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Abstract
We prove an a-priori error estimate for regularized Curl-Curl Problems which are
discretized by the Interior Penalty/Nitsche’s Method on meshes non-conforming
across interfaces. It is shown that the total error can be bounded by the best
approximation error which in turn depends on the concrete choice of the
approximation space Vh. In this work we show that if Vh is the space of edge functions
of the first kind of order k we can expect (suboptimal) convergence O(hk–1) as the
mesh is refined. The numerical experiments in (Casagrande et al., SAM Report
2014-32, ETH Zürich, 2014) indicate that this bound is sharp for k = 1. Moreover it is
shown that the regularization term can be made arbitrarily small without affecting
the error in the |·|curl semi-norm. A numerical experiment shows that the
regularization parameter can be chosen in a wide range of values such that, at the
same time, the discrete problem remains solvable and the error due to regularization
is negligible compared to the discretization error.
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1 Introduction
In this work we study the D, magnetostatic boundary value problem,

∇ × (
μ–∇ × A

)
= ji, in �, ()

n × A = gD, on ∂�, ()

which can be used to calculate the magnetic field that originates from a divergence free,
stationary current ji. Herein μ denotes the magnetic permeability and gD prescribes
Dirichlet boundary data. We seek the magnetic vector potential A that fulfills ()-(). The
magnetic field is then B = ∇ × A. Note that if gD ≡  on ∂� then () implies (∇ × A) · n =
B · n =  on ∂� which reflects the decay of the fields away from the source.

Note that the solution of the boundary value problem ()-() is only unique up to a gra-
dient field (if � is simply connected), which is not of importance if one is only interested
in the magnetic field B. Thus it is possible to solve the ungauged problem ()-() if the
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Figure 1 Sliding meshes. Initially conforming
sub-meshes become non-conforming when the
upper sub-mesh starts moving.

current ji lies in the range of the system matrix []. The latter is hard to enforce on non-
conforming meshes (cf. Section ) and it is simpler to gauge the formulation ()-() or to
add a regularization term to () so that the system matrix has full rank. In case of adding a
regularization term to (), one introduces a modeling error which must not dominate the
approximation error of the numerical scheme.

In some applications like the simulation of electric machines or magnetic actuators,
magnetic fields have to be computed in the presence of moving, rigid parts. Then one
may use separate, moving sub-meshes for them in order to avoid remeshing. However,
this leads to so-called ‘sliding interfaces’, i.e. meshes with hanging nodes (cf. Figure ).

Our goal is to construct a method that approximates the solution of ()-() in a way
that is independent of the ‘non-conformity’ of the sub-meshes at the common interface.
This problem has been tackled successfully in the framework of Mortar methods where
the continuity constraints are incorporated directly into the trial-space [] or they are
enforced by additional Lagrange Multipliers []. However they come at the price of intro-
ducing either non-local shape functions or additional unknowns.

Another approach uses the Discontinuous Galerkin (DG) framework to solve problem
()-() in the presence of hanging nodes. In [] problem ()-() is regularized by adding
a ∇(∇ · A) term to () and is then solved by the locally discontinuous Galerkin method.
However because of the additional regularization term, additional assumptions on the
smoothness of the solution have to be made to prove convergence. Alternatively one can
use a mixed DG formulation and enforce the gauge condition ∇ · (μ–A) =  explicitly to
avoid the introduction of a regularization term []. The stability of this method for ar-
bitrary, sliding meshes remains unclear: In [] it is proven that the mixed method yields
the expected rates of convergence on conforming meshes and the experimental results in
[] show that it also works on adaptively refined meshes with hanging nodes. However, in
light of the results in Section . and in [] it is not clear that the constant in the inf-sup
condition of [] is independent of the ‘non-conformity’ of the sub-meshes at the common
interface.

We study a different approach: We apply the Interior Penalty/Nitsche’s Method [] to
the regularized magnetostatic problem,

∇ × (
μ–∇ × A

)
+ εμ–A = ji, in �, ()

n × A = gD, on ∂�. ()

Here  < ε �  is the regularization parameter. In an earlier investigation [] it was shown
experimentally that the Interior Penalty Method solves problem ()-() successfully if sec-
ond order edge functions of the first kind are used. Moreover it was shown that first order
edge functions fail to converge to the exact solution as the mesh is refined. In this work
we intend to give theoretical explanations of these observations and investigate the error
that is introduced by the regularization term in ().
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We start our discussion in Section  by introducing Discontinuous Galerkin (DG) nota-
tions that were already introduced in [] and which are needed to state the interior penalty
formulation of ()-() in Section . Section  also proves an a-priori bound of the total
error in terms of the best approximation error for piecewise-polynomial test- and trial
spaces Vh. In Section  we analyze the particular case where Vh is the space of k-th order
edge functions, Rk . Combining the results of Sections  and  we get rates of convergence
for the regularized problem ()-(). Section  is devoted to the choice of the local length
scale appearing in the Interior Penalty formulation and presents numerical experiments
underlining the results of Sections , . Section  discusses the role of the regularization
parameter ε and how to choose it. We end our presentation with a short conclusion and
outlook in Section .

2 Preliminaries
Before we can introduce the Symmetric Weighted Interior penalty (SWIP) formulation of
()-() we give some definitions and notations (cf. []):

Subdomains and submeshes: Let us assume that the domain �, on which ()-() is posed,
is a simply connected polyhedron with Lipschitz boundary. Furthermore we assume � to
be split into two non-overlapping subdomains, � ∪ � = �.

We introduce a sequence of simplical meshes TH = (Th)h∈H on �. Here H denotes a
countable subset of R+ having  as the only accumulation point. For each h ∈ H we let
Th ∈ TH denote a particular mesh in the sequence TH and we let T ∈ Th be a mesh element
(tetrahedron). The meshwidth is defined as h = maxT∈Th hT , where hT is the diameter of
element T .

We assume that each mesh Th, which covers �, can be split into two conforming, non-
overlapping submeshes, Th = Th, ∪ Th,, that cover � and �, respectively. As before we
define TH, = (Th,)h∈H and TH, = (Th,)h∈H.

Furthermore we define FT to be the set of the four facets of a tetrahedron T . The in-
tersection of two facets, is called an inner face while the intersection of a facet with the
boundary ∂� is called a boundary face. Note that facets are always triangular while inner
faces are convex polygons with up to six nodes and boundary faces can have virtually any
polygonal shape (cf. Figure ). We denote by Fb

h the set of all boundary faces, by F i
h the

set of all inner faces and define Fh = Fb
h ∪ F i

h to be the set of all faces. Furthermore, FT

stands for the set of all faces which lie on the boundary of element T .

Mesh assumptions: We assume that the elements are shape regular in the sense of Cia-
rlet: There is a constant σmax, independent of h, such that for all h ∈ H and for all T ∈ Th

we have

hT

ρT
≤ σmax, ()

where ρT is the radius of the largest ball inscribed in T . It is easy to check that this con-
dition is satisfied if two sequences of static sub-meshes are moved against each other. We
will make additional assumptions about the mesh when we discuss choices for the local
length scale in Section .
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Figure 2 Non-conforming overlap of two submeshes. Consider two cuboids stacked upon each other
(similar to Figure 1) which are meshed individually. This figure shows the restriction of the two submeshes
Th,1 and Th,2 to the common interface and the inner/boundary intersections are marked.

Magnetic permeability: We assume there exists a partition P� = {�i,μ} such that each
�i,μ is a polyhedron and such that the permeability μ >  is constant on each �i,μ. Fur-
thermore the mesh sequence TH is compatible with the partition P�: For each Th ∈ TH,
each element T ∈ Th belongs to exactly one �i,μ ∈ P�. I.e. the magnetic permeability is
constant on each element but it is allowed to jump element boundaries, and in particular
over the non-conforming interface � := � ∩ �.

Polynomial approximation: Later on we will seek the discrete solution in the piecewise
polynomial space (cf. [])

P
k(Th) :=

{
p ∈ L(�)|∀T ∈ Th, p|T ∈ P

k(T)
}

, ()

where Th ∈ TH and P
k(T) is the usual space of polynomials up to total degree k on mesh el-

ement T . L(�) is the usual space of square integrable functions on �. Note that functions
of Pk(Th) are discontinuous across element boundaries.

Mesh faces, jump and average operators: For each mesh face F and vector valued function
Ah ∈ P

k(Th), we define the tangential jump as follows:

for F ∈F i
h, F = ∂T ∩ ∂T, [Ah]T := nF × (Ah|T – Ah|T ),

for F ∈Fb
h , F ⊆ ∂T ∩ ∂�, [Ah]T := nF × Ah|T .

The weighted average is defined similarly:

for F ∈F i
h, F = ∂T ∩ ∂T, {Ah}ω := ωAh|T + ωAh|T ,

for F ∈Fb
h , F ⊆ ∂T ∩ ∂�, {Ah}ω := Ah|T .

Here the normal nF always points from T to T and ω,ω ∈ [, ] such that ω + ω = .
Note that the jump and average operators are well defined for all p ∈ P

k(Th).
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The following lemma relates the trace of a polynomial function to its L norm on the
element (cf. [], Lemma .):

Lemma  (Discrete trace inequality) Let TH be a sequence of shape regular, possibly non-
conforming, simplical meshes. Then for all h ∈ H, all vh ∈ P

k(Th), and all T ∈ Th we
have

h/
T ‖vh|T‖L(∂T) ≤ Ctr‖vh‖L(T). ()

Herein Ctr is independent of T and h but depends on σmax, k.

Function spaces: We will use the spaces

H(curl;�) :=
{

f ∈ L(�)|‖∇ × f‖L(�) < ∞}
,

Hs(P�) :=
{

f ∈ L(�)|∀�i,μ ∈ P� : f |�i,μ ∈ Hs(�i,μ)
}

.

Herein Hs(�) = W s,(�) is the Sobolev space of order s with Hölder coefficient p = . The
associated norms and semi-norms are

‖f‖
H(curl;�) := ‖f‖

L(�) + |f|H(curl;�), |f|H(curl;�) := ‖∇ × f‖
L(�) ,

‖f ‖
Hs(P�) :=

N∑

i=

‖f ‖
Hs(�i,μ).

3 Symmetric Weighted Interior penalty (SWIP) formulation
We chose an arbitrary subspace Vh ⊆ P

k(Th) as discrete test and trial space, and use in-
tegration by parts (cf. [, ] for details) to arrive at the SWIP formulation of (): Find
Ah ∈ Vh subject to

aSWIP
h

(
Ah, A′

h
)

= 	h
(
A′

h
)

for all A′
h ∈ Vh. ()

Here,

aSWIP
h

(
Ah, A′

h
)

:=
∫

�

(
μ–∇ × Ah

) · (∇ × A′
h
)

–
∑

F∈Fh

∫

F

{
μ–∇ × Ah

}
ω

· [A′
h
]

T –
∑

F∈Fh

∫

F

{
μ–∇ × A′

h
}

ω
· [Ah]T

+
∑

F∈Fh

ηγμ,F

aF

∫

F
[Ah]T · [A′

h
]

T + ε

∫

�

μ–Ah · A′
h, ()

	h
(
A′

h
)

:=
∫

�

ji · A′
h –

∑

F∈Fb
h

∫

F

{
μ–∇ × A′

h
}

ω
· (n × gD)

+
∑

F∈Fb
h

ηγμ,F

aF

∫

F

[
A′

h
]

T · (n × gD), ()
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where η is the penalty parameter. The last four terms of aSWIP
h are called consistency, sym-

metry, penalty, regularization term, respectively. For an inner face F ∈F i
h, F = ∂T ∩ ∂T,

we chose the weights

γμ,F :=


μ + μ
, ω :=

μ

μ + μ
, ω :=

μ

μ + μ
.

If F is a boundary face, F ∈ Fb
h , we choose γμ,F := μ–. The term aF is the local length

scale of face F and can be chosen in different ways (e.g. aF = 
 (hT + hT ) where hT , hT

are the diameters of the neighboring elements). For now we assume that there exists a
constant ς >  such that for all h ∈H, all T ∈ Th, and all F ∈FT :

 < aF ≤ ςhT . ()

In Section  we will look at concrete choices of aF and discuss the circumstances under
which () is fulfilled. It will turn out that depending on the choice of aF we have to make
additional assumptions about the mesh regularity to guarantee ().

Remark  If Vh ⊆ H(curl;�), then all inner tangential jumps in () will drop out [],
Lemma ., and only jumps at the boundary remain, i.e. we are left with a standard FEM
formulation where the inhomogeneous boundary conditions () are enforced in a weak
sense.

3.1 A priori error estimate
In the following we derive an error estimate in the ‘energy-norm’ for the variational prob-
lem ().

Regularity of the exact solution: We assume that the exact solution A of ()-() (in the
sense of distributions) is such that

A ∈ V ∗ :=
{

A ∈ H(curl;�) ∩ H(P�)|∇ × A ∈ H(P�)}.

Furthermore, we set V ∗
h := V ∗ + Vh. Note that, because A and ∇ × A are in H(P�) the

traces of A and ∇ × A are well defined on the faces of the mesh elements (cf. [], Re-
mark .). Indeed, let T ∈ Th be a mesh element, then by the multiplicative trace in-
equality [], Theorem .., ‖A‖L(∂T) < Ctr‖A‖/

L(T)‖A‖/
H(T) , and the same estimate

holds for ∇ × A. Therefore we see that aSWIP
h : V ∗

h × Vh →R is well defined.
In order for the right-hand side to be well-posed we assume ji ∈ L(�) and gD =

L(∂�).
We begin the proof of the a priori error estimate by showing that the exact solution A

fulfills equation ():

Lemma  (Consistency) Assume A ∈ V ∗ is the exact solution of ()-(). Then, for all
A′

h ∈ Vh,

aSWIP
h

(
A, A′

h
)

= 	h
(
A′

h
)
. ()
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Proof Since A ∈ H(curl,�), A is tangentially continuous across all element boundaries
(cf. Lemma . in []). Thus all inner jump terms drop out,

aSWIP
h

(
A, A′

h
)

=
∫

�

(

μ

∇ × A
)

· (∇ × A′
h
)

–
∑

F∈Fh

∫

F

{
μ–∇ × A

}
ω

· [A′
h
]

T

–
∑

F∈Fb
h

∫

F

{
μ–∇ × A′

h
}

ω
· [A]T

+
∑

F∈Fb
h

ηγμ,F

aF

∫

F
[A]T · [A′

h
]

T +
∫

�

ε

μ
Ah · A′

h. ()

Note that the last two sums include only boundary faces. Next we make use of the fol-
lowing identity (which holds for any interior face F = ∂T ∩ ∂T)

[a × b]n = (a × b – a × b) · nF

=
(
(ωa + ωa) × (b – b) + (a – a) × (ωb + ωb)

) · nF

= –{a}ω · [b]T + [a]T · {b}ω.

Here {b}ω := (ωb + ωb) is the skew-weighted average and [b]n := (b – b) · nF is the
normal jump. Let us apply the identity to the second term of ():

–
∑

F∈Fh

∫

F

{
μ–∇ × A

}
ω

· [A′
h
]

T

=
∑

F∈F i
h

∫

F

[(
μ–∇ × A

) × A′
h
]

n –
∑

F∈F i
h

∫

F

[
μ–∇ × A

]
T︸ ︷︷ ︸

=

· {A′
h
}

ω

–
∑

F∈Fb
h

∫

F

{
μ–∇ × A

}
ω

· [A′
h
]

T .

The second term on the right-hand side vanishes because A is a solution of the strong
formulation (). Thus μ–∇ × A ∈ H(curl;�), which implies that μ–∇ × A is tangentially
continuous. Note that for all F ∈ Fb

h : {μ–∇ × A}ω · [A′
h]T = –[(μ–∇ × A) × A′

h] · nF so
we can rearrange the face contributions to the element boundaries,

–
∑

F∈Fh

∫

F

{
μ–∇ × A

}
ω

· [A′
h
]

T =
∑

T∈Th

∫

∂T

(
μ–(∇ × A) × A′

h
) · nT . ()

Now substitute () into () and use integration by parts on each mesh element [],
Theorem .:

aSWIP
h

(
A, A′

h
)

=
∑

T∈Th

∫

T
∇ ×

(

μ

∇ × A
)

· A′
h + ε

∫

�

μ–Ah · A′
h

–
∑

F∈Fb
h

∫

F

{
μ–∇ × A′

h
}

ω
· [A]T +

∑

F∈Fb
h

ηγμ,F

aF

∫

F
[A]T · [A′

h
]

T

()-()= 	h
(
A′

h
)
. �
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Let us introduce the following (semi-)norms on the space V ∗
h :

‖A‖
SWIP :=

∥
∥μ–/∇ × A

∥
∥

L(�) + ε
∥
∥μ–/A

∥
∥

L(�) + |A|j,μ,

|A|j,μ :=
∑

F∈Fh

γμ,F

aF

∥∥[A]T
∥∥

L(F) ,

‖A‖
SWIP,∗ := ‖A‖

SWIP +
∑

T∈Th

hT
∥∥μ–/∇ × A|T

∥∥
L(∂T) .

Lemma  (Bound on consistency term) For all A, A′ ∈ V ∗
h there holds

∣
∣∣
∣
∑

F∈Fh

∫

F

{
μ–∇ × A

}
ω

· [A′]
T

∣
∣∣
∣

≤ ς /


{ ∑

T∈Th

hT
∥∥μ–/∇ × A|T

∥∥
L(∂T)

}/∣∣A′∣∣
j,μ.

Here hT := max{‖x – y‖|x, y ∈ T} is the diameter of mesh element T ∈ Th.

Proof For an arbitrary inner face F = ∂T ∩ ∂T we have by the Cauchy-Schwarz (CS)
inequality

∣∣
∣∣

∫

F

{
μ–∇ × A

}
ω

· [A′]
T

∣∣
∣∣

≤
∣
∣∣
∣

∫

F

(
ω

μ
∇ × A +

ω

μ
∇ × A

)∣∣∣
∣

/∣∣∣
∣

∫

F

∥∥[
A′]

T

∥∥
∣
∣∣
∣

/

. ()

By using Cauchy-Schwarz again we see that
∥
∥∥
∥

ω

μ
∇ × A +

ω

μ
∇ × A

∥
∥∥
∥

≤
(

ω


μ
+

ω


μ

)/(∥∥μ–/
 ∇ × A

∥
∥ +

∥
∥μ–/

 ∇ × A
∥
∥)/

≤ a/
F

(
γμ,F

aF

)/(∥∥μ–/
 ∇ × A

∥∥ +
∥∥μ–/

 ∇ × A
∥∥)/.

Substitute this back into () to get
∣
∣∣∣

∫

F

{
μ–∇ × A

}
ω

· [A′]
T

∣
∣∣∣

≤
(

γμ,F

aF

)/∥∥[
A′]

T

∥∥
L(F)

[
aF

∫

F

(∥∥μ–/
 ∇ × A

∥∥ +
∥∥μ–/

 ∇ × A
∥∥)

]/

. ()

Similarly, for a boundary face F ∈Fb
h we have

∣
∣∣
∣

∫

F

{
μ–∇ × A

}
ω

· [A′]
T

∣
∣∣
∣

(CS)≤ √
μaF

∥
∥[

A′]
T

∥
∥

L(F)

∣∣
∣∣aF

∫

F

∥
∥μ–/∇ × A

∥
∥

∣∣
∣∣

/

. ()
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Now use ()-() to bound the sum over all faces,

∣∣
∣∣
∑

F∈Fb
h

∫

F

{
μ–∇ × A

}
ω

· [A′]
T +

∑

F∈F i
h

∫

F

{
μ–∇ × A

}
ω

· [A′]
T

∣∣
∣∣

()-()≤
∑

F∈Fb
h

√
μaF

∥∥[
A′]

T

∥∥
L(F)

{
aF

∫

F

∥∥μ–/∇ × A
∥∥

}/

+
∑

F∈F i
h

(
γμ,F

aF

)/∥∥[
A′]

T

∥∥
L(F)

{
aF

∫

F

(∥∥μ–/
 ∇ × A

∥∥

+
∥
∥μ–/

 ∇ × A
∥
∥)

}/

(CS)≤
{ ∑

F∈Fh

γμ,F

aF

∥
∥[

A′]
T

∥
∥

L(F)

}/

×
{ ∑

F∈F i
h

aF

∫

F

(∥∥μ–/
 ∇ × A

∥
∥ +

∥
∥μ–/

 ∇ × A
∥
∥)

+
∑

F∈Fb
h

aF

∫

F

∥∥μ–/∇ × A
∥∥

}/

≤ ς /


{ ∑

T∈Th

hT

∫

∂T

∥∥μ–/∇ × A|T
∥∥

}/∣∣A′∣∣
j,μ,

where we have regrouped the face contributions and used that aF ≤ ςhT in the last step,
cf. (). �

Using Lemma  we can finally prove discrete coercivity.

Lemma  (Discrete coercivity) The bilinear form aSWIP
h is coercive: For all η > C

trς and
all h ∈H there holds

aSWIP
h (Ah, Ah) ≥ Cstab‖Ah‖

SWIP ∀Ah ∈ Vh,

with Cstab = min( η–C
trς

+η
, ). The constant Ctr stems from the discrete trace inequality ()

and is independent of h, μ, ε, ς.

Proof By definition of aSWIP
h we have

aSWIP
h (Ah, Ah) =

∥∥μ–/∇ × Ah
∥∥

L(�)

– 
∑

F∈Fh

∫

F

{
μ–∇ × Ah

}
ω

· [Ah]T

+
∑

F∈Fh

ηγμ,F

aF

∥∥[Ah]T
∥∥

L(F) + ε
∥∥μ–/Ah

∥∥
L(�) .
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Now let us give a bound on the second term on the right-hand side using Lemma ,

∣∣
∣∣
∑

F∈Fh

∫

F

{
μ–∇ × Ah

}
ω

· [Ah]T

∣∣
∣∣

≤ ς /


{ ∑

T∈Th

hT
∥
∥μ–/∇ × Ah|T

∥
∥

L(∂T)

}/

|Ah|j,μ

≤ Ctrς
/


∥∥μ–/∇ × Ah
∥∥

L(�) |Ah|j,μ,

where we have used the discrete trace inequality () componentwise in the last step.
Hence,

aSWIP
h (Ah, Ah)

≥ ε
∥
∥μ–/Ah

∥
∥

L(�)

+
∥∥μ–/∇ × Ah

∥∥
L(�)

︸ ︷︷ ︸
:=x

–  Ctrς
/
︸ ︷︷ ︸

:=β

∥∥μ–/∇ × Ah
∥∥

L(�) |Ah|j,μ + η |Ah|j,μ︸ ︷︷ ︸
:=y

.

Now use the inequality x – βxy + ηy ≥ η–β

+η
(x + y) which holds for arbitrary β , η, x, y

as outlined above (it follows from (βx – ηy) + (x – βy) ≥ ):

aSWIP
h (Ah, Ah)

≥ η – C
trς

 + η

(∥∥μ–/∇ × Ah
∥∥

L(�) + |Ah|j,μ
)

+ ε
∥∥μ–/Ah

∥∥
L(�)

≥ Cstab
(∥∥μ–/∇ × Ah

∥∥
L(�) + |Ah|j,μ + ε

∥∥μ–/Ah
∥∥

L(�)
)
.

Finally, we note that Cstab >  if η > C
trς which completes the proof. �

Lemma  (Boundedness) There exists a constant Cbnd >  independent of h, μ, and ε such
that for all A ∈ V ∗

h , all A′
h ∈ Vh, all h ∈H

aSWIP
h

(
A, A′

h
) ≤ Cbnd‖A‖SWIP,∗

∥
∥A′

h
∥
∥

SWIP.

Proof We start by splitting the bilinear form aSWIP
h into five terms,

aSWIP
h

(
A, A′

h
)

=
∫

�

(
μ–∇ × A

) · (∇ × A′
h
)

–
∑

F∈Fh

∫

F

{
μ–∇ × A

}
ω

· [A′
h
]

T

–
∑

F∈Fh

∫

F

{
μ–∇ × A′

h
}

ω
· [A]T

+
∑

F∈Fh

ηγμ,F

aF

∫

F
[A]T · [A′

h
]

T +
∫

�

ε

μ
A · A′

h

= T + T + T + T + T.
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We can now bound these terms individually,

|T|
(CS)≤ ∥∥μ–/∇ × A

∥∥
L(�)

∥∥μ–/∇ × A′
h
∥∥

L(�) ≤ ‖A‖SWIP
∥∥A′

h
∥∥

SWIP,

|T| Lemma ≤ ς /
 ‖A‖SWIP,∗

∥
∥A′

h
∥
∥

SWIP,

|T| Lemma ≤ ς /


{ ∑

T∈Th

hT
∥
∥μ–/∇ × A′

h
∣
∣
T

∥
∥

L(∂T)

}/

‖A‖SWIP

Lemma ≤ Ctrς
/


∥
∥μ–/∇ × A′

h
∥
∥

L(�)‖A‖SWIP

≤ Ctrς
/


∥∥A′
h
∥∥

SWIP‖A‖SWIP,

|T|
(CS)≤ η|A|j,μ

∣∣A′
h
∣∣
j,μ ≤ η‖A‖SWIP

∥∥A′
h
∥∥

SWIP,

|T|
(CS)≤

∥
∥∥∥

√
ε

μ
A

∥
∥∥∥

SWIP

∥
∥∥∥

√
ε

μ
A′

h

∥
∥∥∥

SWIP
≤ ‖A‖SWIP

∥∥A′
h
∥∥

SWIP. �

Finally, we can combine the previous results into one theorem.

Theorem  (Error estimate) Let A ∈ V ∗ be a solution of the strong formulation ()-() (in
the sense of distributions) and let Ah ∈ Vh ⊆ P

k(Th) solve the variational formulation ().
Then there exist constants C > , Cη > , both independent of h, μ, and ε such that for η > Cη

‖A – Ah‖SWIP < C inf
vh∈Vh

‖A – vh‖SWIP,∗, ()

and the discrete problem () is well-posed. The constant Cη depends on ς, k and C depends
on η, ς, k.

This theorem tells us that the total error is bounded by the best approximation error
(w.r.t. suitable norms). Note that we didn’t make any assumption on how the submeshes
Th, and Th, meet at �. In order to get rates of convergence we will have to make additional
assumptions about the approximation space Vh and the exact solution A. This will be the
topic of Section .

Proof of Theorem  In this proof C denotes an arbitrary, positive constant that is indepen-
dent of h, μ, ε, and that may take a different value every time it used. We begin by picking
an arbitrary vh ∈ Vh. Then, by the triangle inequality,

‖A – Ah‖SWIP ≤ ‖A – vh‖SWIP + ‖vh – Ah‖SWIP. ()

This is almost the statement of Theorem . It remains to bound ‖Ah – vh‖SWIP,

‖Ah – vh‖SWIP
Lemma ≤ C

aSWIP
h (Ah – vh, Ah – vh)

‖Ah – vh‖SWIP

Lemma = C
aSWIP

h (A – vh, Ah – vh)
‖Ah – vh‖SWIP

Lemma ≤ C
‖A – vh‖SWIP,∗‖Ah – vh‖SWIP

‖Ah – vh‖SWIP

= C‖A – vh‖SWIP,∗.



Casagrande et al. Journal of Mathematics in Industry  (2016) 6:4 Page 12 of 25

Inserting this bound into () (which holds for arbitrary vh) yields the assertion. Note that
the bilinear form aSWIP

h is coercive (Lemma ) and bounded (finite dimensions). Thus,
Lax-Milgram assures the well-posedness of the discrete problem. �

Remark  Observe that for ε →  the variational formulation () becomes ill-posed. To
see this we observe that the ‖·‖SWIP norm ‘becomes’ a semi-norm as ε → . In order to
study the behavior as ε →  it is thus desirable to state the discrete coercivity (Lemma )
w.r.t. a norm that does not depend on ε: We use that ‖Ah‖

SWIP ≥ ε‖μ–/Ah‖
L and thus

Lemma () can be rewritten as

aSWIP
h (Ah, Ah) ≥ εCstab

∥∥μ–/Ah
∥∥

L . ()

We see now clearly that the coercivity constant depends linearly on ε, i.e. the discrete
problem becomes ill-posed as ε → .

4 Rate of convergence for edge functions
In the following we will bound the best approximation error appearing in Theorem  for
edge functions of the first kind. For this we assume, in addition to (), that aF is uniformly
bounded from below in the sense that there exists a constant ς such that for all h ∈H, all
T ∈ Th and all F ∈FT we have

aF ≥ ςhT . ()

For the remainder of this section, let us choose Vh = Rk(�) ⊕ Rk(�) ⊂ P
k(Th) where

Rk is the space of k-th order edge functions (k =  are the lowest order, H(curl) conforming
Whitney elements, cf. [], Eq. (.)). Because the sub-meshes Th,, Th, are conforming,
the spaces Rk(�), Rk(�) are H(curl) conforming. We can thus use the standard projec-
tion operator rh as it is defined in [], Section ., for edge functions on �, � to build
our global projection operator πh : V ∗ → Vh,

A �→ (
rh(A|� ), rh(A|� )

)
.

The following theorem then gives an upper bound for the best approximation error of
Theorem :

Theorem  Assume the exact solution of ()-() is such that A ∈ H(curl,�) ∩ Hs({�,
�}), ∇ × A ∈ Hs({�,�}) with integer  ≤ s ≤ k. Then

‖A – πhA‖SWIP,∗ < Chs–
∑

i=

(‖A‖Hs(�i) + ‖∇ × A‖Hs(�i)
)
.

Here C depends on μ, ς, k, ε but not on h. Moreover if ε < , C is independent of ε.

Remark  By combining Theorem  with Theorem  we see that for a sufficiently smooth
exact solution A, the total error ‖A – Ah‖SWIP = O(hk–) if k-th order edge functions are
used. In comparison to standard FEM on conforming meshes one order of convergence is
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lost. Theoretically it is possible that there exists another projector π̃h which would give a
better rate of convergence, but numerical experiments show that Theorem  is sharp for
k =  (see Section ).

In order to prove the above theorem we will make use of two Lemmas to bound the face
contributions.

Lemma  Let TH, be a sequence of shape regular, conforming, simplical meshes of the
domain �. Suppose there exists an integer  ≤ s ≤ k such that u ∈ Hs(�) and ∇ × u ∈
Hs(�). Then ∀T ∈ Th, ∈ TH,

‖u – rhu‖L(∂T) ≤ Chs–/
T

(‖u‖Hs(T) + ‖∇ × u‖Hs(T)
)
,

where C is independent of hT , T .

For the proof of Lemma  we refer the reader to [], Lemma . (which is proven
element-wise).

Lemma  Let TH, be a sequence of shape regular, conforming, simplical meshes of �.
Assume u ∈ Hs(�) for some integer  ≤ s ≤ k and u transforms such that it preserves the
divergence, i.e. if F : T̂ → T , û �→ u is an arbitrary mapping then u transforms as

u ◦ F =


|det(DF)|DFû. ()

Then the following estimate holds:

‖u – wT u‖L(∂T) ≤ Chs–/
T ‖u‖Hs(T) ∀T ∈ Th, ∈ TH,,

where wT : H(T) → Dk is the standard (local) interpolation operator for k-th or-
der Thomas-Raviart elements Dk [], Section .. The constant C does not depend on
hT , T .

Proof In order to simplify notation we will assume in this proof that C >  is an arbitrary
constant independent of h, T that may take a different value every time it is used. We note
that since u ∈ Hs(T), wT u is well defined by [], Lemma .. Now split the integral over
∂T into its facet contributions,

‖u – wT u‖
L(∂T) =

∑

FT ∈FT

∫

FT

|u – wT u|.

Since our mesh contains only tetrahedrons we can find for every FT ∈ FT a linear trans-
formation �T ,FT : T̂ → T which maps the reference element T̂ onto the actual element T
such that the pre-image F̂T of facet FT lies in the x-y plane of T̂ ,

�T ,FT : x̂ �→ BT ,FT x̂ + bT ,FT ,
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where BT ,FT ∈ R
×. Now using the usual change of variables together with () we obtain

∫

FT

|u – wT u| =
∫

F̂T

∣
∣det(BT ,FT )–BT ,FT (û – ŵT u)

∣
∣∣∣(BT ,FT ):, × (BT ,FT ):,

∣
∣

=
area(FT )

area(F̂T )|det(BT ,FT )|
∫

F̂T

∣∣BT ,FT (û – wT̂ û)
∣∣

≤ Ch
T
∣∣det(BT ,FT )

∣∣–‖BT ,FT ‖‖û – wT̂ û‖
L(F̂T ) . ()

Here (BT ,FT ):,i denotes the i-th column of BT ,FT , ŵT u is defined by (), and we have used
that ŵT u = wT̂ û [], Lemma .. Now notice that û – wT̂ û ∈ Hs(T̂) and thus we can use
the trace inequality [], Theorem .,

‖û – wT̂ û‖L(F̂T ) ≤ ‖û – wT̂ û‖L(∂T̂) ≤ C‖û – wT̂ û‖H(T̂) .

For the next step we note that ∀φ ∈ P
k–(T̂) ⊂ Dk(T̂) we have φ = wT̂φ by the defini-

tion of wT̂ (Dk is the H(div;�) conforming Raviart-Thomas space, see [], Section .).
Therefore,

‖û – wT̂ û‖H(T̂) ≤ ∥
∥(I – wT̂ )(û + φ)

∥
∥

H(T̂) ≤ C‖û + φ‖H(T̂) ,

where we have used that wT̂ : H(T̂) → Dk is a bounded operator, i.e. ‖wT̂ û‖H(T̂) ≤
C‖û‖H(T̂) (cf. Proof of [], Theorem .). Since φ is arbitrary we can use the Deny-
Lions theorem [], Theorem .,

‖û – wT̂ û‖L(T̂) ≤ C inf
φ∈Pk–(T̂)

‖û + φ‖H(T̂) ≤ C|û|Hs(K̂) . ()

Finally we have to map |û|Hs(T̂) back to the actual element T . For this observe that using
(),

∂α

∂ x̂α
û = det(BT ,FT )B–

T ,FT

∂α

∂ x̂α
(u ◦ �T )

with |α|	 = s being a multi-index. Therefore,

|û|Hs(T̂) =
∑

|α|
	 =s

∫

T̂

∣
∣∣
∣
∂αû
∂ x̂α

∣
∣∣
∣



≤ ∣∣det(BT ,FT )
∣∣∥∥B–

T ,FT

∥∥ ∑

|α|
	 =s

∫

T̂

∣
∣∣
∣
∂α(u ◦ �T )

∂ x̂α

∣
∣∣
∣



≤ C
∣
∣det(BT ,FT )

∣
∣∥∥B–

T ,FT

∥
∥‖BT ,FT ‖s∣∣det(BT ,FT )

∣
∣–|u|Hs(T) , ()

where we have used [], Lemma ., in the last step. Now combining ()-() gives.

‖u – wT u‖
L(FT )

≤ C
∣∣det(BT ,FT )

∣∣–h
T‖BT ,FT ‖∥∥B–

T ,FT

∥∥‖BT ,FT ‖s|u|Hs(T)

≤ Chs–
T |u|Hs(T) .
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Here we have used [], Lemma ., together with the fact that the mesh sequence is
shape regular. Now summing over all facets FT ∈ FT yields the assertion. �

Using these Lemmas we can finally give a bound for ‖A – πhA‖SWIP,∗.

Proof of Theorem  In order to simplify notation, C denotes in this proof an arbitrary,
positive constant that is independent of h. Note that the interpolation operator rh(A|� ) is
well defined for s ≥  by the Sobolev Embedding Theorem and [], Lemma .. Because
the sub-meshes of �, � are conforming themselves, rh(A|� ) is tangentially continuous
across all inner, conforming faces. The same holds for � and because A ∈ H(curl;�) the
exact solution is also tangentially continuous across all inner faces. Therefore only jump
terms across the faces F ∈ F�,b

h := Fb
h ∪ {F ∈ F i

h|F ⊂ � ∩ �} remain in the definition of
the jump semi-norm |·|j,μ, i.e. we have to bound

‖A – πhA‖
SWIP,∗

=
∥∥μ–/∇ × (A – πhA)

∥∥
L(�)

︸ ︷︷ ︸
:=T

+ ε
∥∥μ–/(A – πhA)

∥∥
L(�)

︸ ︷︷ ︸
:=T

+
∑

F∈Fb,�
h

γμ,F

aF

∥
∥[A – πhA]T

∥
∥

L(F)

︸ ︷︷ ︸
:=T

+
∑

T∈Th

hT
∥
∥μ–/∇ × (A – πhA)

∥
∥

L(∂T)

︸ ︷︷ ︸
:=T

. ()

Since μ is piecewise constant on each �i,μ ∈ P� there are constants μmin, μmax such that
 < μmin ≤ μ ≤ μmax. T and T are easily bounded using [], Theorem .:

T + T ≤ μ–
min max(, ε)

[∥∥∇ × (A – πhA)
∥
∥

L(�) +
∥
∥(A – πhA)

∥
∥

L(�)

]

≤ Chs

[ ∑

i=

(‖A‖Hs(�i) + ‖∇ × A‖Hs(�i)
)
]

.

The term T is bounded using Lemma ,

T ≤ μ–
min

∑

F∈Fb,�
h

a–
F

(‖A – πhA|T‖
L(F) + ‖A – πhA|T‖

L(F)
)

≤ C
∑

T∈Th

∑

F∈FT ∩Fb,�
h

h–
T ‖A – πhA|T‖

L(F)

≤ C
∑

T∈Th

∑

F∈FT ∩Fb,�
h

hs–
T

(‖A‖
Hs(T) + ‖∇ × A‖

Hs(T)
)

≤ Chs–
∑

i=

(‖A‖
Hs(�i) + ‖∇ × A‖

Hs(�i)
)
.

Here we have used that aF ≥ ςhT .
In order to bound the term T we first note that the global Thomas-Raviart interpolation

operator wh(∇ × A|�i )i=, is well defined by [], Lemma .. Thus, ∇ × [rh(A|�i )] =
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wh(∇ × A|�i ) by [], Lemma ., and we can bound T as follows:

T ≤ μ–
min

∑

T∈Th

hT
∥
∥∇ × A – wh(∇ × A)

∥
∥

L(∂T)

≤ C
∑

T∈Th

hs
T ‖∇ × A‖

Hs(T) ≤ Chs
∑

i=

‖∇ × A‖
Hs(�i) ,

where we have used Lemma  and the fact that hT ≤ h. �

Remark  From the proof of Theorem  it is clear that for h sufficiently small the term
T dominates the other three terms and is thus responsible for the loss of one order of
convergence as pointed out in Remark . Interestingly T sums the jump terms only over
the faces Fb,�

h . This suggests that it suffices to use (k + )-th order edge functions in el-
ements adjacent to Fb,� and k-th order edge functions everywhere else to achieve O(hk)
order convergence. This can be implemented easily by using a hierarchical basis for the
edge functions [].

5 The local length scale aF and h-convergence
So far we have assumed that the local length scale aF fulfills (), () in order to derive an
a-priori error estimator, i.e.  < ςhT ≤ aF ≤ ςhT . We will now study the following three
concrete choices for aF :

• a()
F := 

 (hT + hT ) if F ∈F i
h and a()

F = hT for F ∈Fb
h , see [], Remark .,

• a()
F := min(hT , hT ) if F ∈F i

h and a()
F = hT for F ∈Fb

h , see [],
• a()

F := hF if F ∈Fh, see [, ],
where hT , hT are the diameters of the adjacent elements of face F and hF is the diameter
of face F . It turns out that for each choice of aF we have to make additional assumptions
on the mesh such that aF fulfills (), (). So once we have chosen a concrete aF we can
think of ς, ς as mesh dependent parameters. The important point is that the constants
C in Theorems  and  depend on the constants σmax, ς, ς but they do not depend in any
other way on the shape of the underlying meshes. Hence, if we can show that σmax, ς, ς

are independent of the way that TH,, TH, intersect at the sliding interface �, then there
must be an upper bound on the total error ‖A – Ah‖ that is independent of the relative
position of TH, to TH, and that tends to  as h → .

Let us now discuss the precise conditions on the mesh for each choice of aF : For a()
F , a()

F

we require TH to be quasi-uniform at the sliding interface �:

Definition  A mesh-sequence TH is said to be quasi-uniform at � if it is shape regular
() and if there exists a constant σ >  such that for all h ∈ H, all T ∈ T �

h := {T ∈ Th|
∂T ∩ � �= ∅}:

hT ≥ σ max
T̃∈T �

h

hT̃ . ()

Lemma  If the mesh is quasi-uniform at � then a()
F , a()

F fulfill conditions (), () and
the constants σmax, ς, ς are independent of the way TH,, TH, intersect at �.
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Proof a()
F ≥ 

 hTi follows immediately from the definition for i = , . For the other direc-
tion we use () and get a()

F ≤ 
 ( + σ –

 )hTi . Moreover, σhTi ≤ a()
F ≤ hTi . �

The lemma above asserts that the choices a()
F , a()

F lead to a method that converges in-
dependently of the way that the two mesh-sequences TH,, TH, intersect at �. In partic-
ular the faces can be very tiny ‘slivers’ (i.e. triangles with high aspect ratio). But note that
the choice of aF determines the required minimum value of the penalty parameter (see
Lemma ).

By substituting a()
F into () we see that we need an estimate of the form hF ≥ ςhT in

order for Theorem  to hold. However if two meshes are sliding against each other such
an estimate is not feasible since hF can become arbitrarily small in comparison to hT . In
other words, the constant ς depends on the way TH, intersects with TH,. Nevertheless
using a()

F in the variational formulation  seems to work in practice (see below).

5.1 Numerical examples
We study the behavior of the SWIP formulation for the three different choices of the lo-
cal length scale aF ; As in [] we consider a D sphere with radius  that is split into two
hemispheres, � and � (cf. Figure ). For each hemisphere we create a sequence of quasi-
uniform meshes, TH, and TH,, which approximate the boundary linearly. We impose the
analytical solution A = (sin y, cos z, sin x) and choose ji, gD such that they fulfill ()-().

Figure  shows the error in the curl-semi-norm for different angles of rotation, for all
three choices of aF , and for different mesh-sizes h. We can see that although the error
depends slightly on the angle, it converges to zero in all three formulations as h is decreas-
ing. Moreover we see that the choices a()

F , a()
F yield similar results which are slightly better

than the choice a()
F .

In order to illustrate the estimates of Theorems  and  we plot the error for a series of
quasi-uniform meshes in Figure  for aF = a()

F .a As in [] no convergence is observed when
first order edge functions (k = ) are employed which implies that Theorem  is sharp for
k = . For k =  and k =  we observe rates of convergence O(h.) and O(h.), respectively,
which affirms Theorems  and .

For Vh = P(Th) we observe the rate of convergence O(h), i.e. there is no loss of one
order of accuracy. This is because P

(Th) spans the full polynomial space (see [] for a
proof ).

Figure 3 The meshes for the two half spheres. The upper hemisphere is turned against the lower
hemisphere by θ = 2.86 degrees to create a non-conforming mesh.
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Figure 4 The relative H(curl) error vs. the rotation angle for three different choices of aF and 4
different mesh-sizes: h = 0.638174, 0.482025, 0.359644, 0.261798. Second order edge functions R2 were
used for discretization and ε = 10–6, η = 50, μ ≡ 1. Note that the curve for a(2)F is partially hidden by the one

of a(1)F .

Figure 5 h-convergence. The relative H(curl) error vs. the mesh size h for rotation angle θ = 0.05 rad (solid
lines). The dashed lines correspond to θ = 0.01n, n ∈ 0, 1, . . . , 49. aF = hF , ε = 10–6, η = 50, μ ≡ 1.

Remark  The observed rates for k =  and k =  are higher than the rates O(h), O(h)
which we expect from Theorem . This is due to the better approximation properties of
the edge functions in the inside of the two hemispheres (cf. Remark ).

Remark  Strictly speaking this numerical experiment does not fit the framework devel-
oped in Sections ,  because � is not a polyhedron. Extending the theory to domains
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with curved boundary ∂� is beyond the scope of this paper but Figure  suggests that the
order of convergence for k = , k =  is the same as for polyhedral domains.

6 The regularization parameter ε

So far we have looked at the regularized system ()-() and it was shown that the proposed
method yields the expected rates of convergence for ε > . However, genuine magnetostat-
ics amounts to choosing ε = . We will consider two approaches to solve the system ()-()
with ε = : On the one hand we will try to set ε =  directly and on the other hand we will
study the effect of choosing ε small enough such that the error due to regularization is
negligible.

6.1 The case ε = 0
If we set ε = , the boundary value problem ()-() does not have a unique solution. Indeed
the continuous curl-curl operator has an infinite-dimensional kernel and the non-zero
eigenvalues are well separated from  [], Corollary .. If one uses H(curl) conforming
edge functions of the first kind on a conforming mesh it can be shown that the discrete
curl-curl operator has a (finite-dimensional) kernel and that the discrete eigenvalues are
well separated from it [], Discrete Friedrichs inequality, Lemma ., i.e. edge functions
of the first kind yield a spectrally accurate discretization of the curl-curl operator. From
a theoretical point of view it remains unclear whether this property carries over to the
SWIP formulation (), cf. [].

Therefore the spectrum of the aSWIP
h bilinear form is investigated in a numerical experi-

ment. The setup is very similar to the one in the previous section: The domain � consists
of two half-spheres which can be rotated against each other by an angle θ . However this
time we only assemble the matrix of the aSWIP

h bilinear form with ε = , aF = a()
F

b and
compute its eigenvalues using the eig routine of MATLAB Ra.

Figure  shows the smallest and largest non-zero eigenvalues of the SWIP formulation
for different mesh-widths h and different angles θ (dashed, blue lines) (an eigenvalue has
been classified as non-zero if its absolute value is greater than –). For comparison we
have also plotted the eigenvalues of a standard H(curl) conforming discretization using
second order edge functions on the conforming grid with θ =  (green lines).

We see that the bandwidth of the SWIP eigenvalues is comparable to the bandwidth of
the H(curl) conforming discretization for many angles. But we also observe that for some
angles the lower end of the spectrum tends to zero. In order to better understand this phe-
nomena we plotted the smallest/largest non-zero eigenvalues of the SWIP discretization
against θ for one mesh-size (Figure ). We now see that the lower end of the spectrum de-
teriorates as θ → , i.e. we can expect spectral pollution for very small angles. This agrees
with the observations of [].

The previous considerations indicate that the aSWIP
h bilinear form is not suitable to solve

the Maxwell Eigenvalue Problem. However in this work we are concerned with the curl-
curl source problem ()-(). Although the Galerkin matrix becomes singular for ε =  we
can in principle still solve the linear system if it is consistent, i.e. if the right-hand side
lies in the range of the Galerkin matrix. Then the solution Ah is not unique anymore, but
curlAh is.

We attempt to solve the linear system of equations using the conjugate gradient (CG)
method []. In [] it is shown that the CG method converges for consistent, symmetric
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Figure 6 The smallest/largest non-zero eigenvalue for ε = 0 is plotted against the meshwidth for 50
different angles of rotation (dashed lines). For comparison the smallest/largest non-zero eigenvalue of a
H(curl) conforming discretization based on second order edge functions is plotted as well. The angles are
θ = 0.01n rad, n ∈ 0, . . . , 49 and R2 edge functions were used to discretize aSWIP

h , μ ≡ 1.

Figure 7 Smallest/Largest non-zero eigenvalues vs. the rotation angle θ for h = 0.359644, ε = 0,
μ ≡ 1. The discretization is based on R2 edge functions.

positive semi-definite problems and that its rate of convergence is determined by the non-
zero eigenvalues. In particular, the number of CG iterations is related to the generalized
condition number κ = λmax

λmin
where λmin is the smallest, non-zero eigenvalue of the system

matrix. If again we take a look at Figure  it becomes clear that κ → ∞ as θ → . I.e. the
number of CG iterations should increase as θ → .
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Table 1 Number of CG iterations for θ → 0, h = 0.359, ε = 0; the discretization is based on R2

edge functions

θ [rad] No preconditioner ILUPACK

10–1 1,118 135
10–2 3,705 214
10–3 3,731 320
10–4 6,102 426

This has been confirmed in a numerical experiment: We take the example from Section 
with the same analytical solution and chose the right-hand side ji = ∇ × (∇ × A) (ε = ,
μ ≡ ). Table  provides the number of CG iterations required to reach the prescribed
tolerance –. We see that without a preconditioner the computational cost for the angle
θ = – is almost  times larger than for θ = –. For comparison we also list the number
of iterations needed when the multi-level ILU decomposition ILUPACK is employedc [].
In this case the number of iterations also increases but the factor  is reduced to ≈ ..

Remark  Although the right-hand side ji chosen in the numerical experiment above is
clearly divergence free, there is no guarantee that its discrete counterpart 	h is so too, i.e. it
is not clear that the right-hand side vector b, that is associated with 	h, lies in the range of
the system matrix. We have investigated this by splitting the right-hand side vector b into
a part that lies in the kernel of the system matrix, b̃, and into it’s orthogonal complement,
b̃⊥. It turned out that for all angles ‖b̃⊥‖/‖b‖ ≈ –, which seems to be sufficient for
CG to converge.

We can conclude that setting ε =  is in principal possible if the right hand side vector b
lies in the range of the system matrix. However checking this for non-zero right hand sides
ji is a non-trivial task because we don’t know a-priori the kernel of the system matrix aSWIP

h .
Moreover the system matrix becomes ill-conditioned as the angle θ →  which causes an
increase in the number of CG iterations.

Remark  For H(curl) conforming discretizations, which fulfill the discrete sequence
property, the kernel of the system matrix is known. In particular it is easily proven that
div ji =  implies that 	h lies in the range of the system matrix. Unfortunately it is not clear
whether this property carries over to the SWIP formulation () because to the best of
our knowledge there exists no characterization of the kernel of aSWIP

h on arbitrarily non-
conforming meshes.

6.2 The case 0 < ε � 1
We saw in the previous section that setting ε =  is in practice not feasible. Therefore
we study a different approach: We choose ε so small that the error due to regularization
becomes negligible. To make this more explicit we bound the total error between the dis-
crete, regularized solution Aε

h and the exact solution of ()-() with ε = , A, by two
contributions:

∥∥μ–∇ × (
Aε

h – A)∥∥
L(�) ≤ ∥∥μ–∇ × (

Aε
h – Aε

)∥∥
L(�)

+
∥∥μ–∇ × (

Aε – A)∥∥
L(�) , ()
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herein Aε is the exact solution of the regularized system ()-(). Clearly the second com-
ponent is independent of the discretization and thus h, but it depends on ε for a given
problem. Moreover, the first term depends on h but is independent of ε because the con-
stant C of Theorems  and  is independent of ε.

It is thus desirable to choose ε small such that ‖∇ × (Aε – A)‖L(�) � ‖∇ ×
(Aε

h – Aε)‖L(�) . However, as ε →  the discrete problem becomes ill-posed and solvers
typically fail to converge, cf. Remark , Section ..

We try to circumvent this problem by two approaches:
• For small problems we use the Sparse Cholesky Decomposition of PARDISO []

(Intel MKL Version .) and solve the linear system of equations directly.
• For problems whose Cholesky Decomposition does not fit into memory we use the

Conjugate Gradient Method together with ILUPACK [] as a preconditioner (using
the settings of Section .).

Remark  We are only interested in the curl of the solution, i.e. the magnetic field B. If
we were to look at A instead of ∇ × A then ‖Aε

h – Aε‖L(�) would not be independent of
ε as can be seen from Theorem .

The following Lemma gives us a guideline for choosing ε.

Lemma  If we impose homogeneous Dirichlet data, gD ≡ , we have,

‖μ–/∇ × (Aε – A)‖L(�)

‖μ–/∇ × A‖L(�)
≤ ε

α , ()

where α is the smallest, non-zero eigenvalue of ∇ × (μ–∇ × A) = αA. If μ is constant in
� we can choose α =

√
π/lmax where lmax is the maximum side length of a cuboid that

contains �.

The first part of this lemma is proven in [], Lemma ., and for the second part we use
a result of [], Section .

By comparing () with () we see that ‖μ–∇ × (Aε
h – Aε)‖L(�) = O(hk–) for k order

edge functions. Therefore ε should be chosen such that ε ∼ hk– as the mesh is refined.

Numerical example: We consider the same setup as in the previous section (cf. Figure )
with but we choose a different μ for the upper and lower hemisphere. The analytic solution
is chosen as A = (sin y, ,μ sin x). ji is chosen such that A fulfills ()-() with ε = .

We solve the system of linear equations using PARDISO for different values of ε and
μ (as in the previous section we choose aF = a()

F ). Figure  shows the total relative error
‖μ–/∇ × (Aε

h – A)‖L(�) as a function of ε for various mesh-sizes. The solid lines show
the error for μupper/μlower =  whereas the dashed lines show it for μupper/μlower = .

We note that the errors are almost identical for both choices of μ. Moreover, we observe
that for ε < – the discretization error ‖μ–/∇ × (Aε

h –Aε)‖L(�) (which here includes the
error due to boundary approximation, cf. Remark ) clearly dominates the regularization
error ‖μ–/∇ × (Aε – A)‖L(�) whereas for ε > – the regularization error is dominated
by the discretization error. This is what we can expect from the previous discussion. In
fact, if we use Lemma  and fit the two hemispheres into a cube of side length lmax = ,
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Figure 8 Relative L2-error of curl vs. ε for multiple mesh-sizes h. The solid lines show the error for
μupper = 10, μlower = 0.1 whereas the dashed lines show it for μupper = 106, μlower = 0.1. The meshes have
been rotated against each other by θ = 0.057 degrees and second order edge functions (k = 2) were used for
discretization.

Table 2 Relative runtimes for ε → 0, h = 0.359; the discretization is based on R2 edge
functions and θ = 10–4 rad. The runtimes have been normalized with the runtime for ε = 10–1

ε PARDISOa ILUPACKb

10–1 1 1
10–2 1.01 1.41
10–3 1.01 1.42
10–4 1.02 1.43
10–5 0.98 1.42

aTime includes Cholesky factorization and back-substitution
bTime includes ILU factorization and CG iterations

we get α = π/. The black, dashed line in Figure  visualizes the corresponding estimate
() and we see that for ε large the behavior is clearly linear, as proven in Lemma , and
that the estimate is valid even though gD �=  and μ is not constant.

Remark  The same results are obtained if CG together with ILUPACK is used. For
brevity we omit these results here.

We would like to point out that by using the direct solver PARDISO we were able to solve
the resulting system of linear equations for ε as small as – and that the time needed
to solve the problem seems to be independent of ε (see Table ). A similar result holds
for preconditioned CG with ILUPACK preconditioner where the system is solvable for
arbitrary small ε (cf. Section .) and the solution time seems to be independent of ε for
ε small enough.

We can thus choose ε (almost) arbitrarily small without affecting the discretization er-
ror ‖μ–/∇ × (Aε

h – Aε)‖L(�) and incurring rising cost for solving the resulting linear
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systems of equations. In other words, one should choose ε as small as possible such that
the resulting linear system can still be solved.

7 Conclusion and outlook
We have proved a-priori error estimators for the interior penalty formulation of the reg-
ularized curl-curl source problem ()-(); If the solution is approximated by k-th order
edge functions we can expect at least convergence of order O(hk–) (provided the exact
solution is sufficiently smooth). In particular, for k =  no convergence was observed in a
numerical experiment [], which implies that our result is sharp. The reason for this is that
Rk does not span the full polynomial space P

k .
The bounds require the mesh to be quasi-uniform at the sliding interface but do not

make any assumptions on how the sub-meshes abut at the sliding interface nor does the
error estimate depend on it. This is confirmed by the numerical experiments and it is ob-
served that the approximation is stable independent of the way the sub-meshes intersect.

Moreover the role of the regularization parameter ε has been investigated; For practical
purposes one can choose ε (almost) arbitrarily small and solve the discrete problem with
a direct solver or by using the preconditioned conjugate gradient method. The error due
to regularization is then dominated by the discretization error of the regularized problem
and is negligible.

Outlook: The proof of Theorem  suggests that it suffices to use nd order edge func-
tions solely in elements adjacent to the non-conforming interface, respectively boundary
faces, to achieve O(h) convergence. This would reduce the required number of unknowns
drastically and should be pursued for practical applications.
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Endnotes
a Based on the results in Figure 4 we can expect similar behavior for other choices of aF .
b The choices a(1)F and a(2)F yield qualitatively the same results. In particular the smallest non-zero eigenvalues also

tend to 0 as ε → 0, cf. Figure 7.
c The ILU factorization is built from the system matrix with ε = 10–6 and the parameters for ILUPACK are: type
sol = 0, partitioning=3, flags=-1,-1, inv. droptol=5, threshold ILU=0.1,
condest=1e-2, residual tol. = 5e-6.
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