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Abstract
Shallow-water type models are commonly used in tsunami simulations. These models
contain uncertain parameters like the ratio of densities of layers, friction coefficient,
fault deformation, etc. These parameters are modeled statistically and quantifying the
resulting solution uncertainty (UQ) is a crucial task in geophysics. We propose a
paradigm for UQ that combines the recently developed path-conservative spatial
discretizations efficiently implemented on cluster of GPUs, with the recently
developed Multi-Level Monte Carlo (MLMC) statistical sampling method and provides
a fast, accurate and computationally efficient framework to compute statistical
quantities of interest. Numerical experiments, including realistic simulations in real
bathymetries, are presented to illustrate the robustness of the proposed UQ
algorithm.

Keywords: uncertainty quantification; multi-level Monte Carlo method; tsunami
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1 Introduction
A tsunami is a series of powerful water waves generated by different mechanism as earth-
quakes, volcanic eruptions, underwater landslides as well as local landslides along the
coast. As emphasized by the recent tragic events in March  in Japan and in December
 in Indonesia, tsunamis may be extremely catastrophic: they are able to destroy build-
ings, roads and generally the infrastructure can be seriously affected. But the most tragic
part is that tsunamis can lead to the loss of human lives. A deep knowledge of tsunamis
is required in order to predict the maximum runups and rundowns, and also to give early
warning messages to the regions that may be affected.

Since the most common sources for tsunamis are earthquakes, earthquake-generated
tsunamis have been extensively investigated. Landslide-generated tsunamis have been
much less studied and the existing knowledge about them is more limited. They are char-
acterized by relatively short periods, compared to the earthquake-generated ones, and
they do not travel as long distances as the earthquake-generated tsunamis do. Therefore,
one of their characteristics is that their whole life cycle takes place near the source. Nev-
ertheless, they can reach high amplitudes and can also become extremely harmful (see [,
]).
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The numerical simulation of a tsunami has three stages, i.e., generation, propagation
and inundation. In the generation stage of earthquake-generated tsunamis, Okada’s finite
fault deformation model (see []) is widely used as the initial method to predict the initial
sea surface displacement of a tsunami. This method assumes that an earthquake can be
regarded as the rupture of a single fault plane. This fault is described by a series of physi-
cal parameters, comprising dip angle, strike angle, rake angle, fault width, fault length, and
fault depth. Okada’s vertical displacement is applied to generate tsunami wave with initial-
ized sea-surface elevation instantaneously, or drive the model at a specific rupture time
(e.g., see []). Recently, tsunami-wave generations independent of the Okada’s assumption
are also being developed and evaluated, in which a D finite element model is employed
(see []).

In the propagation and inundation stage, two main types of governing equations are
commonly employed: the Boussinesq type equations or the nonlinear shallow-water equa-
tions. In this work, earthquake-generated tsunamis are driven by the instantaneous sea
surface disturbance derived from Okada’s finite fault model and the propagation and in-
undation stages are simulated with the use of D nonlinear shallow-water equations.

Landslides generated tsunamis are modeled here by the use of a nonlinear two-layer
Savage-Hutter type model introduced in [], that it is able to reproduce the generation of
the tsunami by the impact of the landslide, the propagation of the tsunami waves and the
inundation produced by those waves.

It is well known that solutions of both systems take the form of waves that propagate at
a finite speed. Furthermore, the solutions might form discontinuities such as shocks, hy-
draulic jumps, etc., even when the initial data are smooth. Thus, it is customary to interpret
the solutions of such nonlinear PDEs in the sense of distributions. There are innate difficul-
ties in defining such weak solutions for systems that are not in the conservation form, due
to the presence of geometrical source terms or non-conservative products, as it is the case
here. For such systems, special theories such as those in [] have been proposed. More-
over, weak solutions are not necessarily unique and further admissibility criteria need to
be imposed in order to single out a physically relevant solution.

Various types of numerical methods have been designed to approximate these
convection-dominated nonlinear hyperbolic PDEs efficiently. Methods such as finite vol-
ume, finite difference and discontinuous Galerkin finite element schemes are widely used.
In particular, the approximation of non-conservative systems is quite involved as the right
jump conditions across discontinuities need to be approximated []. An attractive frame-
work to deal with such problems is the one of path conservative numerical schemes de-
veloped in [].

In recent years, efficient implementation of such schemes have been carried out us-
ing Graphics Processing Units (GPUs). GPUs have proved to be a powerful accelerator
for intensive scientific simulations. The high memory bandwidth and massive parallelism
of these platforms make it possible to achieve dramatic speedups over a standard CPU
in many applications [, ], and several programming toolkits and interfaces, such as
NVIDIA CUDA [] and Open Computing Language (OpenCL) [], have shown a high
effectiveness in the mapping of data parallel applications to GPUs [, ]. Currently most
of the proposals to simulate shallow flows on a single GPU are based on the CUDA pro-
gramming model. There are several proposals of finite volume CUDA solvers to simulate
one-layer shallow water flows over structured regular meshes [, ] and for the two-
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layer shallow water system [, ]. Moreover, realistic tsunami simulations involve huge
meshes, many time steps and possibly real time accurate predictions. These characteris-
tics suggest to use a cluster of GPU-enhanced computers in order to scale the runtime
reduction and overcome the memory limitations of a GPU-enhanced node by suitably
distributing the data among the nodes, enabling us to simulate significantly larger realis-
tic models. Most of the proposals to exploit GPU clusters in computational fluid dynamics
(CFD) simulations use CUDA to program each GPU, and MPI [] to implement interpro-
cess communication, and they use non-blocking communication MPI functions to overlap
the remote transfers with GPU computation [–].

Numerical methods to approximate these nonlinear hyperbolic PDEs (or for that mat-
ter any PDE) require inputs such as the initial data, boundary conditions and coefficients
in the fluxes, sources and friction terms of the PDE. These inputs need to be measured.
Measurements are marked by uncertainty. For instance, let us consider tsunami model-
ing. In such problems, the initial conditions are typically estimated from a very uncertain
measurement process: it is very difficult to estimate the exact fault deformation or the ini-
tial position and velocity of a landslide. This uncertainty in determining the inputs to the
PDE is propagated into the solution. The calculation of solution uncertainty, given input
uncertainty, falls under the rubric of uncertainty quantification (UQ). UQ for geophysical
flows is vitally important for risk evaluation and hazard mitigation.

Although various approaches to modeling input uncertainty exist, the most popular
framework models input uncertainty statistically in terms of random parameters and
fields. The resulting PDE is a stochastic (random) PDE. The solution has to be sought for
in a stochastic sense and statistical quantities such as the mean, the variance, higher mo-
ments, confidence intervals and the probability distribution function (pdfs) of the solution
are the objects of interest.

The modeling and computation of solution statistics is highly non-trivial. Challenges
include possibly large number of random variables (fields) to parametrize the uncertain
input and the sheer computational challenge of evaluating statistical moments that might
require a very large number of PDE solves. The challenges are particularly accentuated for
hyperbolic and convection-dominated PDEs as the discontinuities in physical space such
as shocks can propagate into stochastic space resulting in a loss of regularity of the under-
lying solution with respect to the random parameters. A very large number of degrees of
freedom in the stochastic space might be needed to resolve such functions with possible
singularities. See a recent review [] for a detailed account of the challenges involved in
UQ for hyperbolic problems.

Nevertheless, several numerical methods have been developed for UQ in hyperbolic
PDEs. See for instance [–] and the review [] for details. Methods include the
stochastic Galerkin methods based on generalized Polynomial Chaos (gPC), stochastic
collocation methods and stochastic finite volume methods (SFVM). Stochastic Galerkin
methods are based on expanding the sought for solution random field in terms of basis
functions, orthogonal with respect to the underlying probability distribution and termed
as gPC or generalized polynomial chaos. Projecting the resulting expansion into this or-
thonormal basis yields a (possibly very large) system of PDEs for the underlying coeffi-
cients. Moments of the solution random field can be readily obtained from the coeffi-
cients. Such an approach has been used for instance in [] and references therein. How-
ever, this approach suffers from several deficiencies. Perhaps the biggest drawback of this
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approach in the context of nonlinear hyperbolic PDE lies in the fact that the resulting sys-
tem of PDEs for the gPC coefficients is not necessarily hyperbolic and may not even be
well-posed. A novel solution to this problem was provided in [] where the authors pro-
posed a gPC expansion of the solution random field in terms of the entropy variables. If
the underlying nonlinear conservation law possesses a strictly convex entropy, then one
can show that the resulting nonlinear system for gPC coefficients is hyperbolic. However, a
large number of terms of this expansion might still be necessary for hyperbolic PDEs with
low spatial and stochastic regularity leading to very computationally costly solution of a
large system of PDEs for the gPC coefficients. Furthermore, this method is computation-
ally intrusive i.e., completely new code has to written from scratch in order to compute the
chaos coefficients and existing codes cannot be reused. Hence, it appears that the stochas-
tic Galerkin method is only suitable for hyperbolic problems with a very low number of
uncertain (stochastic) parameters (dimensions).

An alternative set of methods are of the stochastic collocation type [, ] and refer-
ences therein, where the solution is sampled at a deterministic set of sample points in the
entire stochastic space. These methods are non-intrusive. However, they are of limited
utility as one needs sufficient regularity with respect to stochastic variables in order to
employ tools such as sparse grids to keep the computational cost feasible. Unfortunately,
solutions of uncertain nonlinear hyperbolic PDEs are not sufficiently regular. A possible
alternative is the recently proposed stochastic finite volume method [] and references
therein. However, it is also limited to a low to moderate number of stochastic parameters.

Another class of methods are the so-called Monte Carlo (MC) methods in which the
probability space is sampled, the underlying deterministic PDE is solved for each sample
and the samples are combined to determine statistical information about the random field.
Although non-intrusive, easy to code and to parallelize, MC methods converge at rate /
as the number M of MC samples increases. The asymptotic convergence rate M–/ is
non-improvable by the central limit theorem.

Therefore, MC methods require a large number of ‘samples’ (with each ‘sample’ involv-
ing the numerical solution of the underlying PDE with a given draw of parameter values)
in order to ensure low statistical errors. This slow convergence entails high computational
costs for MC type methods and makes them infeasible for computing uncertainty in com-
plex shallow water flows. We refer to [] for a detailed error and computational complex-
ity analysis for the MC method in the context of scalar conservation laws. This slow con-
vergence has inspired the development of Multi-Level Monte Carlo or MLMC methods
[–], in which one consider a nested sequence of space-time grids and draws different
number of samples from each grid. In particular, very few samples are drawn from the
finest grids (with the highest computational cost) and very large number of samples are
drawn from the coarsest grids (with very low computational cost). This subtle balancing of
stochastic error with spatio-temporal error, together with a novel MLMC estimator for the
statistical moments are the key ingredients in the successful adaptation of these methods
to different UQ contexts. In particular, [] and [] extend and analyze the MLMC algo-
rithm for scalar conservation laws and for systems of conservation laws, respectively. The
asymptotic analysis for the MLMC method, presented in [], showed that the method
allows the computation of approximate statistical moments with far lower computational
cost than the underlying MC approximation. MLMC methods have been successfully used
in compressible fluid dynamics and magnetohydrodynamics and geophysical flows [],
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and it has been shown to be efficient in performing UQ for realistic geophysical flows in
[]. Currently, MLMC methods appear to be one of the most suitable methods for UQ
in the context of nonlinear hyperbolic PDEs.

Our main aim in this work is to perform an efficient UQ in tsunami modeling by the
combination of shallow-water type models and MLMC method and the intensive use of
GPUs. The rest of the paper is organized as follows: we present the shallow-water type
models commonly used in tsunami simulations in Section  and the high order path-
conservative schemes to approximate them in Section . The Monte Carlo and Multi-level
Monte Carlo methods are described in Sections  and , respectively, and, finally, numer-
ical results are presented in Section .

2 Shallow-water type models for tsunami modeling
Let us consider first the well known D nonlinear one-layer Shallow-water system:
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In the previous system, h(x, t), denotes the thickness of the water layer at point x ∈ D ⊂
R

 at time t, being D the horizontal projection of the D domain where the tsunami takes
place. H(x) is the depth of the bottom at point (x) measured from a fixed level of reference.
Let us also define the function η(x, t) = h(x, t) – H(x) that corresponds to the free surface
of the fluid. Let us denote by q(x, t) = (qx(x, t), qy(x, t)) the mass-flow of the water layer at
point x at time t. The mass-flow is related to the height-averaged velocity u(x, t) by means
of the expression: q(x, t) = h(x, t)u(x, t).

The term SF (U) parametrizes the friction effects and it is given in term of the Manning
law:

⎧⎨
⎩

Sx(U) = –gh n

h/ ux‖u‖,

Sy(U) = –gh n

h/ uy‖u‖,

where n >  is the Manning coefficient.
An interesting stationary solution of the previous system corresponds to water at rest

solution given by

⎧⎨
⎩

u = ,

h – H = constant.
()
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As pointed out in the Introduction, in the generation stage of earthquake-generated
tsunamis, an earthquake subfault model is used to predict the initial sea surface displace-
ment. Typically, those models are given in the form of a set of rectangular patches on the
fault plane. Each patch has a set of parameters defining the relative slip of rock on one side
of the planar patch to slip on the other side. The minimum set of parameters required is:

• the length and width of the fault plane (typically in m or km),
• the latitude and longitude of some point on the fault plane, typically either the

centroid or the center of the top (shallowest edge),
• the depth of the specified point below the sea floor,
• the strike angle, that is, the orientation of the top edge, measured in degrees clockwise

from North and takes values between  and . The fault plane dips downward to
the right when moving along the top edge in the strike direction,

• the dip angle that is the angle at which the plane dips downward from the top edge. It
is a positive angle between  and  degrees,

• the rake angle, that is, the angle in the fault plane in which the slip occurs, measured
in degrees counterclockwise from the strike direction and takes values between –
and . Note that for a strike-slip earthquake, the rake angle is near to  or . For a
subduction earthquake, the rake angle is usually closer to  degrees,

• the slip distance is the distance (typically in cm or m) of the hanging block that moves
relative to the foot block, in the direction specified by the rake angle. The ‘hanging
block’ is the one above the dipping fault plane (or to the right if you move in the strike
direction). It is always a positive quantity.

The slip on the fault plane(s) must be translated into seafloor deformation. This is often
done using the Okada’s model [], which is derived from a Green’s function solution to
the elastic half space problem. Uniform displacement of the solid over a finite rectangu-
lar patch specified using the parameters described above, leads to a steady state solution
in which the seafloor is deformed. This deformation is transmitted instantaneously to
the free surface, generating an initial condition for the shallow-water system. Note that
Okada’s model is a rough approximation since the actual seafloor in rarely flat, and the
actual earth is not an homogeneous isotropic elastic material as assumed in this model.
However, it is often assumed to be a reasonable approximation for the free surface dis-
placement in tsunami simulations, particularly since the fault slip parameters are generally
not known very well even for historical earthquakes and so a more accurate modeling of
the resulting seafloor deformation may not be justified.

2.1 A two-layer Savage-Hutter type model for simulating landslides generated
tsunamis

In [] a model for the simulation of tsunamis generated by submarine landslides was pre-
sented for D geometries. Here, we consider its natural extension to D domains, such as
problems with real bathymetries could be simulated. Following [], we consider a stratified
media composed by a non viscous and homogeneous fluid with constant density ρ (wa-
ter) and a fluidized granular material with density ρs and porosity ψ. We suppose that the
fluid and the granular material are immiscible and that the mean density of the granular
material is given by: ρ = ( – ψ)ρs + ψρ. The following D system is derived under the
assumption of shallow-flows and could be used to simulate the interaction of a granular
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landslide with the ambient water (see [] for details about its derivation in D problems):
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In the previous system, hl(x, t), l = ,  denotes the thickness of the water layer (l = )
and the granular material (l = ), respectively, at point x ∈ D ⊂ R

 at time t, being D the
horizontal projection of the D domain where the landslide and tsunami takes place. H(x)
is the depth of the bottom at point x measured from a fixed level of reference. Let us also
define the function η(x, t) = h(x, t) + h(x, t) – H(x) that corresponds to the free surface
of the fluid, and η(x, t) = h(x, t) – H(x), the interface between the granular layer and the
fluid. Let us denote by ql(x, t) = (ql,x(x, t), ql,y(x, t)) the mass-flow of the l-layer at point x
at time t. The mass-flow is related to the height-averaged velocity ul(x, t) by means of the
expression: ql(x, t) = hl(x, t)ul(x, t), l = , . r = ρ/ρ is the ratio of the constant densities
of the layers (ρ < ρ).

The terms Sfk (U), k = , . . . , , model the different friction effects, while τ = (τx, τy) is the
Coulomb friction law. Sfk (U), k = , . . . , , are given by:

Sf (U) = Scx (U) + Sx (U), Sf (U) = –rScx (U) + Sx (U),

Sf (U) = Scy (U) + Sy (U), Sf (U) = –rScy (U) + Sy (U).
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Sc(U) = (Scx (U), Scy (U)) parameterizes the friction between the two layers, and is defined
as:

⎧⎨
⎩

Scx (U) = mf
hh

h+rh
(u,x – u,x)‖u – u‖,
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(u,y – u,y)‖u – u‖,

where mf is a positive constant.
Sl(U) = (Slx (U), Sly (U)), l = ,  parameterizes the friction between the fluid and the non-

erodible bottom (l = ) and between the granular material and the non-erodible bottom
(l = ), and both are given by a Manning law
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where nl >  (l = , ) is the Manning coefficient. Note that S(U) is only defined where
h(x, y, t) = . In this case, mf =  and n = . Similarly, if h(x, y, t) =  then mf =  and
n = .

Finally, the Coulomb friction term τ = (τx, τy) controls the stopping mechanism of the
landslide and it is defined as follows:

If ‖τ‖ ≥ σ c ⇒
⎧⎨
⎩

τx = –g( – r)h
q,x
‖q‖ tan(α),

τy = –g( – r)h
q,y
‖q‖ tan(α),

If ‖τ‖ < σ c ⇒ q,x = , q,y = ,

where σ c = g( – r)h tan(α), being α the Coulomb friction angle. Let us remark that r is
set to zero in σ c and τ , if h(x, y, t) = , that is, if it is an aerial landslide.

Note that the previous model reduces to the usual one-layer shallow-water system if
h =  and to the Savage-Hutter model if h = .

Finally, some stationary solutions of interest for the above system are those of water at
rest, i.e., ul = , l = ,  are given by:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u = u = ,

h + h – H = constant,

∂x(h – H) < tan(δ),

∂y(h – H) < tan(δ)

()

and, in particular,

⎧⎪⎪⎨
⎪⎪⎩

u = u = ,

h + h – H = constant,

h – H = constant,

()

are solutions of the previous system.
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Notice that both systems () and () can be rewritten as

Wt + A(W )Wx + A(W )Wy = S̃F (W ), ()

by considering W = [U , H]T and

Ai(W ) =

(
Ji(U) – Bi(U) –Si(U)

 

)
, i = , ,

where Ji(U) = ∂Fi
∂U (U), i = ,  denote the Jacobians of the fluxes Fi, i = ,  and

S̃F (W ) =

(
SF (U)



)
.

The term S̃F (W ), that corresponds to the different parameterizations of the friction terms,
will be discretized semi-implicitly as in [, ] or []. Therefore, at this stage will be
neglected, and we consider the homogeneous system

Wt + A(W )Wx + A(W )Wy = , ()

where W (x, t) takes values on a convex domain 
 of RN and Ai, i = , , are two smooth
and locally bounded matrix-valued functions from 
 to MN×N (R). We also assume that
() is strictly hyperbolic, i.e. for all W ∈ 
 and ∀η = (ηx,ηy) ∈ R

, the matrix

A(W ,η) = A(W )ηx + A(W )ηy

has N real and distinct eigenvalues

λ(W ,η) < · · · < λN (W ,η)

and A(W ,η) is thus diagonalizable.
The nonconservative products A(W )Wx and A(W )Wy do not make sense as distri-

butions if W is discontinuous. However, the theory developed by Dal Maso, LeFloch and
Murat in [] allows to give a rigorous definition of nonconservative products as bounded
measures provided that a family of Lipschitz continuous paths � : [, ]×
×
×S → 


is prescribed, where S ⊂R
 denotes the unit sphere. This family must satisfy certain nat-

ural regularity conditions, in particular:
. �(; WL, WR,η) = WL and �(; WL, WR,η) = WR, for any WL, WR ∈ 
, η ∈ S.
. �(s; WL, WR,η) = �( – s; WR, WL, –η), for any WL, WR ∈ 
, s ∈ [, ], η ∈ S.
The choice of this family of paths should be based on the physics of the problem: for

instance, it should be based on the viscous profiles corresponding to a regularized sys-
tem in which some of the neglected terms (e.g. the viscous terms) are taken into account.
Unfortunately, the explicit calculations of viscous profiles for a regularization of () is in
general a difficult task. A detailed description of how paths can be chosen is discussed in
[]. An alternative is to choose the ‘canonical’ choice given by the family of segments:

�(s; WL, WR,η) = WL + s(WR – WL), ()
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that corresponds to the definition of nonconservative products proposed by Volpert (see
[]). As shown in [], segments paths is a sensible choice as the it will provide third order
approximation in the phase plane of the correct jump condition.

Suppose that a family of paths � in 
 has been chosen. Then a piecewise regular func-
tion W is a weak solution of () if and only if the two following conditions are satisfied:

(i) W is a classical solution where it is smooth.
(ii) At every point of a discontinuity W satisfies the jump condition

∫ 



(
σI – A

(
�

(
s; W –, W +,η

)
,η

))∂�

∂s
(
s; W –, W +,η

)
ds = , ()

where I is the identity matrix; σ , the speed of propagation of the discontinuity; η a
unit vector normal to the discontinuity at the considered point; and W –, W +, the
lateral limits of the solution at the discontinuity.

As in conservative systems, together with the definition of weak solutions, a notion of
entropy has to be chosen. We will assume here that the system can be endowed with an
entropy pair (H, G), i.e. a pair of regular functions H : 
 → R and G = (G, G) : 
 → R



such that:

∇Gi(W ) = ∇H(W ) ·Ai(W ), ∀W ∈ 
, i = , .

Then, a weak solution is said to be an entropy solution if it satisfies the inequality

∂tH(W ) + ∂xG(W ) + ∂yG(W ) ≤ ,

in the sense of distributions.

3 High-order finite volume schemes
To discretize () the computational domain D is decomposed into subsets with a simple
geometry, called cells or finite volumes: Vi ⊂ R

. It is assumed that the cells are closed
convex polygons whose intersections are either empty, a complete edge or a vertex. De-
note by T the mesh, i.e., the set of cells, and by NV the number of cells. In this work,
we consider rectangular structured meshes, but the derivation of the scheme is done for
arbitrary meshes.

Given a finite volume Vi, |Vi| will represent its area; Ni ∈ R
 its center; Ni the set of

indexes j such that Vj is a neighbor of Vi; Eij the common edge of two neighboring cells Vi

and Vj, and |Eij| its length; dij the distance from Ni to Eij; ηij = (ηij,x,ηij,y) the normal unit
vector at the edge Eij pointing towards the cell Vj; W n

i the constant approximation to the
average of the solution in the cell Vi at time tn provided by the numerical scheme:

W n
i

∼= 
|Vi|

∫
Vi

W
(
x, tn)dx.

Given a family of paths �, a Roe linearization of system () is a function

A� : 
 × 
 × S →MN (R)

satisfying the following properties for each WL, WR ∈ 
 and η ∈ S:
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. A�(WL, WR,η) has N distinct real eigenvalues

λ(WL, WR,η) < λ(WL, WR,η) < · · · < λN (WL, WR,η).

. A�(W , W ,η) = A(W ,η).
.

A�(WL, WR,η) · (WR – WL)

=
∫ 


A

(
�(s; WL, WR,η),η

)∂�

∂s
(s; WL, WR,η) ds. ()

Note that in the particular case in which Ak(W ), k = , , are the Jacobian matrices of
smooth flux functions Fk(W ), property () does not depend on the family of paths and
reduces to the usual Roe property:

A�(WL, WR,η) · (WR – WL) = Fη(WR) – Fη(WL) ()

for any η ∈ S, where

Fη(U) = ηxF(U) + ηyF(U).

Given a Roe matrix A�(WL, WR,η), let us define a decomposition of it as follows:

Â±
�(WL, WR,η) =



(
A�(WL, WR,η) ±Q�(WL, WR,η)

)
,

where Q�(WL, WR,η) is a definite positive matrix and could be seen as the viscosity matrix
associated to the method.

Now, it is straightforward to define a path-conservative scheme in the sense defined in
[] based on the previous decomposition:

W n+
i = W n

i –

t
|Vi|

∑
j∈Ni

|Eij|Â–
ij · (W n

j – W n
i
)
, ()

where Â–
ij = Â–

�(Wi, Wj,ηij).
Moreover, taking into account the structure of the matrix A�(WL, WR,η), it is possible

to rewrite () for the system () or () as follows:

Un+
i = Un

i –

t
|Vi|

∑
j∈Ni

|Eij|D̂–
�(Ui, Uj, Hi, Hj,ηij), ()

where

D̂±
φ (Ui, Uj, Hi, Hj,ηij) =



(
Fηij (Wj) – Fηij (Wi) – Bij · (Uj – Ui)

– Sij(Hj – Hi)

± Qij ·
(
Uj – Ui – A–

ij · Sij(Hj – Hi)
))

, ()
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where the path is supposed to be given by � = (�U�H )T and

Bij · (Uj – Ui) = B�(Wi, Wj,ηij) · (Uj – Ui)

=
∫ 


Bηij

(
�U (s; Wi, Wj,ηij)

)∂�U

∂s
(s; Wi, Wj,ηij) ds

with

Bη(U) = ηxB(U) + ηyB(U);

Sij(Hj – Hi) = S�(Wi, Wj,ηij)(Hj – Hi)

=
∫ 


Sηij

(
�U (s; Wi, Wj,ηij)

)∂�H

∂s
(s; Wi, Wj,ηij) ds

with

Sη(U) = ηxS(U) + ηyS(U).

The matrix Aij is defined as follows

Aij = A�(Wi, Wj,η) = Jij + Bij,

where Jij is a Roe matrix for the flux Fη(U), that is

Jij · (Uj – Ui) = Fηij (Uj) – Fηij (Ui).

Considering segment as paths, it is straightforward to compute the matrices Bij, Jij and the
vector Sij for system () and () (see [] for the detailed expressions).

Finally, in order to fully define the numerical scheme ()-(), the matrix Qij, that plays
the role of the viscosity matrix, should be defined. Thus, Roe method is obtained if Qij =
|Aij|. Note that with this choice one needs to perform the complete spectral decomposition
of matrix Aij. In many situations, as in the case of the multilayer shallow-water system,
it is not possible to obtain an analytical expression of the eigenvalues and eigenvectors,
and some numerical algorithm should be used to perform the spectral decomposition of
matrix Aij, increasing the computational cost of the Roe method.

A rough approximation to this problem is given by the local Lax-Friedrichs (or Rusanov)
method, in which the matrix Qij could be seen as an approximation of |Aij| given by a diag-
onal matrix defined in terms of the largest eigenvalue of Aij in absolute value. However, this
approach gives excessive dissipation for all the waves corresponding to the other eigen-
values. At the beginning of the eighties, Harten, Lax and van Leer [] realized that |Aij|
could be computed as a polynomial evaluation p(Aij), where p(x) interpolates |x| at the
eigenvalues of Aij. Then they proposed to use a linear interpolation based on the small-
est and largest eigenvalues of Aij, which results in a considerable improvement over local
Lax-Friedrichs at a computational cost much lower than the one required for the full com-
putation of |Aij|. This idea is the basis of the HLL method.

To our knowledge, the paper by Degond et al. [] contains the first attempt to construct
a simple approximation of |Aij| by means of a polynomial that approximates |x| without
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interpolating it exactly on the eigenvalues. This approach has been extended to a general
framework in a recent paper [], where the authors introduce the so-called PVM (Poly-
nomial Viscosity Matrix) methods, which are defined in terms of viscosity matrices based
on general polynomial evaluations of a given Roe matrix or the Jacobian of the flux at some
other average value.

Stability issues require that the graph of the polynomial defining a PVM method must
be over the graph of the absolute value function. Moreover, the behavior of a PVM scheme
will be closer to that of Roe’s method as its basis polynomial is closer to |x| in the uniform
norm. This fact suggests the idea of using accurate approximations of |x| to build PVM
schemes that give comparable results to Roe’s method, but with a much smaller compu-
tational cost. Following this idea, in [] authors propose a new PVM scheme based on
Chebyshev polynomials, which provide optimal uniform approximations to |x|. Moreover,
the order of approximation to |x| can be greatly improved by using rational functions in-
stead of polynomials. This allows us to define a new family of schemes called RVM (Ra-
tional Viscosity Matrix) using appropriate rational functions to construct the viscosity
matrices Qij. It is important to point out that RVM methods constitute a class of general-
purpose Riemann solvers, that are constructed using a Roe matrix Aij (or more generally
the matrix A(U ,η) evaluated at some average computed from the right and left states) and
an estimate of its spectral radius, without making use of the spectral decomposition of the
Roe matrix.

Concerning the convergence of path-conservative schemes in presence of non-
conservative products, in [] and [] it has been proved that, in general, the numeri-
cal solutions provided by a path-conservative numerical scheme converge to functions
which solve a perturbed system in which an error source-term appears on the right-hand
side. The appearance of this source term, which is a measure supported on the disconti-
nuities, has been first observed in [] when a scalar conservation law is discretized by
means of a nonconservative numerical method. Nevertheless, in certain special situations
the convergence error vanishes for finite difference methods: this is the case for systems of
balance laws (see []). Moreover for more general problems, even when the convergence
error is present, it may be only noticeable for very fine meshes, for discontinuities of large
amplitude, and/or for large-time simulations: see [, ] for details.

Finally, as usual, a CFL condition must be imposed to ensure stability:


t · max

{ |λij,k|
dij

; i = , . . . , NV , j ∈Ni, k = , . . . , N
}

= δ, ()

with  < δ ≤ .

3.1 High-order extension
Following [], the semidiscrete expression of the high-order extension of scheme ()-
(), based on a given conservative reconstruction operator, is the following:

U ′
i (t) = –


|Vi|

∑
j∈Ni

∫
Eij

D̂–
�

(
U–

ij (γ , t), U+
ij (γ , t), H–

ij (γ ), H+
ij (γ ),ηij

)
dγ

–


|Vi|
∑
j∈Ni

∫
Eij

Fηij

(
U–

ij (γ , t)
)

dγ
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+


|Vi|
∫

Vi

B
(
Pt

i (x)
)∂Pt

i
∂x

(x) + B
(
Pt

i (x)
)∂Pt

i
∂y

(x) dx

+


|Vi|
∫

Vi

S
(
Pt

i (x)
)∂PH

i
∂x

(x) + S
(
Pt

i (x)
)∂PH

i
∂y

(x) dx, ()

where Pt
i is the reconstruction approximation function at time t of Ui(t) at cell Vi defined

using the stencil Bi:

Pt
i (x) = Pi

(
x;

{
Uj(t)

}
j∈Bi

)
,

and PH
i is the reconstruction approximation function of H . The functions U±

ij (γ , t) are
given by

U–
ij (γ , t) = lim

x→γ
Pt

i (x), U+
ij (γ , t) = lim

x→γ
Pt

j (x),

and H±
ij (γ ) are given by

H–
ij (γ ) = lim

x→γ
PH

i (x), H+
ij (γ ) = lim

x→γ
PH

j (x).

In practice, the integral terms in () must be approximated numerically using high order
quadrature formula, that must be related to the order of approximation of the reconstruc-
tion operator (see [] for more details). Here, a MUSCL type reconstruction operator
([]) that achieves second order accuracy is used. For time stepping, second order high-
order TVD Runge-Kutta method described in [] is used.

The well-balancedness properties of scheme () and the relation between the recon-
structed variables, the reconstruction operators and the quadrature formulas have been
analyzed in [].

4 Monte Carlo method
4.1 Modeling uncertain inputs
As mentioned in the Introduction, it is very difficult to measure in a precise way some of
the physical parameters present in the systems () or (). This is the case of the parame-
ters present in the friction terms or the ratio of densities in a non-homogeneous media,
or the parameters describing the fault deformation in the Okada’s model. Uncertainty in
input values for these parameters leads to uncertainty in the solution of the system ()
or (). Therefore, noting by (�, F ,P) the complete probability space, U(t, x, ξ ), ξ ∈ � is
the solution of the system

Ut + F(U)x + F(U)y

= B(U , ξ )Ux + B(U , ξ )Uy + S(U)Hx + S(U)Hy + SF (U , ξ ). ()

4.2 Monte Carlo finite volume method
In order to approximate the random system of equations (), we need to discretize the
probability space. The simplest sampling method is the Monte Carlo (MC) algorithm that
consists of the following steps:
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. Sample: We draw M independent identically distributed (i.i.d.) samples ξk of the
random fields.

. Solve: For each realization of the parameters ξk , the underlying system is solved. Let
the finite volume solutions be denoted by Uk,n

T , i.e. by cell averages {Uk,n
i : Vi ∈ T } at

time level tn,

Uk,n
T (x) = Uk,n

i , ∀x ∈ Vi, Vi ∈ T .

. Estimate statistics: We estimate the expectation of the random solution field with
the sample mean (ensemble average) of the approximate solution:

EM
[
Un

T
]

:=


M

M∑
k=

Uk,n
T . ()

Higher statistical moments can be approximated analogously (see []).
The above algorithm is quite simple to implement. We remark that step  requires

a (pseudo) random number generator (PRNG). In this work we will use the Mersenne
Twister PRNG [], which has a period of , – . In step , an existing code can be
used. Furthermore, the only (data) interaction between different samples is in step  when
ensemble averages are computed. Thus, the MC is non-intrusive as well as easily paral-
lelizable.

Although a rigorous error estimate for the MC approximating the shallow-water systems
() or () is currently out of reach, we rely on the analysis for a scalar conservation law
(see []) and on the numerical experience with the MLMC-FV solution of non-linear
hyperbolic systems of conservation laws with random initial data (see []) to postulate
that the following estimate holds if the solution has finite second moments:

∥∥E[
U

(·, tn)] – EM
[
Un

T
]∥∥

L(�;L(D)) ≤ CstatM–/ + Cst
xs. ()

Here, the L(�; L(D))-norm of the random function f (·, ξ ) is defined as

‖f ‖L(�;L(D)) :=
(∫

w∈�

∥∥f (·, ξ )
∥∥

L(D) dP(ξ )
) 


,

and Cstat, Cst are constants that depend on the domain D, the initial condition, topography,
time horizon T and the statistics of different random parameters, in particular, on mean
and variance. In the above, we have assumed that the underlying finite volume scheme
converges to the solutions of the deterministic system () or () at a rate of s > . Moreover,
in () and throughout the following, we adopted the (customary in the analysis of MC
methods) convention to interpret the MC samples Uk,n

T in () as i.i.d. random functions,
with the same law as U . Based on the error analysis of [], we need to choose

M = O
(

x–s) ()

in order to equilibrate the statistical error with the spatio-temporal error in ().
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Consequently, it is straightforward to deduce that the asymptotic error vs. (computa-
tional) work estimate is given by (see [])

∥∥E[
U

(·, tn)] – EM
[
Un

T
]∥∥

L(�;L(D)) � (Work)–s/(d++s),

where d is the space dimension (in this paper d =  or d = ). The above error vs. work
estimate is considerably more expensive when compared to the deterministic FVM error
which scales as (Work)–s/d+. We see that in the situation of low order s of convergence and
space dimension, a considerably reduced rate of convergence of the MC-FVM, in terms of
accuracy vs. work, is obtained. On the other hand, for high order schemes (i.e. s 
 d + )
the MC error dominates and we obtain the rate / in terms of work which is typical of
MC methods.

5 Multi level Monte Carlo finite volume method
Given the slow convergence of MC-FV, [] and [] proposed the Multi-Level Monte
Carlo finite volume method (MLMC-FV). The key idea behind MLMC-FV is to simulta-
neously draw MC samples on a hierarchy of nested grids.

The algorithm consists of the following four steps:
. Nested meshes: Consider nested meshes {Tl}∞l= of the spatial domain D with

corresponding mesh diameters 
xl that satisfy:


xl = sup
{
diam(Vi) : Vi ∈ Tl

}
= O

(
–l
x

)
, l ∈ N

where 
x is the mesh width for the coarsest resolution and corresponds to the
lowest level l = .

. Sampling: For each level of resolution l ∈N, we draw Ml independent identically
distributed (i.i.d.) samples of ξ k

l , k = , , . . . , Ml belonging to the set of admissible
parameters for the model.

. Solving: For each resolution level l and each realization ξ k
l , the underlying system

() is solved using mesh Tl . Let the finite volume solutions be denoted by Uk,n
Tl

for
the mesh Tl and at the time level tn.

. Estimate solution statistics: Fix some positive integer L < ∞ corresponding to the
highest level. We estimate the expectation of the random solution field with the
following estimator:

EL[U
(·, tn)] := EM

[
wn
T

]
+

L∑
l=

EMl

[
Un

Tl
– Un

Tl–

]
, ()

with EMl being the MC estimator

EMl

[
Un

T
]

:=


Ml

Ml∑
k=

Uk,n
T ()

for the level l. Higher statistical moments can be approximated analogously. (See
[].)
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MLMC-FV is non-intrusive as any standard FVM code can be used in step . Furthermore,
MLMC-FV is amenable to efficient parallelization as data from different grid resolutions
and different samples only interacts in step .

Following the rigorous estimate for error in [, ], we consider

∥∥E[
U

(·, tn)] – EL[Un
T

]∥∥
L(�;L(D)) ≤ C
xs

L + C

{ L∑
l=

M–/
l 
xs

l

}
+ CM–/

 . ()

Here s again refers to the convergence rate of the deterministic finite volume scheme and
C,, are constants depending only on the initial data, the parameters and the source term.
From the error estimate (), we obtain that the number of samples to equilibrate the
statistical and spatio-temporal discretization errors in () is given by

Ml = O
(
(L–l)s).

Notice that the choice of Ml implies that the largest number of MC samples is required
on the coarsest mesh level l = , whereas only a small fixed number of MC samples are
needed on the finest discretization levels.

The corresponding error vs. work estimate for MLMC-FV is given by (see [, ])

∥∥E[
U

(·, tn)] – EL[Un
T

]∥∥
L(�;L(D)) � (Work)–s/(d+) · log(Work), ()

provided s < (d + )/. The above estimate shows that MLMC-FV is more efficient than
MC-FV. Also, MLMC-FV is (asymptotically) of the same complexity as a single determin-
istic FVM solve.

6 Numerical experiments
6.1 Submarine landslide over a flat bottom topography
As a first numerical experiment, we consider a D example where the computational do-
main is x ∈ [–, ] with transparent boundary conditions at both boundaries, and a flat
bottom topography, specified by H(x) = . The initial data for the problem is

h(x, ) =

⎧⎨
⎩

 if |x| ≥ ,

. if |x| < ,

h(x, ) =

⎧⎨
⎩

. if |x| ≥ ,

. if |x| < ,

and

u(x, ) = , u(x, ) = .

Hence, our aim is to simulate a submarine landslide as the fluidized granular matter, de-
noted by the index  will slide under the water surface (denoted by index ) and will initiate
a flow of the free surface.
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We consider in this example that the ratio of the densities of two layers r, the Coulomb
angle δ and the interlayer friction parameter cf are uncertain. Here, we assume that these
parameters are random variables that take values from a uniform distribution with follow-
ing mean values,

cf = ., r = ., δ = ◦.

Furthermore the variation is assumed to % over the mean for each of the three uni-
formly distributed uncertain parameters. Such a variability is fairly representative of the
variability in experiments and observations.

We will perform UQ for the two-layer Savage-Hutter system with the above uncertain
inputs using both a first- and second-order path-conservative scheme described in Sec-
tion  whose viscosity matrix is the one associated to the IFCP-PVM scheme described
in [] and both the Monte Carlo (MC) as well as Multi-level Monte Carlo methods, de-
scribed in Sections  and , respectively, to discretize the probability space.

The resulting mean and mean ± standard deviation (statistical spread) are presented in
Figures  and . In Figure , we present statistics of the heights of both layers at time t = .
seconds using a first-order scheme on a fine mesh of , cells. The scheme is combined
with a MC simulation with M = , samples. Such a choice of sample number is based
on the fact that the MC sample number should be chosen by the formula M = (
x)–s in
(). This reduces to M = N , with N being the number of cells in the current simulation
as the convergence rate is s = / for a first-order scheme. Similarly, the MLMC method
(together with the first-order FVM scheme) is based on choosing L =  levels of mesh
resolution, ranging from N =  cells up to N = , cells. We choose M =  samples
for the highest level of resolution.

The statistics for the height of both layers simulated with the second-order version of
the IFCP scheme, together with MC and MLMC discretizations of the probability space
are presented in Figure . Again, we choose a fine mesh resolution of , cells. M =
 samples are used for the MC-FVM method. As in the first-order case, L =  levels of
mesh resolution are used to specify the second order MLMC-FVM method, ranging from
N =  cells up to N = , cells. We choose M =  samples for the highest level of
resolution.

Figure 1 First order MC-FVM and MLMC-FVM methods for the submarine landslide. The mean and
standard deviation of the layer heights at t = 0.3 seconds are shown.
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Figure 2 Second order MC-FVM and MLMC-FVM methods for the submarine landslide. The mean and
standard deviation of the layer heights at t = 0.3 seconds are shown.

Figure 3 Convergence of estimated mean and variance of h1 in the submarine landslide at t = 0.3
seconds. First and second order comparison of MC-FVM and MLMC-FVM methods.

Comparing the sets of methods, we observe that the second-order IFCP method resolve
the waves more sharply, even though the first-order method is quite competitive. Further-
more, the MC and MLMC methods are fairly comparable at the same mesh resolution. In
order to compare the methods quantitatively, we compute a reference solution on a fine
mesh and with a large number of samples, and plot the error vs. resolution as well as error
vs. runtime for both the mean and the variance of the outer layer height h and display
the results in Figure . Note that the statistical errors are estimated by a procedure, first
introduced in []. As shown in this figure, the second-order IFCP method is superior
in the amplitude of the error (for both mean and variance) than the first-order method,
when combined with both the MC and MLMC discretization of the probability space. On
the other hand, the MC and MLMC methods (either combined with the first-order or the
second-order IFCP scheme) are very similar when it comes to the amplitude of the error
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for the same mesh resolution. The main difference between the methods is discovered
when the computational efficiency, measured in terms of error vs. run-time, is compared.
As seen in Figure  (right column), the MLMC methods are approximately  to  times
faster than the corresponding MC methods, for the same level of error. This almost two
orders of magnitude gain in efficiency with the MLMC methods is instrumental in their
utility for performing more realistic UQ simulations at an acceptable computational cost.

.. D Lituya Bay mega-tsunami
On July , , an . magnitude (rated on the Richter scale) earthquake, along the Fair-
weather fault, triggered a major subaerial landslide into the Gilbert Inlet at the head of
Lituya Bay on the southern coast of Alaska (USA). The landslide impacted the water at
a very high speed generating a giant tsunami with the highest recorded wave run-up in
history. The mega-tsunami run-up was up to an elevation of  m and caused total de-
struction of the forest as well as erosion down to the bedrock on a spur ridge, along the
slide axis. Many attempts have been made to understand and simulate this mega tsunami.
The aim of this section is to produce a realistic, detailed and accurate simulation of the
Lituya Bay mega tsunami of , while taking into account uncertainties in critical pa-
rameters such as ratio of layer densities, interlayer friction and Coulomb friction angle. We
use public domain topo-bathymetric data as well as the review paper [] to approximate
the Gilbert inlet topo-bathymetry.

We consider the system () discretized with a first order path-conservative scheme ()-
() whose viscosity matrix Qij is defined using the IFCP scheme described in []. Friction
terms are discretized semi-implicitly as in [] For simplicity, we use the first-order IFCP
scheme. For fast computations, this scheme has been implemented on GPUs using CUDA.
This two-dimensional scheme and its GPU adaptation and implementation using single
numerical precision are described in detail in []. The MLMC-FV implementation has
also been developed in CUDA, where all the updates of the means and variances have also
been implemented using CUDA kernels.

A rectangular grid of , × , = ,, cells with a resolution of  m × . m
has been designed in order to perform this simulation. We compute with the first order
MLMC-FV-IFCP method with L =  levels of resolution and M =  samples for the high-
est level, which corresponds to the grid of ,, cells and constitutes the finest mesh.
We allow a % of variability in the parameters cf , r and δ. The mean values of these
parameters are cf = ., r = . and δ = ◦. The CFL number is .. Figures , , , 
show the mean solution and variance for  s and  s.

The maximum run-up is reached at  s. We can see in Figures  and  that the southern
propagating part of the initial wave reaches a maximum mean height of - m with a
maximum standard deviation of - m.

While the initial wave moves through the main axis of Lituya Bay, a larger second wave
appears as reflection of the first one from the south shoreline. (see Figures  and ). These
waves sweep both sides of the shoreline in their path. In the north shoreline, the wave
reaches between - m height while in the south shoreline the wave reaches mean values
between - m assuming a standard deviation of .-. m height.

The impact times, trimlines and the mean and variances obtained for the wave heights
provided by the simulation are in good agreement with the majority of observations and
conclusions described by []. See [] for more details. Furthermore, we see that the
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Figure 4 Mean of the solution at t = 39 s.

Figure 5 Variance of the solution at t = 39 s.

Figure 6 Mean of the solution at t = 120 s.

computed standard deviation on account of the uncertain parameters is about -% of
the mean. Compared to the initial parameter uncertainty of % of mean, we see that the
nonlinear evolution has damped the uncertainty and the problem is fairly insensitive or
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Figure 7 Variance of the solution at t = 120 s.

moderately sensitive to the three uncertain parameters. Thus, it enhances our confidence
in previously reported numerical simulations of this event [].

6.2 Earthquake generated tsunami at the Mediterranean Sea
We consider in this section an example of UQ in tsunamis generated by a earthquake.
We suppose that the dip, strike and rake angle, and the slip parameter are uncertain. The
computational domain is the Western Mediterranean and the epicenter of the earthquake
is located in the Ionian Sea. We use the Okada’s model to determine the seafloor defor-
mation and the initial condition for the shallow-water system (). Uncertainty in input
values for these parameters leads to uncertainty in the solution of the Okada’s model and
the shallow-water system (). Here we consider a second order discretization of system
() over the sphere by means of a PVM path-conservative scheme in combination with a
MUSCL type reconstruction operator. As in the Lituya Bay example, this model has been
implemented on GPUs using CUDA as well as the MLMC-FV method. A rectangular grid
of  arc-sec resolution has been used to perform the simulation with ,, cells and
we use L =  level of resolution with M =  samples for the highest level. We consider
the following variability on the parameters:

• slip =  ±  m.
• dip = ° ± °.
• strike = ° ± °.
• rake = ° ± °.

The CFL number is . and the friction coefficient is .. Figures , , ,  show the
mean and variance of the free surface for t =  h and t =  h, respectively. In this case we
see that the computed standard deviation on account of the uncertain parameters is less
than . m of the mean on the tsunami propagation. Maximum are located near the coastal
areas and in the wave fronts, as expected. Nevertheless, as in the Lituya Bay example, the
non-linear evolution has damped the uncertainty.

Concerning the GPU time, the complete MLMC-FV simulation takes about . hours
of computing time, that is less of the half of the real time for providing UQ on such a big
problem. This example shows that MLMC-FV method is an attractive framework for UQ
in real geophysical flows.
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Figure 8 Mean of the free surface at t = 2 h.

Figure 9 Variance of the free surface at t = 2 h.

Figure 10 Mean of the free surface at t = 4 h.
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Figure 11 Variance of the solution at t = 4 h.

7 Conclusion
Many geophysical flows of interest, such as tsunamis generated by earthquakes, rockslides,
avalanches, debris, etc. are modeled by shallow-water type systems. These models are
characterized by physical parameters that are usually difficult to determine and that are
prone to uncertainty. Consequently, the task of quantifying the resulting solution uncer-
tainty (UQ) is of paramount importance in these simulations.

In this paper, we have presented a UQ paradigm by combining a path-conservative
finite volume method that can accurately and robustly discretize the underlying non-
conservative hyperbolic system () or () together with a Multi-level Monte Carlo sta-
tistical sampling algorithm. The algorithm is based on computing on nested sequences of
mesh resolutions and estimating statistical quantities by combining results from different
resolutions. The method is fully non-intrusive, easy to parallelize, fast and accurate. In
particular, one can gain several orders of magnitude in computational efficiency vis a vis
the standard Monte Carlo method.

We test the algorithms on a set of numerical examples on real bathymetries. The nu-
merical results clearly indicate that the MLMC-FVM framework can approximate statis-
tics of quantities of interest such as run-up heights, quite accurately and with reasonable
computational cost under efficient implementation on GPUs. There was also qualitative
agreement with experimental and observed data. Furthermore, the UQ simulations help
in identifying the sensitivity of simulation outputs to the underlying uncertain parame-
ters. Thus, they will enable an effective appraisal of sensitivity and enhance risk analysis
and hazard mitigation.

The current paper illustrates the power and utility of the MLMC UQ paradigm for
tsunami modeling.
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