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Abstract
In (Augustin et al. in European J. Appl. Math. 19:149-190, 2008) we considered the
Polynomial Chaos Expansion for the treatment of uncertainties in industrial
applications. For many applications the method has been proven to be a
computationally superior alternative to Monte Carlo evaluations. In the current
overview we compare the accuracy of Polynomial Chaos type methods for the
propagation of uncertainties in nonlinear problems and verify them on two examples
relevant for industry. For weakly nonlinear time-dependent models, the generalized
Kalman filter equations define an efficient method, yielding good approximations if
the quantities of interest are restricted to the first two moments of the solution.
Secondly, stochastic collocation is discussed. The method is applied to delay
differential equations and random ordinary differential equations. Finally, a
generalized PC method is discussed which is based on a subdivision of the random
space. This approach is even suitable for highly nonlinear models.

1 Introduction
Uncertainty quantification in industrial applications is an interesting and important field
of research [–]. Due to uncertainties in system parameters, measurements and in the
modeling of physical processes itself, deterministic approaches for the simulation of those
processes are not appropriate. Uncertainty quantification became a vast field of research
over the past decades and many methods have been proposed to deal with random data
[–]. Amongst these methods, approaches based on Polynomial Chaos expansions have
proven to be very efficient in dealing with uncertainties, see [, , ].
Those methods revealed to be efficient alternatives to Monte-Carlo (MC) simulations.

They were successfully applied to solve stationary problems e.g. in the field of stochastic fi-
nite elements [] and to solve differential equations with uncertain parameters and initial
values []. The suitability of PC for industrial applications was considered in []. Addi-
tionally, an extensive discussion of the Polynomial Chaos approaches, applied to linear dif-
ferential equations, was presented. In the current paper we consider numerical methods
for the propagation of uncertainties through nonlinear differential equations. The main
part is concerned with a comparison of Kalman filter techniques for state estimation and
Polynomial Chaos Galerkin techniques. The methods themselves are known from litera-
ture, the contribution of thiswork is the comparison of thesemethods in selected examples
relevant for industry. Our main focus is on the accuracies of the methods. Based on these
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results, we try to answer the question what is the numerical effort in order to achieve a
low, medium or high accuracy while, in terms of function evaluations, gaining at least one
order compared to a crude Monte Carlo method.
• The most widespread method for treating differential equations with uncertainties are
techniques of Kalman filtering. While the original Kalman filter was developed to
identify noisy observations with linear differential equations [], here we use it only
to integrate the underlying system with uncertainties. A direct generalization to
nonlinear equations is given by the extended Kalman filter []; it is based on the
sensitivities of the equation. The unscented Kalman filter, a nonlinear filter which
does not use derivative information, was developed in []. It directly approximates
the covariance matrix and is, in this context, used just for state estimation.

• Stochastic collocation methods (SCMs) are introduced by [, ]. The first practical
application of the methods are discussed in []. Here, we apply the methods to
nonlinear differential equations with delay, which present a more complex behavior
than the delay-free counterparts. Stochastic collocation methods have the advantage
of using the differential equation as a black box.

• In [] we presented a theory of the stochastic Galerkin method (SGM), see [, ], for
ordinary differential equations with uncertain parameters. Nevertheless, this method
suffers from the lack of convergence, especially when time evolves []. Thus, we have
to consider generalized approaches to scope with this problem. Several methods have
been proposed in literature, see for example the multi resolution method [, ] and
the Multi-Element generalized Polynomial Chaos (MEgPC) method []. In [] a
rigorous convergence theory for MEgPC and a fully adaptive scheme in time and
random space has been developed. In the current paper we compare this MEgPC
approach to the other PC type methods mentioned above.

In Section  we introduce two examples from industrial applications, which are the base
for the comparison of the discussed methods. The first example concerns crack propa-
gation, while the second considers the quorum sensing in biofilms. Next, we present a
summary of the Kalman filter equations for state estimation in Section . Especially, non-
linear filters in the context of uncertainty propagation of state are discussed. In Section 
we consider the SCM, which we apply to the random delay differential equations of quo-
rum sensing. We discuss the multi-element approach of the stochastic Galerkin method
in Section . Finally we compare the three describedmethods on the base of the two appli-
cations, Sections . and .. In Section  we close this article by drawing our conclusions.

2 Test sets of (delay) differential equations
In this section, we introduce the applications considered for the comparison of the meth-
ods of the Kalman filter, the SCM and the SGM.
• The first application deals with the growth of cracks, which is important in the
context of life cycle analysis. Industrial applications are for example crack growth in
turbine blades or in train wheelsets. Here the task is to define appropriate inspection
schemes in order to prevent severe damages. The crack growth is modelled by a
highly nonlinear ordinary differential equation.

• The second example is a model of the quorum sensing of biofilms, a delay differential
equation. The control of biofilms requires a deep understanding of the structured
community of microorganisms living on inert surfaces. Industrial applications range
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from sewer systems, fresh water systems to corrosion prevention in cooling flow
networks of (electric) power plants.

Werestrict ourselves to a lownumber of uncertain variables. Nevertheless, due to the non-
linearities and the delay, differences between the methods with respect to their achieved
accuracies will become visible. A more complex model of crack growth, for the evalu-
ation of inspection schemes for train wheelsets, has been computed with the unscented
approximation in []. The biofilmmodel, in particular the physical background, has been
studied in more detail in [].

2.1 Crack growth example
For the modeling of a growing crack we use a simplified model of fracture mechanics, see
Harris [], where a center cracked plate in tension is studied. The crack growth relation
is based on a modified form of the Forman relation []. The crack size a is governed by
the ordinary differential equation in the abstract form

∂a
∂N

= f (a,KIc,�σ ,CF ), a() = a,  ≤ N ≤ NL ()

where N denotes the number of load cycles and NL the life cycle. The parameters are the
stress intensity factor KIc, the stress range �σ , the fatigue growth coefficient CF and the
initial crack size a. In more detail the crack growth differential equation reads []

∂a
∂N

= CF

(
( – f )�K

 – R

)nf ( – 
π

�K
�K tan–( – R))p

( – �K
(–R)KIc

)q
, ()

where

�K = �σ

√
πaY

(
a
h

)
, Y (α) =

 – .α + .α – .α
√
 – α

and

f =

⎧⎨
⎩A +AR +AR +AR for R≥ ,

A +AR for –  < R < ,

A =
(
. – .α′ + .α′)[cos(πs/)]/α′

,

A =
(
. – .α′)s,

A = A +A – ,

A =  – (A +A +A).

R is the stress ratio between maximum and minimum stress, h denotes the width of the
plate and nf , �K, p, q, α′, s are curve-fitting constants.

2.2 The biofilmmodel with quorum sensing
The model for antibiotics action on a biofilm follows closely the model in []. Since the
antibiotics are not produced by the hosting organism, it must be supplied externally. Thus,
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our equations read

Ȧ = SA –μAA(t),

Ḃ = α

(
 –

B(t)
σ

)
B(t) + αB(t)B(t – τ ) – αB(t)A(t).

()

Here, A denotes the concentration of antibiotics and B the concentration of bacteria.
Moreover, the parameters are the logistic reproductive rate of the bacteria α, the effec-
tive carrying capacity of the environment σ , the reproductive rate due to quorum sensing,
α, the death rate of bacteria due to antibiotics SA and death rate for the antibiotics μA.
All these parameters are taken to be positive. The differential equation for B includes a
standard logistic term

α

(
 –

B(t)
σ

)
B(t), ()

and a quorum sensing (QS) term

αB(t)B(t – τ ). ()

It represents the extra increase in population after the QS mechanism has been initiated.
The process is not instantaneous. Thus, assuming it takes a certain amount of time τ to
produce the signal molecules, the population of bacteria at time t, B(t), will receive these
signal molecules from the population of bacteria at time t – τ , i.e. B(t – τ ). The coefficient
α accounts for the strength of the mechanism. The larger α, the more efficient the QS
mechanism takes place in the biofilm.

3 Solving stochastic differential equations by Kalman filters
In this section we consider stochastic dynamical systems of the form

ẋ(t) = f
(
x(t),u(t),w(t)

)
, ()

y(t) = h
(
x(t),v(t)

)
()

with ≤ t ≤ TL,

f :Rn ×R
nu ×R

nw →R
n,

h :Rn ×R
nv →R

m.

Here, f , h are linear or nonlinear functions, x is the state vector, u is the control vector and
y is the observation vector. We assume the process noise w and the measurement noise v
to be white, stochastically independent and

w ∼N
(
,Rnw

+
)
, v ∼N

(
,Rnv

+
)
. ()

For real processes, white noise is a somewhat simplified assumption. There are exten-
sions of Kalman filtering to colored noise (e.g. []) but this will not be picked out here.
Equations () and () describe a stochastic system which is continuous in time. In the fol-
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lowing, we restrict ourselves to methods for discrete time systems which are obtained by
time discretization of (). Furthermore we concentrate on non-stiff systems. Of course for
the numerical integration of stiff systems semi-implicit or implicit methods are required
which means a much higher numerical effort. We begin with linear discrete time systems
in Section .. Thereafter, we discuss how nonlinear differential equations can be treated
by the extended Kalman filter and the unscented Kalman filter in Sections . and .. Af-
ter a comparison of both filters in Section . we give a reinterpretation of the unscented
Kalman filter as a sampling method, see Section ..

3.1 Linear discrete time systems
This section adopts the presentation in []. A stochastic linear discrete time system can
be written as

xk = Ak–xk– + Bk–uk– +Wk–wk–,

yk =Hkxk +Vkvk

with wk– ∼ N (,Qk–) and vk ∼ N (,Rk) being independent normally distributed ran-
dom variables. The predictor step of the Kalman filter is given by

x̂–k = Ak–x̂k– + Bk–uk–.

For the a priori and a posteriori estimate errors e–k := xk – x̂–k and ek := xk – x̂k with corre-
sponding covariances P–

k := E(e–ke
–T
k ) and Pk := E(ekeTk ) holds

e–k = Ak–(xk– – x̂k–) +Wk–wk– and P–
k = Ak–Pk–AT

k– +Wk–Qk–.

The corrector of the Kalman filter is given by

x̂k = x̂–k +Kk
(
yk –Hk x̂–k

)
,

thus for the a posteriori error and its covariances holds

ek = xk – x̂k

= xk – x̂–k –Kk
(
yk –Hk x̂–k

)
= xk – x̂–k –Kk

(
Hkxk +Vkvk –Hk x̂–k

)
= (I –KkHk)

(
xk – x̂–k

)
–KkVkvk

and Pk = (I – KkHk)P–
k (I – KkHk)T + KkVkRkVT

k K
T
k . Minimization of the trace of PK leads

to

Kk = P–
k H

T
k
[
HkP–

k H
T
k +VkRkVT

k
]–. ()

With this expression for Kk , we derive a simpler formula for Pk ,

Pk = (I –KkHk)P–
k . ()

The algorithm is summarized in Table .
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Table 1 Kalman filter

Model xk = Ak–1xk–1 + Bk–1uk–1 +Wk–1wk–1,wk–1 ∼ N (0,Qk–1),
yk = Hkxk + Vkvk , vk ∼ N (0,Rk )

Initialization x̂0, P0 = E[x̂0x̂T0 ]

Predictor x̂–k = Ak–1x̂k–1 + Bk–1uk–1,
P–k = Ak–1Pk–1ATk–1 +Wk–1Qk–1WT

k–1

Kalman gain Kk = P–k H
T
k [HkP–kH

T
k + VkRkVTk ]

–1

Corrector x̂k = x̂–k + Kk(yk – Hk x̂–k ), Pk = (I – KkHk)P–k

3.2 Extended Kalman Filter (EKF)
The stochastic nonlinear discrete time system can be written as

xk = f(xk–,uk–,wk–),

yk = h(xk ,vk).

The predictor of the extended Kalman filter is given by

x̂–k = f(x̂k–,uk–, )

with the a priori estimation error and its covariance being

e–k = xk – x̂–k =̇Ak–(xk– – x̂k–) +Wk–wk–,

P–
k = Ak–Pk–AT

k– +WkQk–WT
k .

Here we use the abbreviations

Ak– :=
∂f
∂x

∣∣∣∣
(x̂k–,uk–,)

and Wk– :=
∂f
∂w

∣∣∣∣
(x̂k–,uk–,)

.

The corrector of the extended Kalman filter has the form

x̂k = x̂–k +Kk
(
yk – h

(
x̂–k , 

))
and we write the a posteriori estimation error as

ek = xk – x̂k

= xk – x̂–k –Kk
(
yk – h

(
x̂–k , 

))
= xk – x̂–k –Kk

(
h(xk ,vk) – h

(
x̂–k , 

))
=̇ xk – x̂–k –Kk

(
Hk

(
xk – x̂–k

)
+Vkvk

)
= (I –KkHk)

(
xk – x̂–k

)
–KkVkvk

with

Hk :=
∂h
∂x

∣∣∣∣
(x̂k ,)

and Vk :=
∂h
∂v

∣∣∣∣
(x̂k ,)

.
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Table 2 Extended Kalman filter

Model xk = f(xk–1,uk–1,wk–1), wk–1 ∼ N (0,Qk–1),
yk = h(xk ,vk ), vk ∼N (0,Rk )

Initialization x̂0, P0 = E[x̂0x̂T0 ]

Predictor x̂–k = f(x̂k–1,uk–1, 0),
P–k = Ak–1Pk–1ATk–1 +Wk–1Qk–1WT

k–1

Kalman gain Kk = P–k H
T
k [HkP–kH

T
k + VkRkVTk ]

–1

Corrector x̂k = x̂–k + Kk(yk – h(x̂–k , 0)),
Pk = (I – KkHk)P–k

For the Kalman gain and the a posteriori error covariance the same formulae (), () as
in the linear case apply. The corresponding algorithm of the extended Kalman filter is
summarized in Table .

3.3 Unscented Kalman Filter (UKF)
For the extended Kalman filter, derivatives of f and h have to be provided which is not
possible in many practical applications. So in [] a nonlinear filter, called unscented filter,
without this drawback was introduced. The unscented filter can be used to estimate the
mean and covariance of a nonlinear stochastic process f (w) where w ∈ R

nw is a normally
distributed random vector withmean E(w) and covariance Pww ∈R

nw×nw . So-called sigma
points X (i), together with weightsWmean

i andW cov
i , are constructed and mapped toZ (i) =

f (X (i)) for i = , . . . ,p. The unscented filter then yields an approximation of the mean μ

and covariance Pzz of the nonlinear function by

E(z)≈
p∑
i=

Wmean
i Z (i),

Pzz ≈
p∑
i=

W cov
i

(
Z (i) – y

)(
Z (i) – E(z)

)T .
By Taylor expansion one can show second order accuracy of mean and covariance, [,
].

Example A set of p+  = n+  weights and sigma points with respect to mean E(x) ∈R
n

and covariance Pxx ∈R
n×n is given by []

X (i) = x +
(√

nPxx
)
i,

Wi = /(n),

X (i+n) = x –
(√

nPxx
)
i,

Wi+n = /(n)

for i = , . . . ,n respectively, where (
√
Pxx)i denotes the i-th column of the matrix root L

of P given by Pxx = LLT . Thus, the corresponding weights are Wmean
i = W cov

i = Wi for
i = , . . . , n.

Subsequently, we apply the unscented Kalman filter to the recursive estimation of dy-
namical processes.

http://www.mathematicsinindustry.com/content/3/1/2
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.. Additive process and measurement noise
For the sake of simplicity we begin with the special case of additive process and measure-
ment noise

xk = f(xk–,uk–,wk–) = f̃(xk–,uk–) +wk–,

yk = h(xk ,vk) = h̃(xk) + vk .

At first, we construct a set of sigma points X (i)
k– with mean x̂k– and covariance Pk–. The

dependence of the sigma points on x̂k– and Pk– is denoted byX (i)
k– =X (i)

k–(x̂k–,Pk–). The
predictor of the unscented Kalman filter and the error covariance are given by

X –
k
(i) = f

(
X (i)

k–,uk–, 
)
, for i = , . . . ,p, ()

x̂–k =
p∑
i=

Wmean
i X –

k
(i),

P–
k =

p∑
i=

W cov
i

(
X –

k
(i) – x̂–k

)(
X –

k
(i) – x̂–k

)T +Qk–. ()

The predicted observation is

Y (i)
k = h

(
X –

k
(i), 

)
, for i = , . . . ,p, ()

ŷ–k =
p∑
i=

Wmean
i Y (i)

k ()

with innovation covariance and cross covariance

Pyy
k =

p∑
i=

W cov
i

(
Y (i)
k – ŷ–k

)(
Y (i)
k – ŷ–k

)T + Rk ,

Pxy
k =

p∑
i=

W cov
i

(
X –

k
(i) – x̂–k

)(
Y (i)
k – ŷ–k

)T .
()

The Kalman gain has the form

Kk = Pxy
k

(
Pyy
k

)–. ()

The corrector of the unscented Kalman filter and the a posteriori covariance are given by

x̂k = x̂–k +Kk
(
yk – ŷ–k

)
,

Pk = P–
k –KkP

yy
k K

T
k .

()

The relationship between the Kalman gains Kk of the extended and unscented filters (),
() is given by

Pxy
k = P–

k H
T
k and Pyy

k =HkP–
k H

T
k + Rk .

http://www.mathematicsinindustry.com/content/3/1/2
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Table 3 Unscented Kalman filter

Model xk = f(xk–1,uk–1,wk–1) = f̃(xk–1,uk–1) +wk–1, wk–1 ∼ N (0,Qk–1),
yk = h(xk ,vk) = h̃(xk) + vk , vk ∼ N (0,Rk )

Initialization x̂0, P0 = E[x̂0x̂T0 ]

Weights Wmean
i ,Wcov

i , i = 0, . . . ,p

Sigma points X (i)
k–1 =X (i)

k–1(x̂k–1,Pk–1), i = 0, . . . ,p

Predictor X –
k
(i) = f(X (i)

k–1,uk–1, 0), i = 0, . . . ,p,
x̂–k =

∑p
i=0W

mean
i X –

k
(i) ,

P–k =
∑p

i=0W
cov
i (X –

k
(i) – x̂–k )(X –

k
(i) – x̂–k )

T + Qk–1

Predicted observation Y (i)
k = h(X –

k
(i) , 0),

ŷ–k =
∑p

i=0W
mean
i Y (i)

k , i = 0, . . . ,p,
Pyyk =

∑p
i=0W

cov
i (Y (i)

k – ŷ–k )(Y
(i)
k – ŷ–k )

T + Rk ,

Pxyk =
∑p

i=0W
cov
i (X –

k
(i) – x̂–k )(Y

(i)
k – ŷ–k )

T

Kalman gain Kk = Pxyk (P
yy
k )

–1

Corrector x̂k = x̂–k + Kk(yk – ŷ–k ), Pk = P–k – KkP
yy
k K

T
k

Also Pk in () corresponds to () because substitution of () in () yields

Pk = P–
k –KkP

yy
k K

T
k

= P–
k – Pxy

k
(
Pyy
k

)–(Pxy
k

)T
= P–

k –KkHkP–
k

= (I –KkHk)P–
k .

The algorithm is summarized in Table .

.. Nonlinear noise
For the general case of nonlinear noise augmented sets of sigma points for prediction and
corrector steps have to be defined []. Let

x̄ =
(
xT ,wT)T , ()

¯̄x = (
xT ,vT

)T , ()

f̄(x̄,u) = f(x,u,w), ()

h̄( ¯̄x,u) = h(x,v), ()

For the predictor step, define sigma points X̄ (i)
k– with respect to mean

x̄k– :=

(
x̂k–


)
()

and covariance

P̄k– =

(
Pk– 
 Qk–

)
. ()
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Table 4 General unscented Kalman Filter

Model xk = f(xk–1,uk–1,wk–1), wk–1 ∼N (0,Qk–1),
yk = h(xk ,vk), vk ∼ N (0,Rk )

Initialization x̂0, P0 = E[x̂0x̂T0 ]

Weights Wmean
i ,Wcov

i , i = 0, . . . ,p

Sigma points X̄ (i)
k–1 = X̄ (i)

k–1(x̄k–1, P̄k–1), i = 0, . . . ,p

Predictor X –
k
(i) = f̄(X̄ (i)

k–1,uk–1), i = 0, . . . ,p,
x̂–k =

∑p
i=0W

mean
i X –

k
(i) ,

P–k =
∑p

i=0W
cov
i (X –

k
(i) – x̂–k )(X –

k
(i) – x̂–k )

T

Sigma points ¯̄X (i)
k = ¯̄X (i)

k ( ¯̄xk , ¯̄Pk), i = 0, . . . ,p

Predicted observation Y (i)
k = h̄( ¯̄X (i)

k ),

ŷ–k =
∑p

i=0W
mean
i Y (i)

k , i = 0, . . . ,p,
Pyyk =

∑p
i=0W

cov
i (Y (i)

k – ŷ–k )(Y
(i)
k – ŷ–k )

T ,

Pxyk =
∑p

i=0W
cov
i (X –

k
(i) – x̂–k )(Y

(i)
k – ŷ–k )

T

Kalman gain Kk = Pxyk (P
yy
k )

–1

Corrector x̂k = x̂–k + Kk(yk – ŷ–k ), Pk = P–k – KkP
yy
k K

T
k

Then () is substituted by

X –
k
(i) = f̄

(
X̄ (i)

k–,uk–
)
, i = , . . . ,p ()

and the Q-term in () vanishes. Accordingly define sigma points ¯̄X (i)
k for the corrector

step with mean

¯̄xk :=
(
x̂–k


)
()

and covariance

¯̄Pk =

(
P–
k 
 Rk

)
. ()

Then () is substituted by

Y (i)
k = h̄

( ¯̄X (i)
k

)
, i = , . . . ,p ()

and the R-term in () vanishes. The algorithm is summarized in Table .

3.4 Comparison of EKF and UKF in crack growth example
Figure  shows a comparison of the extended Kalman filter, the unscented Kalman filter
and a Monte Carlo simulation for the estimation of mean and covariance of the time de-
pendent crack depth. In this test, we only assume the initial crack size a to be uncertain,
whereas we set the other parameters in () to deterministic values. It can be seen from the
figures that both extended and unscented filter are fairly accurate in the linear regime of
the crack growth, whereas in the nonlinear regime only the unscented filter shows suffi-
cient accuracy.
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Figure 1 Comparison of estimated mean values
(Upper) and covariances (Lower) of crack depth.

3.5 Reinterpretation of UKF
The extended Kalman filter does not treat the nonlinearities of the above example and is
therefore no longer considered. The Kalman filter techniques are developed to deal with
uncertainties in the state and the measurements. In order to allow a comparison to the
methods based on Polynomial Chaos expansions, cf. Sections  and , we omit the treat-
ment of measurements and only consider the state estimation. Thus, the resulting equa-
tions that we are considering within the following are ordinary differential equations with
randomparameters, cf. () and (). In this setting, we interpret the construction of sigma
points as special stochastic collocationmethod which is quadratic in each dimension ().
We reconstruct the solution between the sampled points by the polynomial

x(TL, θ, . . . , θnw ) =
nw∑
i=

(
q,i + q,iθi + q,i

(
θ
i – 

))
. ()

In a post-processing step, we will apply a Monte-Carlo simulation based on this polyno-
mial approximation, to obtain approximations of any quantity of interest, i.e. themoments
or density of the solution.

4 Stochastic Collocationmethod and random delay differential equations
We will consider the delay differential equation (DDE) with one single, time-independent
delay, defined as

ẋ(t) = f
(
x(t),x(t – τ )

)
, t > ,

with f : Rn × R
n → R

n and τ : R → [, +∞]. The parameter τ is called the delay. Given
the initial data set (also called history function) x(t) = φ(t), t ∈ [–τ , ] we obtain the initial

http://www.mathematicsinindustry.com/content/3/1/2
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value problem (IVP)

IVP :=

⎧⎨
⎩ẋ(t) = f(x(t),x(t – τ )), t > ,

x(t) = φ(t), t ∈ [–τ , ].
()

When one or more parameters in () are affected by uncertainty we will be speaking of
a random delay differential equation (RDDE)

ẋ(t,w) = f
(
x(t,w),x(t – τ ,w),w

)
, t > , ()

if w ∈ L. Eventually, the initial history function can also exhibit a random behavior,
x(t,w) = φ(t,w), t ∈ [–τ , ].
In order to account for the uncertainties the stochastic collocation schema of the Poly-

nomial Chaos Expansion is used. The schema is explained below, alongwith the numerical
method applied to solve for the underlying deterministic equations.

4.1 Wiener expansions
Wewill denote a probability space by (
,F ,P) and the space of square integrable random
variables on it by L(
,F ,P). We will abbreviate it by L in the forthcoming. This space is
equipped with the inner product

(w, v) :=
∫




w(θ )v(θ )dP(θ )

and the induced norm ‖w‖ :=
√
(w,w). Let ξ be a standard Gaussian distributed random

variable on (
,F ,P), where F is generated by ξ . N. Wiener [] and later R. Ghanem and
P. Spanos [] showed, that every random variable x ∈ L can be expanded into a series

x
(
w(·)) = ∞∑

i=

qi�i
(
w(·))

with basis polynomials {�i}∞i=. A detailed discussion on this expansions can be found in [,
, ]. In [] D. Xiu and G. Karniadakis generalized this expansion to polynomials of the
Askey scheme. For convergence results of these generalized expansions we refer to [].
The Wiener expansions can be used to solve operator equations with square integrable

random parameters. Assume the operator T : X → R
n, mapping from the Banach space

X into R
n, given by

T(x;w) = , ()

with x ∈ X and parameters w ∈ L. If the solution x is in L, it can be expanded by a gen-
eralized Wiener expansion. A truncation of this expansion after p̂ +  terms results in an
approximation for x in the finite dimensional subspace linspan{�i : i = , . . . , p̂} ⊂ L

x(w) ≈
p̂∑
i=

qi�i(w). ()
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Thus the solution x can be approximated by computing the coefficients {qi}p̂i=. Different
methods can be used to calculate the coefficients. We opt here for the stochastic colloca-
tion.

4.2 Stochastic collocation
Stochastic collocation methods make use of the fact that the Wiener expansions are gen-
eralized Fourier series. Therefore, the coefficients in () are given by

qi =
(x,�i)
(�i,�i)

, i = , . . . , p̂.

For the computation of the coefficients {qi}p̂i=, an estimation of the inner products is
necessary. This can be accomplished with cubature rules, which approximate the multi-
dimensional integral as a discrete sum

(x,�i)≈
NQ∑
j=

x
(
w(j))�i

(
w(j))W (j),

where w(j), meant as w(θ (j)), andW (j) are the nodes and weights of the NQ-node cubature
and are given for each type of cubature, see [] for more details.
The procedure for the stochastic collocation scheme would be then as follows: For each

of the given nodes calculate the solution of () and sum them up with the corresponding
weights. The products (�i,�i) are independent from the operator equations and can be
conveniently pre-computed and stored for efficient use in different calculations.
This approach offers some advantages. Contrary to MC techniques, the sampling is not

random, but obey the cubature rules to minimize the needed number of nodes for a given
precision. Thus, the amount of realizations is significantly reduced. Usually,  nodes per
dimension are accurate enough. Nevertheless, for increasing number of random variables
in the parametrization, the numbers of nodes grows exponentially (curse of dimensional-
ity), and the dimension-independent MC becomes eventually more efficient. Sparse grid
cubatures have been proposed to mitigate the curse of dimensionality [].
Another important feature that makes the stochastic collocation schema attractive

within theWiener expansionmethodology is the splitting of the uncertainty quantification
and the systemgoverning equations. Since the values of the randomvariables are chosen in
advance, we only need to solve the underlying deterministic equations for the given value
of the parameters. Hence, nomodification of our existing deterministic software is needed
in order to account for uncertainties. This is specially valuable in the case of commercial
programs, which cannot be modified, or complex software, whose adaptation for uncer-
tainty quantification can be error-prone. A further advantage is the modularity, making
implementation of refinements in the Wiener expansion algorithms and the underlying
governing equations independent.
For solving the RDDEs () we use the stochastic collocation schema combined with

the program RADAR for the computation of the DDEs.
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4.3 Numerical solution of the DDEs
The software RADAR is used as the deterministic solver for DDEs. It has been developed
by Ernst Hairer and Nicola Guglielmi. For more details a manual with examples is avail-
able [].
In a simplified form for presentation purposes, the DDE

ẋ(t) = f
(
x(t),x

(
α
(
t,x(t)

)))
, α

(
t,x(t)

)
< t,

x(t) = g(t), t < t,

with α(t,x(t)) the (eventually state-dependent) time-lag function, is solved using an im-
plicit Runge-Kutta method called RADAU IIA []. If we denote the stepsize by hk =
tk+ – tk and the coefficient matrix by A = (aij)si,j=, ci =

∑s
j= aij, weights {bi}si= the implicit

schema reads

Y(k)
i – xk = hk

s∑
j=

aijf
(
Y(k)
j ,Z(k)

j
)
,

where xk is the approximation of x(tk) and Ys = xk+, if we use the weights bi = as,i, i =
, . . . , s. Z(k)

j is defined by

Z(k)
j =

⎧⎨
⎩g(α(k)

j ), α
(k)
j < t,

um(α(k)
j ), α

(k)
j ∈ [tm, tm+],

where α
(k)
j = α(tk + cjhk ,Y(k)

j ) and um is a polynomial approximation of the solution x(t)
on the interval [tm, tm+]. Here, the Lagrange interpolation formula is used to build the
approximation.
RADAR allows steps larger and smaller than the delay and performs stepsize control

by estimating the local error at grid points and the error in the continuous numerical
approximation to the solution.

5 Stochastic Galerkinmethod and random ordinary differential equations
Within Section  we discussed the treatment of RDDEs by the collocation method based
on generalized Wiener expansions. In this section we will present the stochastic Galerkin
method (SGM) for the approximation of the solution of differential equations with un-
certain parameters, cf. []. We again consider the differential equation (), ẋ(t,w) =
f(x(t,w),x(t – τ ,w),w), and omit the delay within the forthcoming discussion to keep the
notation simple:

ẋ(t,w) = f
(
x(t,w),w

)
()

with initial condition x(,w) ∈ L. The extension of the SGM including the treatment of
delays is straightforward using interpolation for the approximation of the solution at past
times. In Section  we will apply the SGM to the test example of the crack growth (an
RODE) and the biofilm model (an RDDE) as stated in the introductory Section . Subse-
quently, we intend to present the main idea of the SGM and restate the main results of its
convergence analysis from [, ].
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For the numerical approximation of the solution of () we search for an approximation
of x(t,w) within the finite dimensional subspace

S = linspan{�i : i = , . . . , p̂} ⊂ L,

the approximation space. Without loss of generality we assume that the orthogonal poly-
nomials {�i}∞i= are normalized, i.e. (�i,�i) = .
Besides RODE () we introduce the perturbed RODE

∂

∂t
x̃(t,w) = f

(
πp̂ ◦ x̃(t,w),w)

=: f̃
(
x̃(t,w),w

)
, ()

where πp̂ : L → S denotes the orthogonal projection from L onto S . We define the re-
stricted stochastic weak form of () by

(
∂

∂t
x̃(t,w),�(w)

)
=

(
f̃
(
x̃(t,w),w

)
,�(w)

)
()

for all � ∈ S . Equation () can be written as a system of ordinary differential equations
(ODEs) for the coefficients {q̃i}i≤p̂:

d
dt

q̃i(t) = (f̃ ,�i) for i≤ p̂. ()

This system of ODEs is deterministic and can be solved by standard integrators. The pro-
jected system () can be solved bymeans of a Runge-Kutta method (RKM) of order p ≥ 
and stepsize h > . We obtain the approximation x̂ of the solution of () in terms of the
numerically computed coefficients {q̂i}i≤p̂ using the SGM and a RKM,

x̃(t,w) ≈ x̂(t,w) :=
∑
i≤p̂

q̂i(t)�i(w).

The following scheme depicts the stochastic Galerkin Runge-Kutta method (SGRKM):

∂

∂t
x̃ = f̃(x̃,w) SGM–→ d

dt
q̃ = F(q̃)

RKM–→ x̂ =
∑
i≤p̂

q̂i�i(w). ()

In [] it is shown that the local discretization error of the SGRKM does not vanish for
decreasing stepsize h → . Thus, this global approach of the stochastic Galerkin method
fails to converge to the exact solution x. To overcome this problem a generalized approach
has to be applied. X. Wan and G.E. Karniadakis proposed the Multi-Element generalized
Polynomial Chaos (MEgPC)method to attain convergence of the SGM.We recall that this
method is based on a partitioning of the parameter space
 into subsets, so called random
elements. The SGM is then applied locally on the partition of the parameter space, i.e. the
problem is conditionally restricted to each random element. We refer to the literature for
a detailed description [].
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Using the MEgPC approach it can be shown that the local discretization error of the
SGRKM obeys

∥∥x(t + h,w) – x̂(t + h,w)
∥∥
 ≤O

(
h�p̂+) +O

(
hp+

)
, ()

where we denote the maximal diameter of the stochastic elements by �, see [].

5.1 The adaptive algorithm for the solution of RODEs
We use () to control the stepsize h in time and the maximal size � of the stochastic el-
ements {
i}νi=. In a first step, we compute the conditionally restricted solution x̃(t + h,w)
on every element 
i and check the local truncation error of the projected restricted sys-
tem (). See [] for details on adaptive stepsize control of RKMs. This procedure results
in the term O(hp+) being negligible up to a prescribed tolerance. In a second step, we
check the error ERR, which is introduced by the truncation of x̃(t + h,w) to S . Therefore,
we split
i into two equal subsets and compute the solution of () conditionally restricted
to those subsets. We take the L-norm of the difference of the refined solution and the so-
lution x̃(t + h,w) on 
i as substitute for the actual truncation error ERRi. We apply this
procedure in every randomelement at every timestep, sowe omit the corresponding index
i of the subsets in the following. According to () it holds

ERR = ch�p̂+, ()

where we neglect the error termO(hp+) of the RKM. Furthermore, we require the optimal
size �opt of the respective element to satisfy

ε = c�p̂+
opt ()

for prescribed tolerance ε > . Division of () and () results in

�opt =
p̂+

√
εh
ERR

� =: I(ERR)�.

We use the estimator I(ERR) to decide about the refinement of the elements {
i}νi=. If
I(ERR) < ρ, then the element will be refined. If I(ERR) exceeds a coarsening threshold
ρ > ρ, then the element will be coarsened. For a more detailed description of this proce-
dure see [].

6 Computational aspects and numerical results
In this section, we apply the three methods, the UKF approach, the stochastic collocation
and the SGRKM, to the benchmark problems stated in the introduction. From the solution
we compute the densities and the first two moments and compare the results. For the
numerical time integration in the SGM we use an embedded explicit RKM of order ().
After a discussion of the efficiencies of the methods, we first consider the crack growth
example () with the initial crack size being uncertain. Thereafter, we study the setting
of two uncertain parameters in the model of crack growth. We finish this section by the
comparison of the three methods applied to the biofilm model ().
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Table 5 Number of function evaluations for UKF, SCM andMEgPC approach based on a
Gaussian cubature rule of order s

UKF 2n + 1
SCM (s + 1)n

MEgPC (s + 1)n

Numbers given per timestep of the time integration method.

6.1 Computational aspects
For UKF and SCM, the efficiency in terms of function evaluations can directly be given
as function of the stochastic dimension n (Table ). Here the number of sigma points
for UKF has been chosen as in the example Section .. For SCM a standard Gaussian
cubature rule of order s has been used. SCM and MEgPC show an exponential growth
in the number of function evaluations (suitable for D problems). Sparse cubature rules
which are necessary to scope with high dimensional random spaces are considered in [].
TheMEgPC approach results in ν projected systems of ordinary differential equations ()
of dimension

(n + p̂)!
n!p̂!

if a polynomial basis of total order p̂ is applied. The number of needed function evaluations
depends on the cubature rule applied to compute the projection integrals, for example
using a Gaussian cubature tensor product rule we need (s + )n function evaluations per
timestep of the time integrationmethod. However, theMEgPC approach is most efficient,
if the projection integrals can be computed analytically in a preprocessing step before
the time-integration starts. If this so called intrusive approach is not feasible, we have
to resort to cubature rules to compute the projection. In the case of multiple random
dimensions, n ≥ , sparse integration methods have to be applied in order to reduce the
curse of dimensionality.

6.2 Comparison of UKF, Stochastic Collocation and SGM in crack growth example
In this section, we compare the presented methods and Monte Carlo Sampling ( sam-
ples) in the crack example ().

.. One dimensional random space
At first, we assume only the initial crack size a to be a random parameter following a
uniform distribution with expected value – and variance –. The other parameters
are set to KIc = –, �σ =  and CF = . We remark that although the right-hand side
function f in () is not polynomial in the initial value a, the convergence results from
Section  apply, see [, ] for a detailed discussion.
To compute the numerical approximation â(t,a) of the crack size a(t,a) by means

of the MEgPC method, we use the parameters stated in Table . The adaptive MEgPC
approach uses a truncated generalized Wiener expansion of degree p̂ =  for the ap-
proximation of the solution. The set of outcomes 
 is refined where the local error
exceeds the prescribed tolerance ε = –. The approximated response surfaces at t ∈
{,, ,, ,, ,} are shown in Figure . The respective elements of the approx-
imation are indicated by dots on the axis of the outcomes 
.
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Table 6 Setting of parameters of the adaptive MEgPC approach for the solution of RODE (1)

Degree of approximation p̂ 3
Order of approximation p 3
Tolerance (time) TOL 10–7

Tolerance (elements) ε 10–8

Refinement threshold ρ1 1
Coarsening threshold ρ2 4

Figure 2 Response surfaces of the solution â(t,a0) at t ∈ {5,000,5,300, 5,400, 5,420}.

Although the initial crack size varies only by a small amount, the impact on the outcome
is not negligible. A large variation in the crack size occurs at the final time t = ,. The
dependence of the solution a(t,a) on the uncertain initial crack size a is highly non-
linear. This is recognized by the MEgPC algorithm, which refines the parameter space
where the response surface can not be represented by a polynomial of degree p̂ =  up to
the prescribed tolerance.
In Figure  we compare the densities of the approximations â(t,a), t ∈ {,, ,},

computed by the stochastic collocation of order  (SCM),MEgPC and the UKF approach
respectively. We also plot the density computed by Monte Carlo simulation as a reference
for the approximatively exact density. On the one hand, we observe that the UKF is not
able to compute a good approximation of the density of the crack size a. This can be ex-
plained by the interpretation of the UKF as a stochastic collocationmethod of polynomial
order , see Section .. On the other hand, the MEgPC method, as we expect from our
considerations in Section , yields a good approximation of the density of the crack size a
in dependence on an uncertain initial crack size.
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Figure 3 Density of the crack size at two final times t ∈ {5,000,5,420}, assuming the initial crack size
to be an uncertain parameter. Comparison of four different methods: Monte Carlo simulation, UKF, SCM5
and MEgPC.

Table 7 The expected values and variances of a(t,a0) at times t ∈ {5,000, 5,420} computed by
SCM5, UKF, MEgPC andMonte Carlo simulation

Time Expected value Variance
SCM5 MEgPC UKF MCS SCM5 MEgPC UKF MCS

5,000 0.1.601 0.1.601 0.1.602 0.1601 4.727 · 10–5 4.729 · 10–5 5.113 · 10–5 4.728 · 10–5
5,420 0.2.681 0.2.726 0.2.671 0.2749 5.655 · 10–2 7.791 · 10–2 2.449 · 10–2 8.627 · 10–2

Table 8 Setting of parameters of the adaptive MEgPC approach for the solution of RODE (1)

Degree of approximation p̂ (3, 3)
Order of approximation p 3
Tolerance (time) TOL 10–8

Tolerance (elements) ε 10–8

Refinement threshold ρ1 1
Coarsening threshold ρ2 4

In addition to the comparison of the densities we also compare the first two moments,
see Table .We remark that although the UKF approach does not capture the overall den-
sity, it is able to approximate the first two moments in good accuracy. Moreover, the first
twomoments, which we computed by means of theMEgPCmethod and theMonte Carlo
simulation match very good.

.. Two dimensional random space
In this section we consider the crack example () with two uncertain parameters. In ad-
dition to Section .. we assume the parameter KIc to be uniformly distributed with ex-
pected value . and variance ..
To compute the numerical approximation â(t,a,KIc) of the crack size a(t,a,KIc) by

means of theMEgPCmethod, we use the parameters as stated in Table . The notation p̂ =
(, ) means that we use a polynomial approximation of degree  in both random variables
a and KIc.
In Figure  we plot the densities computed by SCM, UKF and MEgPC at times t ∈

{,, ,, ,}. Additionally, we plot the density of the reference solution computed
by Monte Carlo simulation. We see that the difference between the density computed by
the UKF and the reference density is negligible at t = , and becomes larger as time
evolves. However, the overall structure of the density can be captured by the UKF ap-
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Figure 4 Density of the crack size at 4 final times resulting from two uncertain parameters.
Comparison of 3 different methods: Monte-Carlo simulation, UKF, SCM5 and MEgPC. Left: complete density,
right: zoom into the density.

Table 9 The expected values and variances of a(t,a0,KIc) at times t ∈ {3,000, 3,500, 3,550}
computed by SCM5, UKF, MEgPC andMonte Carlo simulation based on 106 samples

Time Expected value Variance
SCM5 MEgPC UKF MCS SCM5 MEgPC UKF MCS

3,000 0.1343 0.1343 0.1342 0.1343 2.557 · 10–5 2.562 · 10–5 2.142 · 10–5 2.566 · 10–5
3,500 0.1504 0.1504 0.1497 0.1504 1.663 · 10–4 1.674 · 10–4 1.098 · 10–4 1.667 · 10–4
3,550 0.1534 0.1534 0.1521 0.1534 2.661 · 10–4 2.718 · 10–4 1.404 · 10–4 2.718 · 10–4

proach. This is also reflected by the good approximation of the first two moments, see
Table . Nevertheless, due to the increasing non-linear dependence on the crack size to
the uncertain parameters the accuracy of the UKF approach becomes worse with increas-
ing time. Again, this can be explained by the interpretation of the UKF as a polynomial
approximation of degree  of the solution, see Section .. Similar to the case of only one
random parameter the densities computed by the MEgPC method and Monte Carlo sim-
ulation show perfect agreement. Moreover, the first two moments of the solutions agree
very well, see Table .
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Table 10 Setting of parameters of the adaptive MEgPC approach for the biofilmmodel

Degree of approximation p̂ 5
Order of approximation p 3
Tolerance (time) TOL 5 · 10–6
Tolerance (elements) ε ×
Refinement threshold ρ1 ×
Coarsening threshold ρ2 ×

Figure 5 Response surface of the bacteria
concentration B(100,τ ).

6.3 Comparison of UKF, Stochastic Collocation and SGM in biofilm example
The introductory model for the biofilm () with delay Quorum Sensing has been stud-
ied in [] in great detail. Here we compare the numerical approximations of the solu-
tion by means of its densities and first two moments. Therefore, we compute them by the
UKF approach, the stochastic collocation and the MEgPC method at the time t = .
The uncertain parameter is assumed to be the delay τ , a beta(, ) distributed random
variable with expected value .. Moreover, we use the choice of parameters α = .,
σ = α = α = ., SA = . and μA = . as well as the initial populations B() =  and
A() = .
For the MEgPC method we use the choice of parameters as stated in Table .
As indicated by the crosses we do not use the adaptive mesh refinement strategy in this

example. The reason is that we have to evaluate the solution at past timesteps in order to
get an evaluation of the right-hand side function. In order to evaluate the solution at a time
in the past the interpolation of the solution between two timesteps is needed. Therefore,
we choose to have the solution defined on the same mesh of elements at every timestep.
In order to avoid different meshes at different timesteps we switch off the mesh adaptivity
and prescribe a sufficiently fine mesh, see the dotted lines in Figure , from the beginning
of the computations. The response surface of the solution at time t = , computed by
the MEgPC approach, is shown in Figure .
From the solution of the  methods we compute the density at time t = , see Fig-

ure  (left). The right plot shows a magnification of the density to the tail of the density,
i.e. to the interval [, ]. On the one hand, we see that the density computed by the stochas-
tic collocation of order  simulation and the MEgPC method match very good (therefore
we here omit theMonte-Carlo solution) . On the other hand, we again observe a difference
to the density computed by the UKF approach. The UKF density shows a much smaller
weight in [, .] than the two other methods. This can be explained by the polynomial
approximation of degree , where moremass of the response surface lies within this range
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Figure 6 Density (left) of the biofilmmodel at the final time t = 100 resulting from one uncertain
parameter. Comparison of 3 different methods: SCM, UKF and MEgPC approach. Left: complete density, right:
zoom into the density.

Table 11 The expected values and variances of the biofilmmodel at time t = 100 computed
by the MEgPC approach, the UKF and the stochastic collocationmethod

Method Expected value Variance

MEgPC 1.349 1.707
UKF 1.388 1.801
SCM order 5 1.352 1.706
SCM order 9 1.352 1.706

[, .] of outcomes. Nevertheless, the overall shape of the density can be captured well by
the UKF. In Table  we state the first two moments, respectively computed by the three
methods. We see good agreement of the first two moments.

7 Conclusions
In the present article, we discussed the numerical treatment of problems with uncertain
parameters. We gave a detailed introduction to the unscented Kalman filter and its ap-
plication to random ordinary differential and random delay differential equations, see
Section . We dropped the measurements in the equations and model the uncertainty
by random variables. In this setting, the unscented Kalman filter can be interpreted as a
stochastic collocation method of order , see Section .. Sampling of the resulting sur-
rogate polynomial model yields an approximation of the moments of the solution. Due to
the fact that the sampling is restricted to the directions given by the columns of the root
of the covariance matrix Pxx, only n+ realizations of the underlying random differential
equation (RDE), resp. an RDDE or an RODE, are needed in the UKF approach. Here, n de-
notes the number of uncertain parameters. Thus, it is a cheap, in terms of computational
costs, method to approximate the random behavior of the solution.
We compare this simplified UKF approach with the SCM and the MEgPC method. In

the SCM more realizations, as compared to the UKF, of the solution of the RDE have to
be computed. The number of realizations depends on the order of the approximation and
the underlying cubature method. For most cubature rules, even in sparse grid approxima-
tions, the number of function evaluations is considerably greater than n+ and therefore
the SCM is computationally more expensive. The SGM, as opposed to the SCM and the
UKF, is not based on sampling, but on a spectral expansion of the solution of the RDE into
orthogonal polynomials. An approximate solution is found by a Galerkin approach which
results in the stochastic weak form (). If we are able to compute it in a pre-processing
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step, only a system of deterministic differential equations for the coefficients of the trun-
cated generalizedWiener expansion has to be solved. The dimension of the projected RDE
is small, because we only need a low order approximation within the respective stochas-
tic elements. The overall computational costs scale linearly with the number of stochastic
elements. In the present article we did not take advantage of the pre-processing of the
projection in the stochastic weak form. On the one hand, the projection in the examples
from Section  can be efficiently performed by an adaptive Simpson cubature rule. On the
other hand, pre-processing the stochastic weak form would result in an projection error,
which can not be easily estimated a priori.
In Section  we applied the three methods to the benchmark problems of the crack

growth model () and the biofilm model (). In the case of the crack growth, which is an
RODE, we discussed the prescription of up to two random parameters. It revealed that the
UKF approach results in a non-sufficient representation of the overall density, but gives
a good approximation of the first two moments. Opposed to that, the MEgPC method
computes a good approximation of the density and of the first two moments. This is in
agreement of the convergence results in Section . In the second benchmark problem, the
example of the biofilm (), we again compared the densities of the solutions computed by
the three methods. The SCM, as well as the SGM method showed perfect agreement of
the results - in the density and in the first two moments. Again, opposed to that the UKF
approach yielded only a rough approximation of the overall density. Nevertheless, it is able
to compute a good approximation of the first two moments.
From the numerical results in Section  we see that the UKF approach is a cheap al-

ternative to get a rough impression of the random behavior of the solution of the RDE.
If detailed information about the solution process is needed, more sophisticated meth-
ods like SCM and multi-element SGM have to be applied. This is for example in failure
detection the case, where the tail of the probability distribution is of great interest.
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