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Background: Fluid structure interaction phenomena involving elastic structures
frequently occur in industrial applications such as rubber bushings filled with oil, the
filling of liquid in a paperboard package or a fiber suspension flowing through a
paper machine. Simulations of such phenomena are challenging due to the strong
coupling between the fluid and the elastic structure. In the literature, this coupling is
often achieved with an arbitrary Lagrangian Eulerian framework or with smooth
particle hydrodynamics methods. In the present work, an immersed boundary
method is used to couple a finite volume based Navier-Stokes solver with a finite
element based structural mechanics solver for large deformations.

Results: The benchmark of an elastic rubber beam in a rolling tank partially filled with
oil is simulated. The simulations are compared to experimental data as well as
numerical simulations published in the literature. 2D simulations performed in the
present work agree well with previously published data. Our 3D simulations capture
effects neglected in the 2D case, showing excellent agreement with previously
published experiments.

Conclusions: The good agreement with experimental data shows that the
developed framework is suitable for simulation of industrial applications involving
fluid structure interaction. If the structure is made of a highly elastic material, e.g.
rubber, the simulation framework must be able to handle the large deformations that
may occur. Immersed boundary methods are well suited for such applications, since
they can efficiently handle moving objects without the need of a body-fitted mesh.
Combining them with a structural mechanics solver for large deformations allows
complex fluid structure interaction problems to be studied.

Keywords: fluid structure interaction; immersed boundary methods; sloshing tank;
FSI benchmark

Introduction

Numerical simulations of highly elastic structures deforming in a free surface flow are
challenging since the fluid-structure coupling is strong. The geometrically nonlinear re-
sponse of the structure and the need to accurately resolve the free surface further increases
the complexity of the simulations. The coupling between the fluid and the structure can
be handled in different ways. A popular approach is the Arbitrary Lagrangian Eulerian
(ALE) method [1], where the grid is deformed when the structure moves. Simulations
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with Smooth Particle Hydrodynamics (SPH) [2, 3] and Particle Finite Element Methods
(PFEM) [4] are also reported in the literature. Immersed Boundary Methods (IBM) al-
low the flow around deforming objects in the flow to be resolved without the need of a
body-fitted mesh. IBMs are therefore well suited for Fluid Structure Interaction (FSI) ap-
plications with large structural displacements. The original IBM developed by Peskin [5]
was explicitly formulated and only first-order accurate in space. Majumdar et al. [6] devel-
oped a more stable method, which is implicitly formulated and second-order accurate in
space. However, this method suffers from problems with mass conservation and pressure
oscillations. To resolve these issues, Mark et al. [7, 8] developed a second-order accurate
hybrid IBM. The IBM developed by Mark et al. has been validated for simulation of fiber
suspension flows with elastic fibers in [9].

FSI simulations can be performed in a monolithic or a partitioned way. Using a mono-
lithic approach implies that all equations are solved simultaneously in the same matrix.
In the partitioned approach, the different equations are solved separately and coupling
algorithms are employed. Using the partitioned approach without coupling iterations be-
tween the fluid and the structure solutions is attractive in terms of computational effi-
ciency. However, this approach often results in instabilities due to the added mass effect if
the simulation time is long enough [10]. Gauss-Seidel iterations as well as quasi-Newton
[11] techniques have been proposed to deal with these problems.

The aim of this paper is to present and validate a modeling framework that can be used
for simulation of FSI in industrial applications. To achieve this, the partitioned approach
with Gauss-Seidel iterations is used. The fluid-structure coupling is handled with the IBM
developed by Mark et al. [8] and the structure is modeled as a St. Venant-Kirchhoff mate-

rial, thus taking large deformations into account.

Theory

In the present work, a finite volume discretization on a Cartesian octree grid is used to
solve the Navier-Stokes equations. A finite element discretization in total Lagrangian for-
mulation is used to predict the motion of the structure. The fluid and structure models
together with the FSI coupling are described in the following.

Fluid model

The motion of an incompressible fluid is modeled by the Navier-Stokes equations:

V-u=0, 1)

ou o oo 2o
'OfE +pru-Vu=-Vp+uVea, (2)

where 1 is the fluid velocity, py is the fluid density, p is the pressure and y is the dynamic
viscosity. In the present work, the finite volume method is used to solve the Navier-Stokes
equations. The equations are solved in a segregated way and the SIMPLEC method de-
rived in [12] is used to couple the pressure and the velocity fields. All variables are stored
in a co-located arrangement and the pressure weighted flux interpolation proposed in [13]
is used to suppress pressure oscillations. A Cartesian octree grid is used for the spatial dis-
cretization of the fluid domain, that allows dynamic refinements around moving objects in
the flow. Two-phase flows can be modeled in different ways, e.g. with the level set method
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or the Volume Of Fluid (VOF) method. In both methods an additional scalar transport

equation is solved,
od
e ii-Vd=0, 3)
at

where @ is the transported scalar. In the level set method a scalar field is convected and the
interface between the two fluids is defined as a specified iso-surface. Hence, at each time
step the phase of each computational cell is determined by a simple scalar comparison test.
In this way the interface is kept sharp but the mass is not conserved. In the VOF method,
that is used in the present work, a volume fraction « is defined and transported by the
additional transport equation (® = «). The density of the fluid is then defined as

Pf = PolX + (1 -a)pa (4)

where p, is the oil density and p, is the air density. In this way the mass is conserved but
the interface may be diffusive. Therefore, it is important to use a shock capturing con-
vective scheme. Hence, in this work the shock capturing scheme CICSAM developed by
Ubbink [14] is employed. To further reduce the diffusion of the interface and improve
the computational speed adaptive grid refinements along the interface are employed. The

Backward Euler scheme is used for the temporal discretization.

Structure model
A deformable solid object is modeled as an elastic continuum. In the present work, large
deformations as well as inertia effects are taken into account. The balance of linear mo-

mentum in a continuum point is given by [15]
V.o +pb-pa=0, (5)

where ¢ is the Cauchy stress, b is the volume force (e.g. gravity), 4 is the acceleration,
p denotes density and V- is the divergence operator. The balance equation for angular
momentum can be used to derive the symmetry of the Cauchy stress, see e.g. [15]. As a
consequence, only the balance of linear momentum needs to be solved in the structure
simulation. Let 8V denote an arbitrary virtual velocity [16]. The spatial virtual work equa-

tion, i.e. the weak form of (5), can then be written as
5W=/(v-o+p13-p§)-af/d1/=o, (6)

where V denotes volume of the body in the current configuration. The spatial virtual work
equation above can be transformed into the material virtual work equation, so that the
second Piola-Kirchhoff stress S appears as stress measure instead of the Cauchy stress .

The relation between the Cauchy stress and the second Piola-Kirchhoff stress is given
by

o=J'F-S-F7, 7)
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where F is the deformation gradient and J = detF. Large deformations can then be taken

into account by using hyperelastic material models, that provide the relation between the

second Piola-Kirchhoff stress and its work conjugate strain measure, the Green strain E.
The Green strain E is computed from the deformation gradient F according to

E:%(FT-F—I). ®)

In the present work, St. Venant-Kirchhoff elasticity is assumed, with a strain energy po-
tential given by [16]

1
v = i)u(trE)2 + unE:E, 9)

where 1 and p are material parameters. The second Piola-Kirchhoff stress corresponding

to equation (9) is
S=A(trE)I + 2uE. (10)

The elasticity tensor corresponding to equation (10) is

S
— = A8;i0u + n(8ixdjr + Sudjx), (11)

Ciit =
jjkl 5E

where §;; denotes the Kroenecker delta.

It is interesting to note that equation (10) is similar to the corresponding equation for lin-
ear elasticity, but in equation (10) the Green strain appears instead of the small strain ten-
sor and the second Piola-Kirchhoff stress appears instead of the Cauchy stress. It should be
mentioned that there are other material models for rubber, e.g. the Mooney-Rivlin model
[16]. Such models offer higher accuracy at large strains, but require more input data for
calibration. In the cases considered in the present work, the strains remain relatively small
and the St. Venant-Kirchhoff model is therefore sufficient.

The Finite Element Method (FEM) is used to discretize the equations governing the
motion of the solid. Isoparametric basis functions are used and the integrals are evalu-
ated with Gaussian quadrature. Full integration is used in the simulations in the present
work. The nonlinear system of equations is solved with Newton’s method, so that asymp-
totic second order convergence in the iterations is achieved. Using Newton’s method re-
quires computation of the consistent tangent stiffness matrix. This topic is well described
in many books on FEM for structural mechanics, see e.g. [16,17]. A pure displacement for-
mulation is employed (in contrast to mixed formulations sometimes used, see e.g. [18]).
Therefore, incompressible solid materials are modeled as nearly incompressible by setting
Poisson’s ratio to a value close to, but not equal to, 0.5. Hexahedral elements with 20-nodes
are used in the simulations in this paper. This element has nodes on the edge midpoints,
but not on the face centers or in the element center. The basis functions for the 20-node
hex element, as well as an interesting discussion on reduced integration for that element,
are given in [19].

Newmark’s time stepping scheme is used for the temporal discretization [20]. We there-
fore start by solving for the nodal positions, that are the primary unknowns in the nonlin-
ear system of equations. Once the positions at the new time step are known, the velocities
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and accelerations at the new time step are computed according to

?/n‘f’l = ﬁ(&nﬂ _;Cn) + (1 - %)Dn + At<1 - %)&m (12)

(a1 = Xn) — ALV, — AL(0.5 - B)ay), (13)

Zlnﬂ = L

BAL
where v is the velocity, a is the acceleration and At is the time step length. y and 8 are
constants that control the accuracy and numerical dissipation of the scheme. Setting y =
1/2 and B =1/4 gives the trapezoidal rule. The scheme is unconditionally stable for linear
problems if 28 >y >1/2.

Fluid-structure coupling

FSI simulations can be performed in a monolithic or a partitioned way. Using a mono-
lithic approach implies that all equations are solved simultaneously in the same matrix.
In the partitioned approach, the different equations are solved separately and coupling al-
gorithms are employed. In the present work, the partitioned approach is employed and
the simulations are performed without coupling iterations when possible. Gauss-Seidel
iterations are used when necessary for stability reasons.

In this work the mirroring IBM [8] is used to model the presence of moving solid ob-
jects, without the need of a body-fitted mesh. In the method the fluid velocity is set to
the local velocity of the object with an immersed boundary condition. To set this bound-
ary condition a cell type is assigned to each cell in the fluid domain. The cells are marked
as fluid cells, internal cells or mirroring cells depending on the position relative to the
IB [8]. The velocity in the internal cells is set to the velocity of the immersed object with a
Dirichlet boundary condition. The mirroring cells are used to construct implicit bound-
ary conditions that are added to the operator for the momentum equations. This results
in a fictitious fluid velocity field inside the immersed object. Mass conservation is ensured
by excluding the fictitious velocity field in the discretized continuity equation. The result
is a robust method that is second order accurate in space. A complete description of the
method can be found in [8]. The force exerted on the solid by the fluid is computed by
numerically integrating the fluid traction vector over the fluid-solid interface.

Results and discussion

In this section, numerical results for a benchmark case are presented and compared to
previously published data from experiments [21, 22] and simulations [23]. The case con-
sidered is a rolling tank partially filled with oil. In the version considered in the present
work, a flexible beam is clamped at the bottom of the tank. The tank is forced to rotate
around the y-axis in point A as shown in Figure 1, causing the oil inside the tank to move
and interact with the beam. The tank is 0.609 m wide and 0.3445 m high. The length of
the beam, which is equal to the oil depth, is 0.1148 m. The thickness of the beam in the
x-direction is 4 mm. In the experiments reported in [21, 22], the tank thickness in the y-
direction is 39 mm and the beam thickness in the y-direction is 33.2 mm, thus leaving a
gap of 2.9 mm between the beam and the walls with normal in the y-direction. The oil is a
sunflower oil with a density of 900 kg/m® and a viscosity of 45 mPas. The second fluid in
the tank is air at ambient conditions. The beam is made of a rubber material with a density
of 1100 kg/m?, Young’s modulus E = 6 MPa and Poisson’s ratio v = 0.49.
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Figure 1 Domain of the rolling tank case: the part of the domain marked with dashed red lines is
filled with oil, the rest is filled with air. The beam is clamped to the tank in point A and an electric motor
forces the tank to rotate around the y-axis in this point.

Figure 2 Baseline grid.

The tank has two holes in the upper wall, so that zero pressure can be prescribed there.
When 2D simulations are performed, symmetry boundary conditions are used on the
faces with normal in the y-direction and no slip conditions are enforced on the remaining
walls. When 3D simulations are performed, no slip is enforced on all walls. The beam is
clamped at the point A. When 2D simulations are performed, all nodes of the solid mesh
are locked in the y-direction, leading to a plane strain assumption.

The baseline 2D grid, denoted grid 1, is shown in Figure 2. The grid is refined by halv-
ing the cell size and one refinement is added around the beam and the oil-air surface. The
baseline grid consists of approximately 12,400 fluid cells and 100 solid elements. The num-
ber of solid elements remains constant during a simulation, but the number of fluid cells
changes slightly due to the adaptive grid refinements. The fluid is discretized on an octree
grid with cubic cells and the structure is meshed with 20-node hexahedral elements. The
tank rotates around the point A and the temporal history of the rotation angle is shown
in Figure 3. Numerical data for the history of the angle is available in [22]. Note that the
tank motion is harmonic with period T =1.21 s except at the first few tenths of a second,
where a transient behavior can be seen.
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Angle [°]

Figure 3 Temporal history of the rotation angle.

(a)t=0s (b)t=1.255s

(c)t=1.85s (d)t=2.5s

Figure 4 Volume fraction: blue corresponds to « = 0 (air) and red corresponds to a = 1 (oil).

In the simulations, the gravitation vector was rotated instead of rotating the whole do-
main. The centrifugal forces, arising from the fact that the simulation is performed in an
accelerating coordinate system, have been neglected. This is justified because the angu-
lar velocity of the motion is small. As will be seen, good results are obtained with this
approximation.

Four seconds of physical time are simulated, covering three full periods of the beam mo-
tion. Figure 4 shows snapshots from a 2D simulation at different time steps. The angular
frequency of the forced rotation is close to the eigenfrequency of the system and there-
fore the waves grow larger with time. The beam undergoes large deformation due to the
interaction with the fluid.

The displacement of the beam tip, measured in a coordinate system moving with the
tank, is shown in Figure 5. The agreement with the experimental data presented in [22]
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Figure 5 Tip displacement of a beam in a rolling tank: spatial convergence and comparison with
reference data.
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Figure 6 Temporal convergence of tip displacement.

and the simulations in [23] is very good. The differences between the results obtained with
grid 1 (12,400 fluid cells and 100 solid elements), grid 2 (53,200 fluid cells and 784 solid
elements) and grid 3 (157,000 fluid cells and 3,136 solid elements) are small, indicating
that grid convergence has been obtained. Figure 6 shows the displacement predicted with
grid 2 for three different time steps. The differences are small, indicating that the time step
is sufficiently short.

To investigate whether the differences between the 2D simulation and the experimental
data originate from neglected 3D effects, 3D simulations were performed. This is indeed
the case as shown in Figure 7, where the 2D simulation and the experiments are com-
pared to a 3D simulation with a cell size roughly corresponding to grid 2. The agreement
between the 3D simulation and the experiment is excellent. It can be noted that the 2D
simulation slightly overpredicts the amplitude, while the 3D simulation captures the am-
plitude very well. This is probably an effect of the walls with normal in the y-direction. The
friction between the fluid and these walls will dissipate kinetic energy from the fluid, thus
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Figure 7 Comparison between our simulations and results from the literature.

Figure 8 Snapshot from the 3D simulation. The interface and the grid are colored by the fluid velocity and
3D effects are clearly visible on the oil-air interface.

decreasing the amplitude of the motion. This effect is not captured in a 2D simulation,
where symmetry (free slip) boundary conditions are applied to the walls with normal in
the y-direction. Furthermore, the 3D simulation captures the small gap between the beam
and walls in the y-direction. The 3D effects are clearly visible in Figure 8, that shows the
beam and the oil-air interface. The velocity variations in y-direction due to the walls can
be seen in Figure 9, that shows the velocity magnitude in several planes in the domain.
The 2D simulations presented in Figure 6 were performed without coupling iterations.
However, Gauss-Seidel iterations were used in the 3D simulation to get a stable solution.

Conclusions
A framework for simulation of highly deforming elastic structures in a two-phase flow is
proposed and validated. The Navier-Stokes solver utilizes an immersed boundary method

to efficiently handle moving geometries without the need of a body-conforming mesh and
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Figure 9 Snapshot from the 3D simulation. The slices are colored by the fluid velocity. The 3D effects
induced by the wall can be seen in the oil as well as in the air.

a volume of fluids method. The discretization is performed on an adaptive octree grid
allowing grid refinements around the structure and the oil-air interface. By coupling the
Navier-Stokes solver with a structural dynamics solver for large deformations a robust
framework for three-dimensional fluid-structure interaction applications is realized. The
good agreement with previously published data demonstrates the accuracy.
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