation, in the context of crowd management, refers to the
spontaneous formation of organised patterns by pedestrians without any external guid-
ance or control. It is the natural tendency of individuals within a crowd to align themselves
in a unidirectional manner, resulting in the formation of ‘lanes’. The formation of spatio-
temporal patterns in a system as a result of socio-physical interactions of human beings
occur without any external design or structure.

To create effective measures of crowd management, one needs to understand the be-
haviour of a crowd [9] in a wide variety of situations. Especially in an urban set-up, where
there could be several types of emergency-escape situations [11], crowd management
strategies become more essential for crowd evacuation [29, 33]. The critical factor is the
crowd density rather than the crowd size. At high densities, the behavior of a human crowd
has several analogies to that of a flowing fluid. The most common crowd scenarios that
could be seen in urban areas are uni-directional flows [26], bidirectional flows [27], multi-
directional flows [4], crossing flows [19, 34, 35], flow through a T-shaped junction [36],
single pedestrian crossing through a dense static crowd [22], bottlenecks [14, 21, 25] etc.
Each of these crowd situations have unique self-organising patterns. For example, forma-
tion of lanes are seen when two groups of people try to cross through each other in a
sidewalk [13]. This particular crowd situation is known as a counterflow, which is a spe-
cial case of crossing flows when the crossing angle is 180◦. In Fig. 2 a typical human data
for pedestrian flows crossing at an angle of 60◦ are shown.

To understand the crowd behaviour one has to rely on experimental data using real hu-
man beings, but conducting these experiments is very difficult from financial and ethical
points of view. For this reason we turn to model the crowd using available experimental
data, thanks to the improvement of computational facilities in the past few decades. The
research area of crowd simulation concerns the design and use of simulation algorithms
to understand, predict and reproduce the behaviour of human-crowds [23, 31]. The im-
mediate output of a crowd simulation algorithm are the time-dependent trajectories of

https://www.youtube.com/watch?v=rq5bcWOjdrU
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Figure 2 Typical experimental data for crossing flows of pedestrians on a 2D surface (x – y plane) at a
crossing angle = 60◦ . The pedestrians are denoted by dots and the tails behind them are the distances
travelled by the pedestrians in previous 1.25 sec. The data is published in [19]

Figure 3 Schematic representation for the formation of stripes when two groups of people cross through
each other. The figure has been shown for three instances - before crossing (T1), during crossing (T2) and after
crossing (T3); and hence T1 < T2 < T3. The two groups before crossing are denoted by blue and red squares,
whose direction of motion is denoted by arrows of the same color. The green dotted arrow denotes the
bisector of the crossing angle

humans, as realistic as possible. Studies of collective motion have also been performed for
several other social groups of the animal kingdom [6, 7, 16, 30].

Studies of human-crowd dynamics by both experiments and real-time simulations have
diverse range of applications from entertainment, such as computer games and movies,
to safety-critical analysis, i.e., to improve pedestrian traffic flow and prevention of crowd
disasters [3, 5, 11, 24, 29]. Pedestrian traffic flow has been studied empirically in a wide
variety of situations, using both experimental methods and motion tracking of real crowds
[12, 15]. When two streams of pedestrians cross at an angle, striped patterns sponta-
neously emerge as a result of local pedestrian interactions. This phenomenon is schemat-
ically illustrated in Fig. 3. Several urban situations produce crossing flows, such as streams
of pedestrians crossing at a sidewalk intersection, or subway commuters passing each
other when entering and exiting a metro car. It is very common to notice that pedestrians
in a crosswalk often form multiple lanes of traffic. Such spontaneous pattern formation
is an example of self-organised collective behaviour, a topic of intense interdisciplinary
interest [10, 18].

In the early stages of human-crowd research back in 1977, an empirical hypothesis
posited that striped patterns in crossing flows should align perpendicularly to the bisector
of the crossing angle [20]. However, since that early proposition, there has been a scarcity
of experimental evidence supporting this phenomenon. While simulation-based studies
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have explored crossing flows of pedestrians, none have definitively validated the ‘bisector-
normal hypothesis.’ A stripe represents a traveling wave that aligns with the mean direc-
tion of the two flows, facilitating forward movement for pedestrians within it [10]. This
striped pattern is crucial for optimizing pedestrian flow, minimizing collision-avoidance
situations, and consequently enhancing the average walking speed. Although a handful
of subsequent human studies have delved into oblique crossing angles [1, 8, 32], none
have specifically analyzed the presence or properties of stripe patterns. Notably, in [19],
pioneering computational methods were introduced to detect the existence of striped pat-
terns, paving the way for a comprehensive study of their geometric properties. The out-
comes from these methods confirmed that the observed striped patterns align perpen-
dicularly to the bisector of the crossing angle. This study represents a significant stride in
substantiating and exploring the long-standing hypothesis regarding the directional align-
ment of striped patterns in crossing flows.

In this paper we consider the experimental data of crossing flows of pedestrians [19],
where two groups of volunteers crossed each other at 7 different crossing angles from
0◦ to 180◦, at intervals of 30◦. Emergence of self-organising ‘striped’ patterns has already
been demonstrated even for small groups pedestrians crossing each other. In one of the
methods developed in [19], viz. the pattern-matching technique, the expected pattern of
alternate and parallel stripes in the crossing region (see Fig. 3) was captured by employing
a two-dimensional sinusoidal function for fitting pedestrian coordinates. The fitting was
done using the Nelder-Mead simplex algorithm which maximises an objective function
(see Sect. 2) designed accurately to capture the striped pattern.

The primary objective of this paper is to provide improvements in the pattern fitting
procedure. Our essential approach is two-fold: (i) to use Simulated Annealing as the op-
timisation algorithm and (ii) to employ a two-dimensional square wave to capture the
striped pattern. Our findings indicate that the changes in the optimisation strategy in the
two above ways indeed results in an improved fitting procedure, which was verified using
statistical hypothesis tests. Insights gained from this research could be useful for creat-
ing effective crowd simulation models. The remaining part of this paper is organised as
follows: in the next section, viz. Section 2 we describe the methodological tools and tech-
niques used in this research, followed by results and discussion in Sect. 3. Finally in Sect. 4
we make some concluding remarks.

2 Materials and methods
The results presented in this paper is based on experimental data that was collected by em-
ploying volunteer pedestrians and recording their trajectories. Using these data we built
computational techniques to detect the presence of striped patterns. In this section we
briefly describe the experimental details, followed by the computational strategies utilised
for this research.

2.1 Experimental details
The experimental data for the pedestrian crossing flows utilized in this study were ac-
quired through experimental trials conducted on the University of Rennes campus in
France, as detailed in prior works [2, 19]. This dataset is publicly accessible via the repos-
itory at https://doi.org/10.5281/zenodo.5718430. Two distinct groups of volunteer par-
ticipants, comprising 36 individuals on Day 1 and 38 on Day 2, were randomly divided

https://doi.org/10.5281/zenodo.5718430
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into two groups, with each group containing 18 or 19 individuals. These participants were
given instructions to traverse a sports hall to reach the opposite side. Initial positions were
prearranged to necessitate crossings at seven different angles (ranging from 0◦ to 180◦ in
30◦ increments). Throughout each trial, we captured the head trajectories of all pedestri-
ans as time series data at a frequency of 120 Hz using an infrared camera-based motion
capture system (VICON). A total of 116 trials were recorded across all crossing angles,
with 10 trials corresponding to a 0◦ crossing angle. Consequently, we retained 106 trials
for our research, focusing on the presence of striped patterns in the crossing region, a
phenomenon that arises when the two groups walk in different directions and intersect.

Subsequently, the acquired data underwent a low-pass filtering process to attenuate os-
cillations resulting from the natural gait movements of walking pedestrians. Specifically,
we applied a forward-backward 4th-order Butterworth filter with a cut-off frequency set
at 0.5 Hz. Figure 2 illustrates the trajectories of all pedestrians in a representative trial
using the filtered trajectory data.

2.2 Pattern-matching technique
When two streams of people cross at oblique incidence we expect striped patterns as
demonstrated in Fig. 3. However, when we merely plot the experimental data, which is
the trajectories of all the participants, the expected patterns are not obvious to the eyes,
as in Fig. 2. For this purpose a pattern-matching technique was developed [19], which we
describe here.

To capture the expected pattern of alternate and parallel stripes in the crossing region,
a two-dimensional sinusoidal function was employed to fit pedestrian coordinates (x, y).
The sinusoid f is defined as:

f (x, y;γ ,λ,ψ) = sin

(
2πX

λ
+ ψ

)
, (1)

where:

X = x sinγ – y cosγ , (2)

rotates the coordinates using angle γ to represent the orientation of stripes with respect to
the x-axis. The parameter λ represents the wavelength of the sine curve, corresponding to
the spatial separation between stripes from the same group, and ψ denotes a phase offset.
The fitting procedure involved maximising the function C:

C =
∑

group 1

f (x, y)
N1

+
∑

group 2

–f (x, y)
N2

, (3)

where N1 and N2 are the number of pedestrians in the two groups, respectively. The max-
imisation of C was performed using the Nelder-Mead simplex algorithm. The maximum
possible value of C is 2, indicating an ideal fit when pedestrian positions from both groups
precisely match the crests and troughs of the sinusoid. By maximising C through fitting f
to pedestrian positions, we obtain the stripe orientation γ and spatial separation λ.

It is worth mentioning here that the idea of fitting a two dimensional sinusoid (Equation
(1)) to capture the periodic and parallel striped patterns is inspired from Gabor function.
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This function is used in Gabor filters, which is a linear filter used for texture analysis. This
essentially means that it detects if there is any certain frequency content in an image along
various directions in a confined region. The frequency and orientation representations of
Gabor filters are compatible to those of a mammalian visual system [17]. Because of its
capacity to extract both spatial and frequency information from images, the Gabor filter
is a prominent tool in computer vision and image processing.

Gabor filters, inspired by the physiological characteristics of the mammalian visual sys-
tem, particularly the primary visual cortex (V1), emulate the receptive fields of neurons
in V1. Neurons in V1 respond to specific spatial frequencies and orientations of visual
stimuli. Gabor filters, as mathematical models, selectively respond to spatial frequencies
and orientations, making them adept at capturing information about the texture’s charac-
teristics in images. They excel in tasks requiring discrimination between textures based
on spatial frequency and orientation, finding applications in pattern recognition (e.g., face
and fingerprint recognition), texture classification, and medical imaging for identifying
abnormalities or specific structures [28]. The appropriateness of Gabor filters for texture
analysis lies in their ability to replicate the receptive fields of neurons in the mammalian
visual cortex, making them valuable for tasks where capturing spatial frequency and ori-
entation information is crucial, such as in medical image processing.

In Fig. 4, the pattern-matching technique is illustrated, where two groups are fitted
together. To measure the stripe orientation with respect to the crossing angle bisector,
we initially rotated the coordinates, aligning the bisector with the new x-axis. Conse-
quently, the expected orientation γ from pattern matching became 90◦. This precisely is
the bisector-normal hypothesis (see Sect. 3), that was first hypothesised in [20] and then
experimentally established in [19].

2.3 Pattern-matching technique 2.0
In the earlier version of the pattern-matching technique, the pedestrian coordinates were
fitted using a 2D sinusoid, by maximising C given by Equation (3), using the Nelder-Mead
simplex algorithm. Out of several factors of merit, the objective function C bears the im-
portance of being a major benchmark tool, from an emergent patterns perspective, to
gauge the realism of simulated data. When pedestrian coordinates from the two groups

Figure 4 Demonstration of pattern-matching technique for a typical trial. The left panel shows the 2D sine
wave fitted on pedestrian coordinates from the two groups, denoted by blue and red dots, and the right
panel shows the corresponding objective function C as a function of γ and λ
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are fitted together, the maximum possible value of C is Cmax = 2. A higher value of C, or a
value of C/Cmax close to 1, would signify better fitting, and consequently a better analysis
of the results. However, for the previous computational method it was obtained that the
median values of C/Cmax are in the range 0.45 to 0.7 [19]. So here we attempt to improve
the fitting procedure by using different strategies.

In our modified pattern matching technique presented in this paper, we use a 2D square-
wave, instead of a 2D sinusoid to fit the pedestrian coordinates. The 2D sine wave has
varying values along its oscillations, representing the positions of pedestrians at different
points where the stripe was the most visible. However, in our modified method, the sine
wave is replaced by a square wave, which simplifies the pattern by assigning fixed values to
the troughs and crests. Denoting the square wave by f ′, its functional form could be given
by

f ′ = sgn
[

sin

(
2πX

λ
+ ψ

)]
, (4)

where X is already defined by (2). In the above expression, sgn is the signum function. Typ-
ically, the troughs are assigned a value of 1, where we fit one of the groups of pedestrians,
while the crests are assigned a value of –1, where the other group of pedestrians are fitted.
The corresponding objective function, say C′, which is to be optimised now remains the
same as (3) except for f being replaced by f ′;

C′ =
∑

group 1

f ′(x, y)
N1

+
∑

group 2

–f ′(x, y)
N2

. (5)

Figure 5 shows the modified pattern-matching technique done using the square wave f ′,
and by maximising the objective function C′, done for the same trial shown in Fig. 4.

Another significant change that we introduce in the pattern matching technique is the
optimisation algorithm. Here we use Simulated Annealing (SA) to maximise the objective
function, instead of the previously used Nelder-Mead (NM) simplex algorithm. One of the
vital shortcomings of NM algorithm is its tendency to converge to the local optima instead

Figure 5 Demonstration of pattern-matching technique with the square wave for the typical trial shown in
Fig. 4. The left panel shows the 2D square wave f ′ fitted on pedestrian coordinates from the two groups,
denoted by blue and red dots, and the right panel shows the corresponding objective function C′ as a
function of γ and λ
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of the global optima. This behaviour arises because the algorithm relies on the given initial
points of the parameters, and different initial points could lead to different final outcomes.

To address these challenges we apply the Simulated Annealing (SA) algorithm to the
pattern-matching technique. Simulated Annealing is a stochastic optimization algorithm
used to find approximate solutions to complex optimization problems. Inspired by the an-
nealing process in metallurgy, it starts with an initial solution, and then iteratively explores
the solution space by accepting both better and worse solutions with a probability deter-
mined by a temperature parameter. The temperature decreases over time, allowing the
algorithm to make transition from a more explorative phase to a more exploitative one.
This method is particularly effective for combinatorial optimization problems and situ-
ations where finding the global optimum is challenging due to the presence of multiple
local optima.

By using simulated annealing, we aim to obtain more robust and reliable results for the
optimal values of γ and λ. SA explores the parameter space in a probabilistic manner,
gradually reducing the search radius and focusing on promising regions. This approach
can potentially overcome the limitations of the NM algorithm and provide better conver-
gence to the global optima.

So to summarize our methods, we have used two different wave forms, viz. 2D sinusoid
and 2D square wave, to capture the periodicity of the striped patterns, and for each of
these wave forms we have used two different optimisation algorithms, viz. Nelder-Mead
simplex and Simulated Annealing, to maximise the objective function for fitting pedes-
trian coordinates. Therefore, the combination of these strategies produce 4 different sets
of pattern-matching results, which we are going to present and analyse in the next section.

3 Results and discussions
The primary objective of this paper is to analyse how pedestrian coordinates can be fitted,
as accurately as possible, on the selected waveforms by using different optimisation algo-
rithms. In this section we present the results obtained from the 4 different methods. To
examine the fitting results and to compare the outcomes from various strategies defined
in the previous section, we have also used statistical hypothesis tests. The comprehensive
analysis provides further insights into the performance and reliability of the optimisation
algorithms in the context of crowd motion studies.

In Fig. 6 we present boxplots for the obtained values of the maximised (and normalised)
objective function C (or C′), stripe orientation γ and spatial separation λ estimated from
4 different optimisation strategies for 106 experimental trials. During the application of
the pattern-matching technique using the Nelder-Mead (NM) simplex algorithm or Sim-
ulated Annealing (SA) with 2D sinusoid or 2D square wave, we obtained optimal values
for λ and γ that maximize our objective function C or C′. These optimal values from SA
are very similar to the ones obtained using NM. This suggests that both algorithms are
capable of finding the global optimum for our pattern-matching problem using either of
the waveforms.

Let us first discuss the effect of changing the waveform from a 2D sinusoid to a 2D square
wave. The transition from a continuously varying sine wave to a discontinuous square
wave is clearly visualized in the plots for C (Fig. 4) and C′ (Fig. 5), where we demonstrate
pattern-matching (both using NM) for a typical experimental trial. The maximum value of
C′ obtained for this trial is 1.888, whereas when we used the sine wave for pattern-fitting,



Worku and Mullick Journal of Mathematics in Industry            (2024) 14:6 Page 9 of 14

Figure 6 Boxplots to demonstrate the comparison of 4 sets of values of (a) C/Cmax (b) γ and (c) λ values for
all the experimental trials, obtained by various strategies to implement the pattern-matching technique. In (b)
the dashed black line indicates the γ = 90◦ , which is the expected orinetation of the striped patterns
according to the bisector normal hypothesis

the maximum value of C was only 1.205. This indicates an improved fit of the pedestrians
onto the troughs and crests of the square wave, effectively segregating the two groups.
This is precisely the improvement that we intended to bring about by using a square wave
instead of a sine wave for pattern matching. Boxplots for C/Cmax values for all the crossing
angles in Fig. 6(a) show that this improvement is systematic and could be seen for all the
crossing angles of our data set.

It is also evident from Fig. 6(a) that for the sinusoidal wave, both NM and SA yield similar
values of the maximised objective function. This has been verified by a series of one-way
ANOVAs (see Table 1), where all p-values are >0.8 and values of η2 are �10–3. However,
for the square curve a significant increase in the maximised objective function is observed
when switching to SA from NM. One-way ANOVAs (see Table 1) confirm this statistical
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Table 1 Results of one-way ANOVAs to check statistical significance between maximised C values
obtained by different strategies of optimisation used in this research. The F-statistic in a one-way
ANOVA assesses whether the means of more than two groups are significantly different; it is
calculated by comparing the variance between group means to the variance within groups. The
p-value associated with the F-statistic is the probability of observing an F-statistic as extreme as, or
more extreme than, the one calculated from the sample data, assuming that there is no difference in
population means. Asterisks indicate statistically significant p-values, for a chosen significance level of
0.05. η2 is a measure of effect size that indicates the proportion of variance that can be explained

Crossing angle Strategies tested F-statistic p-value η2

30◦ sine+NM, sine+SA F(1, 34) = 0.004 0.953 ∼10–4

square+NM, square+SA F(1, 34) = 5.35 0.027∗ 0.136
60◦ sine+NM, sine+SA F(1, 34) = 0.065 0.801 0.002

square+NM, square+SA F(1, 34) = 6.082 0.019∗ 0.152
90◦ sine+NM, sine+SA F(1, 36) = 0.001 0.982 ∼10–5

square+NM, square+SA F(1, 36) = 4.473 0.041∗ 0.11
120◦ sine+NM, sine+SA F(1, 32) = 0 0.988 <10–5

square+NM, square+SA F(1, 32) = 12.67 0.001∗ 0.284
150◦ sine+NM, sine+SA F(1, 32) = 0.024 0.878 ∼10–4

square+NM, square+SA F(1, 32) = 2.203 0.148 0.064
180◦ sine+NM, sine+SA F(1, 32) = 0 0.985 ∼10–5

square+NM, square+SA F(1, 32) = 11.88 0.002∗ 0.271

significance (all p-values < 0.05 and values of η2 > 0.1). So undoubtedly, SA outperforms
NM in achieving a more accurate fit of the pedestrians on the stripes, and this effect is
more prominent while using a square curve compared to a sinusoid.

As mentioned in Sect. 2.3, NM as an optimisation algorithm has it’s disadvantages since
it highly depends on the initial points for the parameters of the objective function. To
overcome this limitation and obtain reliable results, we had to perform repetitive trials
and optimisations using various initial points. The process of repetitive trials and optimi-
sations significantly increased the computational time and required extensive manual in-
tervention. It involved running the process multiple times with different initial parameter
values and examining the results to select the best outcome. This labor-intensive proce-
dure posed practical limitations, especially when dealing with large datasets and a complex
optimisation problem, such as the pattern-matching.

One noticeable difference between the two algorithms was the computational time re-
quired. While pattern matching with SA took significantly longer time per single trial com-
pared to that with NM, as shown by boxplots in Fig. 7, it was able to converge to the global
maxima of the objective function in almost one iteration for all cases. In contrast, the
NM required repetitive optimisation runs with different initial points for the parameters,
which significantly increased the total computation time. The required numbers of repet-
itive runs depends solely on the quality of guesswork done to put the initial points. For a
multi-parameter optimisation problem like ours, there is no wiser strategy to choose these
initial points.

In Figs. 6(b) and 6(c), we present the boxplots for the obtained values of stripe orienta-
tion γ and inter-stripe spatial separation λ. For both the cases, the results do not appear to
depend on the strategy of pattern-matching used. This, in a way, validates the accuracy of
our extension of pattern-matching with different waveforms and optimisation algorithms.

A significant aspect of the stripe orientation γ values is the validity of bisector-normal
hypothesis. This hypothesis states that the self-organising stripes in crossing flows of
pedestrians are perpendicular to the bisector of crossing angle, as depicted schematically
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Figure 7 Boxplots to demonstrate the comparison of computation times required per trial of optimisation
using (a) Simulated Annealing (SA) and (b) Nelder-Mead (NM) simplex algorithm. The computation time for
SA is two order of magnitudes higher compared to that for NM

Table 2 Results of one-sample t-tests performed for stripe orientation γ values obtained from the 4
strategies of pattern-matching technique. The t-statistic in a one-sample t-test measures how far the
sample mean deviates from the hypothesized population mean in terms of standard errors. On the
other hand, the p-value is the probability of observing a t-statistic as extreme as, or more extreme
than, the one calculated from the sample data, assuming that the true population mean is equal to
the hypothesized mean. Asterisks indicate statistically significant p-values, where our chosen level of
significance is 0.05

Crossing angle Sine+NM Sine+SA Square+NM Square+SA

t-statistic p-value t-statistic p-value t-statistic p-value t-statistic p-value

30◦ t(17) = –1.284 0.216 t(17) = –3.625 0.002∗ t(17) = 1.14 0.27 t(17) = –0.035 0.972
60◦ t(17) = –0.825 0.421 t(17) = –0.234 0.818 t(17) = 0.218 0.83 t(17) = –1.55 0.139
90◦ t(18) = 3.092 0.006* t(18) = 1.511 0.148 t(18) = 1.581 0.131 t(18) = 0.597 0.558
120◦ t(16) = –0.804 0.433 t(16) = –2.204 0.042 t(16) = 0.627 0.542 t(16) = 0.056 0.956
150◦ t(15) = 0.534 0.6 t(16) = 0.782 0.445 t(16) = –0.76 0.458 t(16) = 1.49 0.156
180◦ t(16) = 1.747 0.01 t(16) = 1.693 0.11 t(16) = –0.941 0.361 t(16) = 0.639 0.532

in Fig. 3. The validity of this hypothesis was established in [19], where pattern-matching
was performed using a 2D sinusoid and the Nelder-Mead simplex algorithm. Here we
present 3 additional strategies of the pattern-matching procedure, and from Fig. 6(b) it
seems that all the γ values are distributed around 90◦. To verify this numerically we per-
formed a series of one-sample t-tests to compare the means of each of these distributions
with the hypothetical value 90◦. The results are summarised in Table 2, which shows that
when we used a square wave for pattern-matching, the obtained values of stripe orienta-
tion are not statistically different from 90◦. But when we use a sine wave for the pattern
fitting we observe only one case each for NM and SA algorithms where the result is sta-
tistically significant. This perhaps once again establishes the fact, albeit only up to some
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extent in this case, that using a square wave instead of a sine wave improves the quality of
results obtained from the pattern-matching procedure.

4 Conclusions
We considered an experimental data for crossing flows of two groups of pedestrians,
whose trajectories were recorded while they attempted to cross each other. The numer-
ical strategies described in this paper were utilised to detect the self-organising striped
patterns in the crossing region of the two flows and to study their geometric properties.
Previous research employed a method known as the pattern-matching technique which
basically is fitting a 2D sinusoid to pedestrian coordinates using the Nelder-Mead (NM)
simplex algorithm. We extended the pattern-matching method by using a 2D square wave
to fit the data, and switching to Simulated Annealing (SA) as the optimisation algorithm.

In this research our aim was to get an improved fit of the pedestrians on the striped
pattern. We expected that switching from a sine wave to a square wave would definitely
bring about the desired improvement. However, SA in combination with the square wave
demonstrated a further enhancement in the quality of pattern-fitting, which was obvious
by no means. The advantage of SA was its ability to explore the parameter space more
effectively and consistently in order to reach the global optima. On the other hand, NM’s
dependence on the initial points made it more prone to converging to local optima and ne-
cessitated additional manual intervention to ensure reliable results. Overall, SA performed
better than NM for both the waveforms used in this research, as shown in Fig. 6(a) and
confirmed by one-way ANOVAs.

Gaining a deep understanding of the behaviour exhibited by large human crowds is es-
sential for effective crowd management planning. Computational modeling and simula-
tion of crowds play a pivotal role in this endeavour. The objective function C (or C′), which
is at the core of pattern-matching technique, has the potential to act as a benchmark to
judge the quality of artificially simulated trajectories, as in how realistic they are. The key
concept would be to verify the presence and geometrical properties of the self-organising
patterns. Improvements in pattern-matching presented in this paper would aid in the un-
derstanding of complex dynamics of crowds through numerical simulation and eventually
to develop effective crowd management strategies.

In conclusion, while our primary focus has been on the dynamics of pedestrian flows,
the versatility of our pattern matching method extends its applicability to diverse contexts.
Beyond pedestrian dynamics, the underlying principles of our method render it adaptable
to numerous practical scenarios where the identification of self-organizing patterns holds
scientific significance. For example: (1) analyzing the flow of vehicles in transportation sys-
tems, such as highways, intersections, or parking lots, to optimize traffic management and
improve overall efficiency; (2) understanding patterns in the movement of cyclists, both
in urban environments and dedicated cycling lanes, to enhance cycling infrastructure and
safety; (3) observing and analyzing the movement patterns of animals in their natural habi-
tats for ecological studies and wildlife conservation; (4) studying the movement patterns
of robots or automated systems in manufacturing plants to enhance efficiency, minimize
collisions, and improve overall automation processes; (5) applying the methodology to
study the movement patterns of ocean currents, which can have implications for marine
navigation, environmental monitoring, and climate studies; (6) investigating the move-
ment patterns of aircraft in airport taxiways or on runways to optimize air traffic control
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and ground operations; (7) observing the movement of components or products along
assembly lines in manufacturing facilities to enhance production efficiency and identify
potential bottlenecks. These examples highlight the versatility of our method, showcasing
its potential in various domains where understanding and optimizing movement patterns
are essential.
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17. Marĉelja S. Mathematical description of the responses of simple cortical cells∗. J Opt Soc Am. 1980;70(11):1297–300.
18. Moussaïd M, Guillot EG, Moreau M, Fehrenbach J, Chabiron O, Lemercier S, Pettré J, Appert-Rolland C, Degond P,

Theraulaz G. Traffic instabilities in self-organized pedestrian crowds. PLoS Comput Biol. 2012;8(3):1–10.
19. Mullick P, Fontaine S, Appert-Rolland C, Olivier AH, Warren WH, Pettré J. Analysis of emergent patterns in crossing

flows of pedestrians reveals an invariant of ‘stripe’ formation in human data. PLoS Comput Biol. 2022;18(6):1–33.
20. Naka Y. Mechanism of cross passenger flow—study on complicated passenger flow in railway station (part I). Trans

Archit Inst Jpn. 1977;258:93–102.

https://doi.org/10.5281/zenodo.8348304
https://doi.org/10.5281/zenodo.5718430


Worku and Mullick Journal of Mathematics in Industry            (2024) 14:6 Page 14 of 14

21. Nicolas A, Bouzat S, Kuperman MN. Pedestrian flows through a narrow doorway: effect of individual behaviours on
the global flow and microscopic dynamics. Transp Res, Part B, Methodol. 2017;99:30–43.

22. Nicolas A, Kuperman M, Ibañez S, Bouzat S, Appert-Rolland C. Mechanical response of dense pedestrian crowds to
the crossing of intruders. Sci Rep. 2019;9:105.

23. Saeed R, Recupero DR, Remagnino P. Simulating crowd behaviour combining both microscopic and macroscopic
rules. Inf Sci. 2022;583:137–58.

24. Schadschneider A, Klüpfel H, Kretz T, Rogsch C, Seyfried A. Fundamentals of pedestrian and evacuation dynamics. In:
Multi-agent systems for traffic and transportation engineering. 2009.

25. Seyfried A, Passon O, Steffen B, Boltes M, Rupprecht T, Klingsch W. New insights into pedestrian flow through
bottlenecks. Transp Sci. 2009;43(3):395–406.

26. Seyfried A, Steffen B, Klingsch W, Boltes M. The fundamental diagram of pedestrian movement revisited. J Stat Mech
Theory Exp. 2005;2005(10):P10002.

27. Sharifi MS, Song Z, Esfahani HN, Christensen K. Exploring heterogeneous pedestrian stream characteristics at walking
facilities with different angle intersections. Phys A, Stat Mech Appl. 2020;540:123112.

28. Sultan S, Ghanim MF. Human retina based identification system using Gabor filters and gda technique. J Commun
Softw Syst. 2020;16(3):243–53.

29. Thompson PA, Marchant EW. A computer model for the evacuation of large building populations. Fire Saf J.
1995;24:131–48.

30. Totzeck C, Pinnau R. Space mapping-based receding horizon control for stochastic interacting particle systems: dogs
herding sheep. J Math Ind. 2020;10:11.

31. van Toll W, Pettré J. Algorithms for microscopic crowd simulation: advancements in the 2010s. Comput Graph Forum.
2021;40(2):731–54.

32. Wong SC, Leung WL, Chan SH, Lam WHK, Yung NHC, Liu CY, Zhang P. Bidirectional pedestrian stream model with
oblique intersecting angle. J Transp Eng. 2010;136(3):234–42.

33. Xie W, Lee EWM, Li T, Shi M, Cao R, Zhang Y. A study of group effects in pedestrian crowd evacuation: experiments,
modelling and simulation. Saf Sci. 2021;133:105029.

34. Zanlungo F, Feliciani C, Yücel Z, Nishinari K, Kanda T. Macroscopic and microscopic dynamics of a pedestrian
cross-flow: part I, experimental analysis. Saf Sci. 2023;158:105953.

35. Zanlungo F, Feliciani C, Yücel Z, Nishinari K, Kanda T. Macroscopic and microscopic dynamics of a pedestrian
cross-flow: part II, experimental analysis. Saf Sci. 2023;158:105969.

36. Zhang J, Klingsch W, Schadschneider A, Seyfried A. Experimental study of pedestrian flow through a t-junction. In:
Kozlov VV, Buslaev AP, Bugaev AS, Yashina MV, Schadschneider A, Schreckenberg M, editors. Traffic and granular flow
’11. Berlin: Springer; 2013. p. 241–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Detecting self-organising patterns in crowd motion: effect of optimisation algorithms
	Abstract
	Keywords

	Introduction
	Materials and methods
	Experimental details
	Pattern-matching technique
	Pattern-matching technique 2.0

	Results and discussions
	Conclusions
	Acknowledgements
	Author contributions
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	References
	Publisher's Note


