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Abstract
Electromagnetic descriptor models are models which lead to differential algebraic
equations (DAEs). Some of these models mostly arise from electric circuit and power
networks. The most frequently used modeling technique in the electric network
design is the modified nodal analysis (MNA) which leads to differential algebraic
equations in descriptor form. DAEs are known to be very difficult to solve numerically
due to the sensitivity of their solutions to perturbations. We use the tractability index
to measure this sensitivity since it can be computed numerically. Simulation of DAEs
is a very difficult task especially for those with index greater than one. To solve
higher-index DAEs, one needs to use multistep methods such as Backward difference
formulas (BDFs). In this paper, we present an easier method of solving DAEs
numerically using special projectors. This is done by first splitting the DAE system into
differential and algebraic parts. We then use the existing numerical integration
methods to approximate the solutions of the differential part and the solutions of the
algebraic parts are computed explicitly. The desired solution of the DAE system is
obtained by taking the linear combination of the solutions of the differential and
algebraic parts. Our method is robust and efficient, and can be used on both small
and very large systems.

1 Introduction
Consider a linear Resistor-Inductor-Capacitor (RLC) electric networkwhich connects lin-
ear capacitors, inductors and resistors, and independent voltage v(t) ∈ R

nV and current
sources ı(t) ∈R

nI . Circuit designers are interested to know the unknowns which describe
the network which are: the node potentials e(t) ∈ R

ne , and the currents ıL(t) ∈ R
nL and

ıV (t) ∈R
nV through inductors and voltage sources, respectively. Using the commonly used

Modified Nodal Analysis (MNA) [], we introduce the incidence matrices AC ∈ Rne ,nC ,
AL ∈R

ne ,nL and AR ∈R
ne ,nG , which describe the branch-node relationships for capacitors,

inductors and resistors. Furthermore, we introduce the incidencematricesAV ∈R
n,nV and

AI ∈R
ne ,nI , which describe this relationship for voltage and current sources, respectively.

This leads to a linear time invariant (LTI) DAE system in descriptor form:
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where C ∈ R
nC ,nC , L ∈ R

nL ,nL and G ∈ R
nG ,nG are the capacitance, inductance and con-

ductance matrices, respectively which are usually assumed to be symmetric and positive-
definite. We need to find the unknowns x = (e, ıL, ıV )T of the system (). If we let n =
ne + nL + nV and m = nI + nV , then E,A ∈ R

n,n, B ∈ R
n,m and u ∈ R

m. Equation () can be
solved depending to the elements in the electric networks. For example if we consider a
resistor network, () simplifies to a system of algebraic equations which implies that E = .
Thus we need to solve a linear system of the form –Ax = Bu. But if the network contains a
combination of resistors and other elements, this leads to differential algebraic equations
(DAEs), i.e., det(E) = . In this paper, we consider electric networks which leads to DAEs.
DAEs are very difficult to solve numerically due to the sensitivity of their solutions to

perturbations. This sensitivity is measured by the index concepts such as differentiation
index, perturbation index and tractability index. We use the tractability index because it
can be obtained numerically. According to [], a DAE-index from electric networks cannot
be greater than . Thus we assume () has maximum index of . In order to solve DAEs we
assume the following: (i) the matrix pencil λE – A must be nonsingular for some λ ∈C.
(ii) the input vectorumust be smooth enough. Furthermore consistent initial values x() =
x must be applied.
A lot of work has been done to solve DAE system using multistep methods such BDFs,

NDFs and Runge–Kutta methods []. Although these methods are accurate they need a
lot of computational effort depending on the index of DAE system, for example index-
systems, BDF is convergent and globally accurate to O(hk) but these require tight New-
ton solutions accurate to O(hk+) []. The implicit Euler method loses order of accuracy
with each increase in index, thus cannot be used in practice to solve DAE systems numer-
ically [].
In this paper, we propose a new way of solving DAEs using special projectors. This

method enables one to use any ODE numerical methods to solve DAE systems. This idea
was first introduced by März [], and it involves splitting the DAE system into differential
and algebraic parts using projector and matrix chains. Then one can use existing numer-
ical integrations methods to solve the differential part and the some components of the
algebraic part are approximated using numerical differential methods forDAEswith index
greater than one. The desired solution is obtained by the linear combination of the solu-
tions of the differential and algebraic parts. This approach leads to a decoupled system of
dimension (μ + )n, where μ is the tractability index. Moreover, the spectrum of the de-
coupled system consists not only of the spectrum of thematrix pencil (E,A) of the original
system but also of additional infinite eigenvalues []. In practice a system should be stable
otherwise it may not work properly or may even be destroyed in practical use. There is a
direct criterion for the stability of regular descriptor linear systems which indicates that
the stability of the system () is totally determined by spectrumof thematrix pencil σ (E,A)
[]. The set of all finite eigenvalues of thematrix pencil (E,A) is denoted by σf (E,A) which
is called the finite spectrum while the infinite spectrum of the matrix pencil (E,A) is de-
noted by σ∞(E,A). Thus the spectrumof (E,A) is donated by σ (E,A) = σf (E,A)∪σ∞(E,A).
System () is stable if and only if

σf (E,A) ⊂C
– =

{
s ∈C,Re(s) ≤ , and any Re(s) =  is simple

}
.

Thus, we need to make sure the physical properties of the DAE system () such as stability
to be inherited in its decoupled system. This motivated us to do some modifications in
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theMärz decomposition, using special basis vectors, which leads to a modified decoupled
system of dimension n. Moreover, this decoupling preserves the spectrum of the matrix
pencil (E,A) of the DAE.
This paper is organized as follows: In Section , we discuss the decoupling of LTI DAE

system using März decomposition and its limitation. In Section , we propose the mod-
ification of the März decomposition using bases of special projectors. In this section we
further discuss the modified decoupling of index- and - electric systems. We observed
that higher index DAEs can decoupled into two ways depending on the spectrum of the
matrix pencil (E,A). In Section , we check whether the decoupled system preserves the
physical properties of the DAE system. In Section ., we compare the numerical accuracy
of the decoupled and undecoupled system. In Section , we test the proposed method on
both simple and industrial problems. The industrial examples show the feasibility of this
method on real-life applications. This paper is concluded by some final remarks in Sec-
tion .

2 Decoupling of LTI DAE systems using projectors
Assume () is of tractability indexμ. SettingE := E,A :=A, then the projector andmatrix
chains of thematrix pair (E,A) can be written as: Ej+ = Ej–AjQj,Aj+ :=AjPj, j ≥ , where
the image space of the projector Qj is equal to the nullspace of singular matrix Ej, i.e.,
ImQj =KerEj and Pj = I–Qj is the complementary projector. There exists μ such that Eμ

is nonsingular while Ej are singular for all  ≤ j < μ – . In order to make sure projector
products are also projectors, März [] suggested an additional constraint QjQi = , j > i
on the projector construction for higher index DAEs. Using these chains we can rewrite
() as projected system of index-μ:

Pμ– · · ·Px′ +Qx + · · · +Qμ–x = E–
μ (Aμx +Bu). ()

As a consequence, () can be decoupled into  differential part and μ algebraic parts. Un-
fortunately, März decomposition leads to decoupled system of larger dimension ( + μ)n
than the dimension n of () and also it doesn’t preserve the spectrum of the matrix pencil.
This motivated us to modify her decoupled system using special basis vectors introduced
in [] and [] for index- and -, respectively. This modification leads to a decoupled sys-
temwhich preserves the dimension and the stability of theDAE system. In fact, the dimen-
sion of the differential part is equal to the dimension of the finite spectrum of the matrix
pencil (E,A). Thus, the stability of the solutions of the decoupled system is guaranteed.
We discuss this modification for index- and - systems in the next section.

3 Modification of theMärz decomposition
In this section, we modify the März decomposition using special basis vectors. This de-
composition leads to a decouple system that preserves the dimension and the spectrum
of the matrix pencil of the DAE system.

3.1 Decoupling of index-1 electric networks
Here we assume Equation () is of index- which implies μ =  in Equation (). We then
construct basis vectors (p,q) in R

n for the projectors P and Q with their inversion
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(p*
,q*

)T , where pT
 ∈ R

n,n , qT
 ∈ R

n,k and n = n + k. Thus an index- electric network
can be decoupled as:

ξ ′
p =Apξp +Bpu, ξp() = p*T

 x, (a)

ξq =Aqξp +Bqu. (b)

Then, the solution of () can be computed using the formula:

x = pξp + qξq, ()

where Ap := p*T
 E–

 Ap ∈ R
n,n , Bp := p*T

 E–
 B ∈ R

n,m, Aq := q*T
 E–

 Ap ∈ R
k,n and

Bq := q*T
 E–

 B ∈ R
k,m. Observe that (a) and (b) can be solved in a hierarchical way and

the desired solutions of the DAE system can be obtained using (). We observe that the
differential part (a) can be solved using ODE numerical methods and algebraic part (b)
can solved explicitly using the solutions from the differential part. This decoupled system
always preserves the dimension since n = n + k and the stability of () since it can easily
be proved that σ (Ap) = σf (E,A). The proof can be found in []. n and k is the number of
differential and algebraic equations, respectively.

3.2 Decoupling of index-2 electric networks
We now assume () is of index- which implies μ =  in Equation (). We first construct
basis vectors (p,q) in R

n with their inversion (p*,q*)T for the projectors P and Q,
where p ∈ R

n,n , q ∈ R
n,k . For this case we have two possibilities depending on the

spectrum of the matrix pencil (E,A).

.. Matrix pencil (E,A) with at least one finite eigenvalue
Here, we assume that the matrix pencil (E,A) of Equation () has at least one finite eigen-
value. Using projector chains Q,P ∈R

n,n leads to a theorem below [].

Theorem LetP = p*T
 Pp,Q = p*T

 Qp.ThenP,Q ∈R
n,n are projectors inRn

provided the constraint condition QQ =  holds.

Next, we construct another basis vectors (p,q) in R
n made of n independent

columns of projector P and k independent columns of its complementary projector
Q such that n = n + k. Let the inverse of this basis be denoted by (p*

,q*
)T . Then

Equation () can be decoupled as:

ξ ′
p =Apξp +Bpu, ξp() = p*T

p
*T
 x, (a)

ξq, =Aq,ξp +Bq,u, (b)

ξq, =Aq,ξp +Bq,u +Aq,ξ
′
q,, (c)

and the desired solution of () is given by:

x = ppξp + pqξq, + qξq,, ()

http://www.mathematicsinindustry.com/content/3/1/1
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where Ap := p*T
p*T

 E–
 App ∈ R

n,n , Bp := p*T
p*T

 E–
 B ∈ R

n,m, Aq, := q*T
p*T

 E–
 ×

App ∈ R
k,n , Bq, := q*T

p*T
 E–

 B ∈ R
k,m, Aq, := q*T

 PE–
 App ∈ R

k,n , Bq, :=
q*T
 PE–

 B ∈R
k,m andAq, := q*T

 Qpq ∈ R
k,k . Equations (a), (b) and (c) are of di-

mension n, k and k, respectively, where n = n +k +k. System (a)-(c) also preserves
the dimension and stability of system (). Since it also be proved that σ (Ap) = σf (E,A). For
the purpose of stable numerical implementation decoupled system (a)-(c) and () can
be rewritten as:

ξ ′
p =Apξp +Bpu, ξp() = p*T

p
*T
 x(), (a)

ξq =
∑

i=

LiAqAi
pξp +LAqBpu +

∑
i=

LiBqu(i), (b)

x = ppξp +
[
pq q

]
ξq, (c)

where ξq = (ξq,, ξq,)T ∈ R
nq , Aq = (Aq,,Aq,)T ∈ R

nq ,n , Bq = (Bq,,Bq,)T ∈ R
nq ,m, u(i) =

diu
dt ∈R

m and

L :=

[
 

Aq 

]
∈R

nq ,nq ()

is a strictly lower triangular nilpotent matrix of index . Also the decoupled system (a)-
(c) can be solved in a hierarchical way and the desired solutions of the DAE system can
be obtained using (c).

.. Matrix pencil (E,A) with no finite eigenvalues
We assume that the matrix pencil (E,A) of Equation () has no finite eigenvalues, i.e.
det(λE –A) = c ∈R \ {}, ∀λ ∈C. Thus Equation () can be decoupled as:

ξq, = Bq,u, (a)

ξq, = Bq,u +Aq,ξ
′
q,, (b)

and the desired solution of () is given by:

x = pξq, + qξq,, ()

where Bq, = p*T
 E–

 B ∈ R
n,m, Bq, = q*T

 PE–
 B ∈ R

k,m and Aq, = q*T
 Qp ∈ R

k,n .
Here n = n + k. Still system (a) and (b) can simplified to:

ξq =
∑

i=

LiBqu(i), (a)

x =
[
p q

]
ξq, (b)

where ξq = (ξq,, ξq,)T ∈ R
n, Bq = (Bq,,Bq,)T ∈ R

n,m, u(i) = diu
dt ∈ R

m and L ∈ R
n,n is also

a strictly lower triangular nilpotent matrix of index  which is defined as (). We can ob-
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serve that we do not need initial conditions to solve system (a) and (b), in fact the
solutions are computed explicitly. We note that the input vector u must be at least μ – 
times differentiable.
We have discussed that index- and - electric networks can be decoupled using special

basis vectors. These special basis vectors can be computed numerically in an efficient way
using the LUQ routine discussed in []. Hence this procedure can be applied even on very
large electric networks as illustrated in Section .. We call this method the Split-DAE
method since it involves splitting the DAE system into differential and algebraic variables.

4 Analysis of decoupled electric networks
In this section, we analyse the solutions of the decoupled systems discussed in the previ-
ous section. For simplicity we need to first rewrite the decoupled systems back into the
descriptor form:

Ẽξ ′ = Ãξ + B̃u, ξ () = ξ, (a)

x =Vξ , (b)

where Ẽ, Ã,V ∈ R
n,n, B̃ ∈ R

n,m and ξ ∈ R
n is the projected state space. We note that the

solutions of () and (a) and (b) coincide since the two systems are equivalent to each
other. This implies the spectrumofmatrix pair (E,A) and (Ẽ, Ã)must also coincide. System
(a) and (b) is much easier to solve than its counter part and moreover it reveals the
interconnection or structure of the DAE system. Assume the matrix pencil (E,A) of ()
has at least one finite eigenvalue then following theorem below holds:

Theorem  If the matrix pair (E,A) has at least one finite eigenvalue, there exist finite
λ ∈C such that:

det(λI –Ap) = .

This implies that σf (E,A) = σ (Ap).

Thus the stability of the decoupled system (a) and (b) depends on the stability of the
differential part. Hence if Equation () is stable then also (a) and (b) must be stable.
Using the decoupled systems in Section , we derive the matrices (Ẽ, Ã, B̃,V) below:
. Index  electric networks

From decoupled system (a) and (b) we obtain:

Ẽ :=

[
In 
 

]
, Ã :=

[
Ap 
Aq –Ik

]
, B̃ :=

[
Bp

Bq

]
,

V :=
[
p q

]
and ξ :=

[
ξp

ξq

]
.

()

. Index  electric networks
(i) Matrix pencil (E,A) with at least one finite eigenvalue

http://www.mathematicsinindustry.com/content/3/1/1
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From decoupled system (a)-(c) we obtain:

Ẽ :=

[
In 
 –L

]
, Ã :=

[
Ap 
Aq –Inq

]
, B̃ :=

[
Bp

Bq

]
,

V :=
[
Vp Vq

]
, where Vp = pp,Vq =

[
pq q

]
()

and ξ :=

[
ξp

ξq

]
.

(ii) Matrix pencil (E,A) with no finite eigenvalues
From decoupled system (a) and (b) we obtain:

Ẽ := –L, Ã := –Inq , B̃ := Bq, V :=Vq =
[
p q

]
,

and ξ := ξq.
()

We observe that the descriptor form with differential part takes the same form for the
case of index- and - system though L =  for index- systems. We use this form only for
analysis of the solutions of the DAE system () but not for solving. For solving one need to
solve the decoupled systems derived in the previous section.

4.1 Numerical accuracy of the decoupled system
Suppose that we want to approximate the solution of the DAE system (a) and (b). We
can do this by discretizing the time interval t ∈ [,T] into N subintervals using h = T–

N
time-steps and set tn = ih, i = , , . . . ,N – . We can then approximate the solutions of
DAE system (a) and (b) at every point. For simplicity, we consider the implicit Euler
method since is the starting point for most high order methods and numerically stable.
Applying this method on (a), we obtain:

Ẽ
(ξi+ – ξi)

h
= Ãξi+ + B̃ui+. ()

Rearranging Equation () we obtain:

ξi+ = (Ẽ – hÃ)–[Ẽξi + hB̃ui+]. ()

Thus the approximate solution of Equations (a) and (b) can be obtained using the
formula: xi+ =Vξi+. Then the exact solution of Equations (a) and (b) is given by x(ti) =
Vξ (ti). The exact solution ξ (ti) of Equation (a) satisfies:

Ẽ
[

ξ (ti+) – ξ (ti)
h

+
h

ξ ′′(η)

]
= Ãξ (ti+) + B̃u(ti+).

Defining the global error ei := ξ (ti) – ξi and setting e = , since the consistent initial con-
dition is known. We obtain an iterative process below:

ei+ = (Ẽ – hÃ)–Ẽ
[
ei –

h


ξ ′′(η)

]
, i ≥ . ()

http://www.mathematicsinindustry.com/content/3/1/1
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Weuse Equation () to analyse the accuracy of the implicit Eulermethod for the first step,
i.e. i =  using the following cases.
. Index  systems

Using system matrices (), we obtain:

(Ẽ – hÃ)–Ẽ =

[
(In – hAp)– 

Aq(In – hAp)– 

]
, ξ ′′(η) =

[
ξ ′′
p (η)

Aqξ
′′
p (η) +Bqu′′(η)

]
. ()

Substituting Equation () into Equation (), leads to:

e =
h



[
(In – hAp)–ξ ′′

p (η)
(In – hAp)–ξ ′′

p (η)

]
=O

(
h

)
.

We observe that this corresponds to the local error for implicit Euler method. This
implies that the accuracy of the solutions of the decoupled system is determined by
the numerical accuracy of the differential part. As illustrated in Example .

. Index  systems
As we have already discussed for the case of index- system in Section ., we need

to consider two cases:
(i) Matrix pencil (E,A) with at least one finite eigenvalue

Here we use system matrices () and obtain:

(Ẽ – hÃ)–Ẽ =

[
Mp 

MLhAqMp MLL

]
, ξ ′′(η) =

[
ξ ′′
p (η)

ξ ′′
q (η)

]
, ()

whereMp = (In – hAp)–,ML = (hInq –L)– and ξq(η) is defined by expression
(b). Substituting Equation () into (), leads to:

e = –



[
hMpξ

′′
p (η)

hMLAqMpξ
′′
p (η) – hMLLξ ′′

q (η)

]
=O(h), ()

since hMLAqMp =O(h) and hMLL =O(h). We observe that for this case
implicit Euler method loses accuracy. We observe that the hidden constraint (b)
destroys the accuracy of the implicit Euler method. We do not face this problem
in our method since the algebraic part (b) is computed explicitly. For our
method the accuracy will depend on the method used to solve the differential
part (a). This is illustrated in Example .

(ii) Matrix pencil (E,A) with no finite eigenvalue
Using system matrices (), we obtain:

(Ẽ – hÃ)–Ẽ = –MLL, ξ ′′(η) = ξ ′′
q (η), ()

whereML is defined as in the previous case while ξq(η) is defined by (a).
Substituting Equation () into Equation (), we obtain:

e =


hMLLξ ′′

q (η) =O(h).

http://www.mathematicsinindustry.com/content/3/1/1
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We observe that also this case the implicit Euler method loses local error accuracy.
For our method we do not need to use any integration method since the solutions of
the decoupled system (a) are computed ellipticity. This is also illustrated in the
Example .

Hence implicit Euler method loses accuracy for each increase in the index if used on the
DAE system directly. Thus first decoupling the DAE system () into differential and alge-
braic parts is a robust and effective way of solving DAEs. Since on the differential part one
can use any numerical integration method and then the solutions of the algebraic part can
be obtained explicitly. Hence the Split-DAE method is a very accurate method and very
easy to implement as compared to its counterparts discussed in [].

5 Numerical experiments
In this section, we test our proposed method in Section  using problems from electro-
magnetic community since is the main focus of this paper but it can also be applied to
other applications.

5.1 Simple examples
Here, we explicitly discuss how to decouple DAEs into differential and algebraic parts
using projectors. We illustrate this using examples below. Example  is an index- electric
network while Example  is an index- electric network whose decoupled system has a
differential part. In Example , we illustrate the decoupling of index- system without
differential part.

Example  Consider a linear RLC electric network in Figure . We need to find the un-
knowns x = [e e e ıL ıV ]T in the above electric network. In order to find the unknowns
we use theMNA to formulate a mathematical model of the form () with systemmatrices:

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

    
    
  C  
   L 
    

⎤
⎥⎥⎥⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎢⎢⎢⎣

–G G   
G –G  – 
    
  –  
–    

⎤
⎥⎥⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎢⎣





–

⎤
⎥⎥⎥⎥⎥⎥⎦ . ()

We observe that det(E) = , thus the system is a DAEs of dimension n = . It is solvable
since det(λE –A) =GCLλ +Cλ +G 
=  for some λ ∈ C. We need to first check the index

Figure 1 Simple RLC electric network.

http://www.mathematicsinindustry.com/content/3/1/1
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of the DAE system. We do this by constructing the matrix and projector chains of matrix
pair (E,A). Setting E = E, A =A, we can choose projector Q such that ImQ =KerE,
and then compute E = E –AQ. Thus we obtain the first iterate of matrix and projector
chain given by:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

    
    
    
    
    

⎤
⎥⎥⎥⎥⎥⎥⎦ , P =

⎡
⎢⎢⎢⎢⎢⎢⎣

    
    
    
    
    

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

G –G   –
–G G   
  C  
 –  L 
    

⎤
⎥⎥⎥⎥⎥⎥⎦ .

()

Since E is nonsingular, thus Equation () is an index- system. Thus the decouple sys-
tem of () will take the form (a) and (b). We then construct basis matrices and their
respective inverses for projectors Q and P given by:

q =

⎡
⎢⎢⎢⎢⎢⎢⎣

  
  
  
  
  

⎤
⎥⎥⎥⎥⎥⎥⎦ , p =

⎡
⎢⎢⎢⎢⎢⎢⎣

 
 
 
 
 

⎤
⎥⎥⎥⎥⎥⎥⎦ , and q*T

 = qT
 , p*T

 = pT
 . ()

Substituting Equations ()-() into Equations (a) and (b) leads to the decoupled sys-
tem of system () given by:

ξ ′
p =

[
 

C
– 

L – 
GL

]
ξp +

[

– 

L

]
u, ξp() =

[
e()
ıL()

]
, (a)

ξq =

⎡
⎢⎣ 
 – 

G
 

⎤
⎥⎦ ξp +

⎡
⎢⎣–
–


⎤
⎥⎦u, (b)

and the desired solution is given by:

x =

[
    
    

]T

ξp +

⎡
⎢⎣    
    
    

⎤
⎥⎦

T

ξq.

The decoupled system (a) and (b) can be solved in hierarchical way if we apply ξp() =
[e() ıL()]T . Observe that n = , k =  ⇒ n = n + k =  and σf (E,A) = σ (Ap) as ex-
pected. Thus system () is decoupled into  and  differential and algebraic equations,
respectively. We observe that decoupled system (a) and (b) can be solved using any

http://www.mathematicsinindustry.com/content/3/1/1
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ODE numerical integration methods. Thus system (a) and (b) is easier to solve than
solving ().

Example  Consider another linear RLC electric network with system matrices:

E =

⎡
⎢⎢⎢⎣
C   
   
  L 
   

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣
–G G  
G –G – 
   
–   

⎤
⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎣



–

⎤
⎥⎥⎥⎦ , x =

⎡
⎢⎢⎢⎣
e
e
ıL

ıV

⎤
⎥⎥⎥⎦ .

()

This is also DAE system of dimension n =  and it is also solvable since det(λE – A) =
GLλ +  
=  for some λ ∈ C. We construct matrix and projector chains by first setting
E = E, A =A. We choose projectorQ such that ImQ =KerE and its complementary
projector P:

Q =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ , and P =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ . ()

Then,

E = E –AQ =

⎡
⎢⎢⎢⎣
C –G  –
 G  
 – L 
   

⎤
⎥⎥⎥⎦ , A =AP =

⎡
⎢⎢⎢⎣
 G  
 –G  
   
   

⎤
⎥⎥⎥⎦ .

Since E is singular, the index- condition is violet. Thus we need to continue with the pro-
cess and choose projector Q such that ImQ = KerE and its complementary projector
P = I –Q:

Q =


C + 

⎡
⎢⎢⎢⎣
   C
   
   
C   C

⎤
⎥⎥⎥⎦ , and P = I –Q. ()

Then,

E = E –AQ =

⎡
⎢⎢⎢⎣
C + G

C+ –G  – + GC
C+

– G
C+ G  – GC

C+
 – L 


C+   – C
C+

⎤
⎥⎥⎥⎦ . ()

We can easily check that E is non-singular. Thus Equation () is of index-.

http://www.mathematicsinindustry.com/content/3/1/1
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The next step is to decouple the DAE system () using the constructed matrix and
projector chains. In this stepwe need tomake sure that conditionQQ =  holds true.We
notice that projectors () and () don’t satisfy this condition. Thus we need to construct
other special projectors. Our best choice is the canonical projector suggested byMärz [],
which is defined as:

Q̃ := –QE–
 A =

⎡
⎢⎢⎢⎣
   
   
   
C   

⎤
⎥⎥⎥⎦ , and P̃ = I – Q̃.

We can easily check that condition Q̃Q =  is now satisfied. We then use Q̃ instead of
Q in the decoupling process. If we repeat step (), we obtain:

E = E –AQ̃ =

⎡
⎢⎢⎢⎣
C +G –G  –
–G G  
 – L 
   

⎤
⎥⎥⎥⎦ , A =AP̃ =

⎡
⎢⎢⎢⎣
   
  – 
   
   

⎤
⎥⎥⎥⎦ . ()

For convenience we can set Q = Q̃ and P = P̃. Since Equation () is an index- sys-
tem and its matrix pencil has at least one finite eigenvalues. Thus its decouple system will
be in form (a)-(c). The next step is to construct basis matrices for projectors and pro-
jector products. The basis matrices for projectors P and Q in Equation (), and their
respective inverses are given by:

p =

⎡
⎢⎢⎢⎣
 
 
 
 

⎤
⎥⎥⎥⎦ , q =

⎡
⎢⎢⎢⎣
 
 
 
 

⎤
⎥⎥⎥⎦ , and p*

 =

⎡
⎢⎢⎢⎣
 
 
 
 

⎤
⎥⎥⎥⎦ , q*

 =

⎡
⎢⎢⎢⎣
 
 
 
 

⎤
⎥⎥⎥⎦ . ()

Using Theorem , we compute other projectors P and Q given by:

P = p*T
 Pp =

[
 
 

]
, and Q = p*T

 Qp =

[
 
 

]
.

The basis matrices for projectors P and Q, and their respective inverses are given by:

p =

[



]
, q =

[



]
, and p*

 =

[



]
, q*

 =

[



]
. ()

Substituting Equations ()-() into (a)-(c) leads to the decoupled system of () given
by:

ξ ′
p = –


GL

ξp –

L
u, ξp() = ıL(), (a)

ξq =

⎡
⎢⎣ 
– 

G


⎤
⎥⎦ ξp +

⎡
⎢⎣–
–


⎤
⎥⎦u +

⎡
⎢⎣ 


–C

⎤
⎥⎦u′, (b)

http://www.mathematicsinindustry.com/content/3/1/1
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Figure 2 Simple RL network.

and the desired solution is given by:

x =

⎡
⎢⎢⎢⎣





⎤
⎥⎥⎥⎦ ξp +

⎡
⎢⎢⎢⎣
  
  
  
  

⎤
⎥⎥⎥⎦ ξq. ()

We observe that n = , k = , k =  ⇒ n = n +k +k =  and σf (E,A) = σ (Ap) = {– 
GL }.

Equations (a) and (b) can be solved if we apply ξp() = ıL(). Thus the DAE system
() is decoupled into  differential and  algebraic equations. The solutions of system ()
and (a) and (b), () coincides though the later is easier to solve than the former.

Example  Consider a simple RL electric network in Figure . We need to find the un-
knowns x = [e, e, ıL]T in the electric network. Using the Modified Nodal Analysis on this
network leads to DAE system of the form (), where u = ı(t) with system matrices given
by

E =

⎡
⎢⎣  
  
  L

⎤
⎥⎦ , A =

⎡
⎢⎣–G G 

G –G –
  

⎤
⎥⎦ , B =

⎡
⎢⎣



⎤
⎥⎦ . ()

Since det(λE –A) =G, thus this system is solvable and its matrix pencil (E,A) has only in-
finite eigenvalues. Thus its decoupled systemmust be purely algebraic system.We choose
special projectors,

Q =

⎡
⎢⎣  
  
  

⎤
⎥⎦ , and Q =

⎡
⎢⎣  L
  L
  

⎤
⎥⎦ , ()

such that QQ =  holds. Then we have,

E =

⎡
⎢⎣ G –G 
–G G 
 – L

⎤
⎥⎦ . ()

Since the E is non-singular, thus () is an index  system. The linearly independent
columns and their respective inverses of projectorQ and its complimentary P are given

http://www.mathematicsinindustry.com/content/3/1/1
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by;

p =

⎡
⎢⎣



⎤
⎥⎦ , q =

⎡
⎢⎣ 
 
 

⎤
⎥⎦ ,

p*T =
[
  

]
, q*T =

[
  
  

]
.

()

Thus, substituting Equations ()-() into (a) and (b), we obtain,

ξq =

⎡
⎢⎣ 
G–



⎤
⎥⎦ ı(t) +

⎡
⎢⎣
L
L

⎤
⎥⎦ ı ′(t), ()

x =

⎡
⎢⎣  
  
  

⎤
⎥⎦ ξq. ()

We can observe that system () can be computed explicitly without using any numerical
integration techniques. Thus instead of solving DAE system () is easier to solve () and
their solutions much coincide.

5.2 Industrial applications
In this section, we test the Split-DAE method on large scale descriptor electromagnetic
models from industries. Examples  and  are index- and - systems respectively. These
examples are multiple-input multiple-output (MIMO) type, i.e. we are interested in a few
solutions of the DAE system.

Example  This is a descriptor model of a large scale power system originating from [].
It is called bauru power system and can be downloaded from []. It is an index-
DAE system of dimension n = , with  inputs and  outputs. The sparsity of its
matrix pencil is shown in Figure . We decoupled the DAE system into , differen-
tial equations and , algebraic equations using the procedure we discussed in Sec-
tion ., i.e. n = , and k = ,. The sparsity of the matrix pencil of the decou-
pled system in the descriptor form is given in Figure . We observe that the sparsity in
Figure  has the same structures as matrix pencil (Ẽ, Ã) in Equation (). We solved the
decoupled system in Matlab using ODE solver (odes) to solve the differential part. We
obtained good solutions as shown in Figure  and the simulation took , seconds.
We used input function u(t) = [cos(t) sin(t)]T , t ∈ [,π ] and time step h = . × –.
We tried to solve the DAE system directly using he Matlab DAE solver (odes) but
failed to solve it. It just gave us a warning: ‘This DAE appears to be of index greater
than ’.

Example  In this example, we consider a RLC network descriptor model of electric
power grid originating from []. It is called MOPI system and can also be downloaded

http://www.mathematicsinindustry.com/content/3/1/1
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Figure 3 Sparsity of matrix pencil (E,A).

Figure 4 Sparsity of matrix pencil (Ẽ, Ã).

Figure 5 Output solutions of Example 4.
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Figure 6 Sparsity of matrix pencil (E,A).

Figure 7 Sparsity of matrix pencil (Ẽ, Ã).

from []. It is an index- DAE system of dimension n = , with  inputs and  outputs.
The inputs are current signals injected into three buses given by:

u =

⎡
⎢⎣sin(ω(t – t))U(t – t)
sin(ω(t – t))U(t – t)
sin(ω(t – t))U(t – t)

⎤
⎥⎦ ,

whereU(t) is the step function, ω = ×π ×, rad/s, ω = ×π × rad/s and ω =
×π ×  rad/s. Values t =  ms, t =  ms and t =  ms are time delays associated with
the input signals. The desired solutions are voltages e(t), e(t) and e(t) at the three buses.
The sparsity of the matrix pencil of this DAE system is shown in Figure .We were able to
decoupled the DAE system into , differential equations and  algebraic equations
using the procedure we discussed in Section .., i.e. n = , k =  and k = .
The sparsity of the matrix pencil of the decoupled system in the descriptor form is shown
in Figure . We solved the differential part of the decoupled system using odet solver
and we obtained good solutions as shown in Figure . The simulation took  seconds.

http://www.mathematicsinindustry.com/content/3/1/1


Banagaaya and Schilders Journal of Mathematics in Industry 2013, 3:1 Page 17 of 18
http://www.mathematicsinindustry.com/content/3/1/1

Figure 8 Output solutions of Example 5.

We could not compare with the Matlab inbuilt solvers since they cannot solve index-
systems. We validated our results with those presented in [].

6 Conclusion
In conclusion, splitting DAEs using special projectors leads to decoupled systems which
are easier to solve than DAE systems directly. We have tested the Split-DAE method on
both large and small problems and proved to be a robust and efficient method. We can
now use any numerical integration method to solve DAE systems. Hence this method can
be used to simulate electromagnetic descriptor models.
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