Ivorra et al. Journal of Mathematics in Industry (2018) 8:4 ® Journal of Mathematics in Industry
https://doi.org/10.1186/513362-018-0046-3 a SpringerOpen Journal

RESEARCH Open Access

CrossMark
Modelling and optimization applied to
the design of fast hydrodynamic focusing
microfluidic mixer for protein folding
Benjamin Ivorra' @, Miriam R. Ferrandez?, Maria Crespo?, Juana L. Redondo?, Pilar M. Ortigosa?,
Juan G. Santiago® and Angel M. Ramos'
"Correspondence:
ivorra@mat.ucm.es Abstract
o »
|r|]':§§2t§pﬁien2f?f&?;agrzapo MOMAT, In this work, we consider a microfluidic mixer that uses hydrodynamic diffusion
Dept. de Analisis Matematico — stream to induce the beginning of the folding process of a certain protein. To perform
Matemdtica Aplicada, Universidad these molecular changes, the concentration of the denaturant, which is introduced
Complutense de Madrid, Madrid, . . . . L . . .
Spain into the mixer together with the protein, has to be diminished until a given value in a
Full list of author information is short period of time, known as mixing time. In this context, this article is devoted to
available at the end of the article optimize the design of the mixer, focusing on its shape and its flow parameters with

the aim of minimizing its mixing time. First, we describe the involved physical
phenomena through a mathematical model that allows us to obtain the mixing time
for a considered device. Then, we formulate an optimization problem considering the
mixing time as the objective function and detailing the design parameters related to
the shape and the flow of the mixer. For dealing with this problem, we propose an
enhanced optimization algorithm based on the hybridization of two techniques:

a genetic algorithm as a core method and a multi-layer line search methodology
based on the secant, which aims to improve the initialization of the core method.
More precisely, in our hybrid approach, the core optimization is implemented as a
sub-problem to be solved at each iteration of the multi-layer algorithm starting from
the initial conditions that it provides. Before applying it to the mixer design problem,
we validate this methodology by considering a set of benchmark problems and, then,
compare its results to those obtained with other classical global optimization
methods. As shown in the comparison, for the majority of those problems, our
methodology needs fewer evaluations of the objective function, has higher success
rates and is more accurate than the other considered algorithms. For those reasons, it
has been selected for solving the computationally expensive problem of optimizing
the mixer design. The obtained optimized device shows a great reduction in its
mixing time with respect to the state-of-the-art mixers.

Keywords: Global optimization method; Meta-heuristic algorithms; Mathematical
modelling; Microfluidic mixer design

1 Introduction

Proteins are bio-molecules composed of one or more long chains of amino acids. Protein
folding refers to the processes by which these amino acids interact with each other and
produce a well-defined three-dimensional structure, called folded protein, able to perform
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Figure 1 Schematic representation of the microfluidic mixer geometry. The region depicted in dark gray
corresponds to the domain 23p,4. The wide solid black lines highlight the geometry’s symmetry planes.

awide range of biological functions [1]. The fundamental principles of protein folding have
practical applications in genome research, drug discovery, molecular diagnostics or food
engineering. Protein folding can be initiated, for instance, by inducing changes in chemical
potential (e.g. changes in the concentration of a chemical specie).

The primary idea of a micromixer based on molecular diffusion across the fluid stream-
lines was proposed for the first time by Brody et al. in Ref. [2]. This kind of micromixer en-
ables a fast and effective laminar mixing of unfolding proteins and a chemical denaturant,
favoring the folding process. As illustrated in Fig. 1, the considered mixer consists of three
inlet channels and a common outlet channel, being symmetric about its center channel.
Unfolded proteins and chemical denaturant are injected through the inlet channel, while
a background buffer is introduced through the two side inlet channels. The objective is
to rapidly decrease the denaturant concentration to initiate protein folding in the outlet
channel. Since the publication of Brody et al., various researchers have aimed to improve
the micromixer performances [3—5], either by reducing the consumption rate of reactants
or by minimizing the so called mixing time, i.e. the time required to attain a desired denat-
urant concentration (see Sect. 3 for a more detailed definition). For instance, the primary
mixer of Brody et al. [2] exhibited mixing times larger than 10 us, while Hertzog et al. [3]
reported mixing times of 1.2 us.

The aim of this work is to optimize the main design parameters of a particular hydro-
dynamic focused microfluidic mixer (mixer shape and flow injection velocities) for mini-
mizing the mixing time of this device, taking into account that, till the date, the best mixer
designs perform mixing times of approximately 1.0 us [3].

To do so, we consider a general optimization problem of the form:

min T'(¢) (1)

ped

where T': Q — R is the cost function, ¢ is the optimization parameter and ® C R, with
N €N, is the search space. In order to choose a suitable methodology to solve Problem
(1), we outline that in any iterative procedure, the determination of the initial condition
is decisive, especially when 7T has various local minima. For example, gradient methods
such as the Steepest Descent algorithm (SD) [6], may converge to different local minima
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of T depending on their initialization. Nevertheless, these algorithms can still end up with
the global minimum if the initial choice is contained in its attraction basin. Initialization is
also of vital importance for meta-heuristic methods such as Genetics Algorithms (GA) [7,
8], for which a lack of heterogeneity in the individuals of the initial population may yield
to a early convergence to a local minimum of 7' [9]. From a general point of view, choosing
suitable initial conditions can improve the efficiency of existing optimization algorithms
by reducing the number of evaluations of the cost function, which is particularly worthy
when dealing with expensive functional calculations, as it is the case in many industrial
design problems [10-18].

There already exists several optimization algorithms which have been improved by
choosing appropriate initialization techniques. To cite an instance, the Direct Tabu Search
algorithm (DTS) [19, 20] relies on a modification of the cost function which adds penalty
terms and prevent the algorithm to revisit previously investigated neighborhoods. Other
methodologies, such as the Greedy Randomized Adaptive Search Procedure (GRASP),
combine greedy solutions with a local search. Line search methods [6, 21] have been like-
wise modified by coupling them with other optimization algorithms. To give an example,
in [22] the authors combined the Enhanced Unidirectional Search method [23] with the
3-2-3 line search scheme [24], and the resulting optimization method was proven to be
satisfactory for solving high-dimensional continuous non-linear optimization problems.
In the context of Multi-Objective optimization, we underline the approach presented in
[25], a method composed of two line search algorithms: one establishes an initial choice
in the Pareto front and the other one sets a suitable initial condition for exploring the
front.

In this paper, we propose a meta-heuristic technique based on a specific GA combined
with a line search method to dynamically upgrade its population. Our approach is vali-
dated through multiple test cases [26]. The results are then compared with those given
by the following optimization algorithms: SD, GA, DTS, Continuous GRASP (CGR), a
Controlled Random Search algorithm (CRS) [27], and a Differential Evolution algorithm
(DE) [28].

This work is organized as follows. Section 2 introduces a mathematical model which
computes the mixing time for a given mixer design (i.e., mixer geometry and flow injec-
tion velocities). In Sect. 3, we state the optimization problem which aims to minimize the
mixing time by choosing a suitable mixer design. In Sect. 4, we describe the methodology
used to solve the considered optimization problem. Finally, in Sect. 5, we present and dis-
cuss the results obtained during this work. First, we validate the optimization algorithm
on various benchmark problems. Then, we detail and analyze the optimized microfluidic

mixer.

2 Mathematical modelling

Let Q3p be the three-dimensional microfluididic hydrodynamic focusing mixer intro-
duced in Sect. 1, and depicted in Fig. 1. With a view to reduce the simulation domain, we
point out that the mixer geometry has two symmetry planes. Therefore, one only needs
to study a quarter of the mixer, denoted by Q3p, and represented in dark gray in Fig. 1.
Furthermore, Q3p, can be approximated considering a two-dimensional projection, as
suggested in previous works [3, 16, 29]. A representation of this projection, denoted by
Qp4, is shown in Fig. 2.
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Figure 2 Domain £2,p4 and parametrization of the mixer considered when solving the optimization problem

In order to simplify the notations, we introduce © = Qyp,. In the boundary of €, de-
noted by I', we define: I'; the boundary representing the center inlet; I's the boundary
representing the side inlet; I', the boundary representing the outlet; I',; the boundary rep-
resenting the wall defining the lower corner; I',; the boundary representing the wall defin-
ing the upper corner; I';, the boundary representing the Y-axis symmetry. A schematic
representation of these boundaries is given in Fig. 2.

We assume that the liquid flow in the mixer is incompressible [4] and describe the con-
centration distribution of the denaturant by using the incompressible Navier—Stokes equa-
tions coupled with a convection-diffusion equation. Transient behavior of the device is not
required, and, so, we only consider its configuration at stationary state. More specifically,
we describe the flow velocity and the denaturant concentration distribution with the fol-

lowing system of equations [3, 4]:

-V-((Va+(Vu)") —Ip)+ p(u-V)u=0 ing,
V.u=0 in Q, 2)
V. (-DVc¢)+u-Vc=0 in €,

where ¢ is the denaturant normalized concentration distribution, u is the flow velocity
vector (m s71), p is the pressure field (Pa), D is the diffusion coefficient of the denaturant
in the mixer (m?s™1), 5 is the denaturant dynamic viscosity (kg m~' s71), p is the denaturant
density (kg m~3) and I is the identity matrix.

System (2) is completed with the following boundary conditions:
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For the flow velocity u:

u=-uLlmn onTl,

u=-uPsn onT,

n(Vu+(Va)") —Ip)n=0 onT,, (3)
u=0 onl,; U,

n-u=0 and t-(n(Vu+(Vu)")-Ip)n=0 onT,,

where 1, and u, are the maximum side and center channel injection velocities (m s71),
respectively, with corresponding laminar flow profiles P; and P, (parabolas equal to 0 in
the inlet border and unity in the inlet center); and (t, n) is the local orthonormal reference
frame on the boundary.

For the concentration c:

n-(-DVc¢+cu)=—-cyou onTy,
c=0 on [,
n-(-DV¢)=0 onl,,
n-(-DVc+cu)=0 onl,,;UT,,UT,,

(4)

where ¢y = 1 is the initial denaturant normalized concentration in the center inlet. Notice
that the first equation in (4) corresponds to the inward denaturant flux at the center inlet
channel, while the third equation describes the convective flux leaving the outlet channel.
This kind of boundary conditions, typically used for continuous flow systems [30], pre-
serve the continuity of the denaturant concentration at the inlet and outlet boundaries.

3 Optimization problem

Here, we optimize the main design parameters (mixer shape and flow injection velocities)
for minimizing the time required to attain a desired conversion of the denaturant concen-
tration. This denaturant conversion, in turn, induces the folding process of the protein.

First, we specify the set of parameters defining a particular mixer design. Then, we in-
troduce the optimization problem to be solved in Sect. 5.

We consider microfluidic mixers whose geometry can be described by rational Bézier
curves and two ellipsoids (denoted as ellipsoids 1 and 2), similar to the one depicted in
Fig. 2. Part of the ellipsoid 1 joins, in Iy, the outlet and side channels while part of the
ellipsoid 2 joins, in I'y;, the center and side channels. These curves are determined by the
following parameters, suitably bounded to avoid non-admissible shapes (i.e., shape with
intersected curves): the angle 0 € [0,77/3] between I'. and the direction normal to I's; the
length of the center inlet channel /; € [2.5 um, 5 pm]; the length of the side inlet channel
ls € [1 um,9 pum]; the length of the outlet channel /, € [0.1 m,20 pm]; the coordinates
of the center of the ellipsoid i, with i = 1,2, (cx;, ¢y;), where cx; € [0.8 um,3 pum], ¢y; €
[le pm, (l, + 2) um], cx € [0.8 um,0.9 um] and cy, € [(cy1 + 1) um, (cy1 + 3) um]; the
radius /; in the X-axis of the ellipsoid i, with i = 1,2, satisfies /; € [0 um, (cx; — 0.5) um];
the radius /4; in the Y-axis of the ellipsoid i, with i = 1,2, /; satisfies &; € [0 um, (cy, —
¢y1 — 1) pm] and hy € [0 um, (cy, — ¢y1 — 1 — h;) um]. Besides those parameters, we also
consider the maximum injection velocities u; and u, as design variables. Furthermore, in
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order to preserve the laminar regime and to avoid additional flows at the outlet channel
(such as Dean vortices), we constrained the typical flow Reynolds number Re to be less
than 15. It is defined as Re = pu,L/n, where L = 3 um is the side channel nozzle width. This
imposed bound implies that #; < nRe/pL m s™!. Moreover, in real application, u; should
be at least 10 times faster than u, to ensure a good mixing between fluids [3]. Therefore,
we impose that u, € [0,nRe/pL] m s™! and u, = o x u,, where ¢ € [0.001,0.1]. Thus, the
set of parameters defining a particular mixer design is denoted by

¢ = {uSyGyeylc»lsxle: CX1, Cy1,l1, hl) Cx21cy2:12»h2} € ch

where @ =[]}, [®(i), ®(i)] C R is the admissible space; ®(i) € R and ®(i) € R are the
upper and lower constraint values of the ith parameter in ¢ described previously.
We state the following optimization problem

gleig T(¢), (5)

where T'(¢) (us), usually referred as mixing time [3, 4, 14], is defined as the time required
to change the denaturant normalized concentration of a typical Lagrangian stream fluid
particle located at the symmetry streamline at depth z = 0 (midway between the bottom
and the top walls) from « € [0,1] to w € [0,1], when considering the particular mixer
described by ¢ € ®. It is computed as

3
Ca d
T(¢) - / ﬁ u¢—fy) 6)

where u? and ¢? denote the solution of System (2)—(4), when the mixer defined by ¢ is
considered; ¢ and ¢? denote the points located along the symmetry streamline where the
denaturant normalized concentration is & and w, respectively.

In order to solve numerically Problem (5), we have considered the numerical implemen-
tation detailed below.

The solution of System (2)—(4) was computed numerically by using the software Matlab
(www.mathworks.com) and COMSOL Multiphysics 5.2a (www.comsol.com), the latter
based on the Finite Element Method (FEM). More specifically, we considered Lagrange
P2-P1 elements to stabilize the pressure and to accomplish the Ladyzhenskaya, Babouska
and Brezzi stability condition. The 2nd-order Lagrange elements model the flow field and
concentration components, while linear elements stand for the pressure. The Navier—
Stokes equations were solved using Galerkin Least Square streamline and crosswind dif-
fusion approaches with a view to avoid numerical oscillations. The convection-diffusion
equation was solved by using an upwind scheme. A Direct Dampled Newton method was
applied to solve the associated linear systems. Finally, when computing the mixing time
(defined by Equation (6)), we made use of the solutions of the previous FEM model and
a trapezoidal approximation of the integral. We refer to the book [31] for a complete de-
scription of those techniques.

The model parameters considered during this work are associated to the denaturant
guanidine hydrochloride (GdCl), a Chaotropic agent which is commonly used for protein
folding. Its thermo-physical coefficients can be approximated as those of water, that is, its
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density is p = 1010 kg m™ and its dynamic viscosity is 7 = 9.8 x 10™* kg m~! s7!. In ad-
dition, the diffusion coefficient of GACl in the background buffer (presumed to be similar
to water) is D = 2 x 10~ m? s!, Taking into account those coefficients and the constraint
Re = pvL/n < 15 previously set, the maximum side injection velocity is u; <7 m s7L. The
values of @ and w in Equation (6) have been adapted to GdCl and taken here as 0.9 and 0.3,
respectively. It has been empirically observed that a 3 times decrease of the GdCl concen-
tration infers the folding process of several proteins (see for instance Ref. [3, 14]).

4 Optimization method
In this section, we describe in detail the optimization algorithm and the parameters used
to solve Problem (5).

The considered optimization algorithm, called Genetic Multi-Layer Algorithm (GMA),
consists on the combination of two methods: a genetic algorithm (GA) and a multi-layer
secant algorithm (MSA). On the one hand, the GA [7] approximates the solution of (5)
and, on the other hand, the MSA [32, 33] provides suitable initial populations for the GA.
Both algorithms have been validated on several industrial problems in Refs. [13-15, 18,
33-35].

The GAs are meta-heuristics global optimization methods based on a set of points,
known as the population of individuals, which evolve using some stochastic processes in-
spired from the Darwinian theory of species [7]. They are widely applied to solving many
complex optimization problems due to the fact that they are intrinsically parallel and they
can deal with large-scale problems. Moreover, regarding their search capacity, they exhibit
good performances with functions presenting several local minima. Another advantage is
that they do not require a-priori knowledge about the objective function neither sensitiv-
ity computation. However, it is important to point some of their weaker characteristics.
Indeed, they are less accurate and have slower convergence than other algorithms as, for
instance, those based on gradients. Before explaining the methodology used to enhance
these inconveniences, we detail the GA used in this work.

For the considered GA, the user must set four parameters: the number of individuals in
the population denoted by N,, € N, the number of generations N, € N, the mutation prob-
ability p,, € [0,1] and the crossover probability p, € [0, 1]. Additionally, the GA method
needs an initial population X° of N, individuals belonging to the search space @, i.e.,
X0 = {x,‘? €d,j=1,...,N,}.

The GA is mainly an iterative procedure for which each step i = 0,...,Ng_; consists in
generating a new population X*! from the previous population X’. Each population X =
{xj € &,j=1,...,N,} can be expressed as a N, x N real-valued matrix, whose rows are

occupied by an individual x; = (x;(l), ... ,x/‘f(N)) € &, given by:
xh (1) ... x(N)
vap xj\[p 1 ... xﬁ\,p (N)

Then, the new population X?*! is obtained by applying different stochastic mechanisms

as selection, crossover, mutation and elitism as follows:

X = (Iy - &Y (C'S' X + M) + E'X,
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where these four mechanisms are represented by the matrices S¢, C’, M’ and &', respec-
tively, and Iy denotes the N-dimensional identity matrix. Next, those processes are ex-
plained in detail, following their order of application.

1. Selection: The first one being implemented is the selection procedure consisting in
randomly choosing N, individuals among the N, individuals belonging to the
previous population X’ and considering that they can be repeated. Then, the
intermediate population obtained after applying this first operator, denoted by
X1 s calculated as:

Xi+1,l - Sixi
where St is a (N, Npp)-matrix whose entries S/’ « are defined as:

; 1 if the kth individual of X' is the jth selected individual,
"o otherwise.

It is important to mention that each individual x; € X', withj=1,...,Np, hasa
probability to be selected during this process which is given by
T () S0 T ().

2. Crossover: Once the selected population X*1"! is obtained, its individuals are
considered in consecutive pairs for the crossover, which carries out an exchange of
data between them with a probability p.. Analogously to the selection procedure,
this operation can be expressed mathematically as:

i+1,2 iyi+l,1
Xl+ — Clxl s

where C' is also a real-valued (N, N,,)-matrix. As said previously, the crossover
process has to perform over each pair of consecutive individuals, i.e., the ones
placed at the 2j — 1 and 2j rows of X"*1, with j = 1,..., floor(N,/2). (Notice that
floor(y) is the function providing the nearest integer which is lower or equal than ).
Therefore, the coefficients corresponding to those rows in the matrix C' are given

by:
i _ i _ i i _
2j-1,2j-1 = A1y Czj—l,zj =1-4y, C2j,2j = A2, CZj,2j—l =1-2,

where
« with a probability p,, the considered rows exchange data, thus, A; and A, are
randomly chosen in ]0, 1[, considering a uniform distribution;
+ in the other case, with a probability 1 — p,, the considered individuals are
maintained in the next intermediate population X"*? without any changes, i.e.,
A =Ay=1
Then, the remaining coefficients of C’ are set to 0. Finally, if N}, is odd then the last
element of the population X**!! does not have a partner, so it is directly copied in
X2 by setting Cyy, v, = 1.
3. Mutation: Unlike the previous processes, this mechanism operates individually on
each row of X*1'2, More specifically, the mutation procedure consists in randomly



Ivorra et al. Journal of Mathematics in Industry (2018) 8:4 Page 9 of 17

perturbing, with a probability p,,, the individual corresponding to a row of X**2, It

can be written as
Xz+1,3 :Xz+1,2 +Ml,

where the real-valued (N, N)-matrix M has zeros at the jth row, withj = 1,...,N,,
with a probability 1 — p,,, or it has a vector m; € RN, randomly generated
considering a uniform distribution in the subset of RV such that xj”'z +m; €D,
otherwise.

4.  Elitism: After applying all the four previous mechanisms, the majority of the
individuals in the new population X**13> may be different from the ones in the
previous population X*. Then, it could happen that the individual x}, where
b e({1,...,N,}, having the best value of the objective function T in X" is no longer
included in X**3. Furthermore, it may occur that none of the individuals in X3
enhance the value T'(x}). The purpose of the elitism procedure is copying the
individual ) into the population X**!, more specifically into its bth row. If there are
several individuals with the best value for T, one of them is randomly selected for
being maintained. Using matrix operations, the elitism process can be formulated
as follows:

Xi+l — (IN _ Sl) (Xi+1,3) + (C/'ixi’

where Iy denotes the N-dimensional identity matrix and the real-valued matrix &

of size (N, N,) has all the coefficients equal to zero except for the entry 5;;,1; =1,

when the individual x; has better value for T than all the individuals in X3,

Those four mechanisms are carried out at each generation i = 0,...,Ny_; for creating

the population X**! from the population X’. When the N, iterations are completed, the
GA stops and returns as output solution the individual who has the lowest value for the
objective function T" among all the individuals in all the populations considered during
the whole evolving process, i.e.,

GAO(X®,N,,, Ny, pm» pc)

= argmin { T'(x{)|«] is the jth row of X',i = 1,...,Np,j = 1,...,N,).

As said at the beginning of this section, in order to accelerate the convergence and im-
prove the accuracy of the above-described GA, we combine it with the MSA described
below to build a hybrid algorithm, called GMA. A general scheme of the GMA is shown
in Algorithm 1. Notice that, in addition to the GA input parameters, the number /y,x € N
of iterations for the MSA must be provided by the user. At the beginning of the GMA, a
first initial population, Xf, of N, individuals, x‘l),j € ®,j=1,...,N,, is randomly generated
using a uniform distribution. At each GMA iteration [, with [ = 1,..., [ ., the GA is ex-
ecuted starting from the initial population X7, during N, generations and with crossover
and mutation probabilities of p. and p,,, respectively. At the end of the GMA iteration a
new initial population for the GA, X}, is calculated by considering a secant method be-
tween each element in X) and the optimal individual returned by the GA, denoted by o;.
For controlling that the new individuals fit into the search space ®, the projection function
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Algorithm 1 GMA (Inax, T, Ny, Ny, Pes Pm)

1: Set /=1, X] = initial population of N, randomly generated individuals

2: while / < [, do

3: Calculate o; = GA(XIO, Ny, Ng, pes Pm) > Running Genetic Algorithm
4 forj=1,...,N, do
. o el . 0 0 0

5: > Construction of the next initial population X}, = {x],, ,... ,xl+LNp}
6 if T(o)) = T(x})) then

0 0
7 X1 = %
8 else 0

. o1-x;;

9. x?+l,j = prOJq)(x?j - T(O[) WT(]?C?/))

10: I=1+1

11: return argmin{7T(o;)|l = 1,..., I}

projg : RN — @ defined as projg (x)(i) = min(max(x(i), ®(i)), ®(i)), with i = 1,..., N, is also
applied. We note that o; is also introduced in X}, by randomly replacing one individual

of this population. After /[, iterations, the GMA algorithm returns a solution
GMAO(lnaxs Nps Ng, P> Pe) = argmin{T(ol)|l =1,..., lmax}.

Algorithm 1 intends to improve, individual by individual, the initial population of the
GA. More precisely, for each individual in the initial population:

« If there is a significant evolution of the cost function between this individual and oy,
the secant method generates a new individual close to o; that performs a refined
search near the actual solution.

+ Otherwise, the secant method creates a new individual far from o, to expand the
exploration of the admissible space.

The hybrid algorithm GMA has been already tested for solving different optimization
problems [13, 15, 35] and, according to several numerical experiments, it seems that it
achieves good results consuming lower computational time than the GA used on its own.
The GMA is included by the authors in the software Global Optimization Platform which
is freely available for its download at http://www.mat.ucm.es/momat/software.htm.

5 Results and discussion

In Sect. 5.1, we first validate the GMA presented previously on benchmark problems.
Then, in Sect. 5.2, we present and discuss the numerical results obtained when search-
ing the optimal design of the microfluidic mixer.

5.1 Validation of the GMA

This subsection aims to validate the above-proposed optimization methodology by apply-
ing it to solve a set of benchmark problems. In particular, we consider the following set of
box constrained optimization problems detailed in [26]: Branin (denoted by Bra), Eason
(Eas), Goldstein—Price (G-P), Shubert (Shu), Hartmann with 3 (Hm3) and 6 (Hm6) vari-
ables, Rosenbrock with 2 (Rb2), 5 (Rb5) and 10 (Rb10) variables, Shekel with 4 variables
and a number of objectives of 5 (Sk5), 7 (Sk7) and 10 (Sk10), and Zakharov with 5 (Za5)
and 10 (ZalO) variables. That particular list of benchmark problems is considered as a
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good enough representation of low dimensional optimization problems (i.e., ~10 vari-
ables) because it illustrates a wide and diverse set of difficulties that can be found in real
problems [19, 36].

The GMA is applied for solving numerically those selected benchmark problems using
the following parameters: /o = 1000, N, = 10, Ny = 10, p. = 0.55, p,,, = 0.5. Those param-
eters have been demonstrated to be suitable for solving similar optimization problems in
[13, 16, 29, 37]. Moreover, when the GMA ends, its solution is improved by performing
10 iterations of the Steepest Descent (SD) algorithm, in which the descent step size p is
determined using 10 iterations of a dichotomy method starting from po = 1. This last layer
of SD is carried out in order to enhance the accuracy of the final solution.

In order to validate the GMA, it is compared with the following meta-heuristic methods
from the literature:

« DTS: The Direct Tabu Search algorithm is an improved algorithm which exploits the
idea of not revisiting regions of the search space that have been already explored. For
achieving that, some penalty terms are added to the objective function. In this work,
we use the implementation detailed in [19] with the parameters recommended in
there.

+ CGR: The Continuous GRASP (CGR) algorithm is an enhanced version of the Greedy
Randomized Adaptive Search Procedure (GRASP). The latter combines the
construction of a greedy solution with a local search method. Their implementation,
the employed parameters, and the considered results can be found in [36].

+ SD: We use the well-known Steepest Descent algorithm based on the gradient
starting from a random point in the search space ®, with 3000 iterations and with a
descent step size p determined by the mean of 10 iterations of a dichotomy method
with initial condition py = 1.

+ GA: The Genetic Algorithm explained at Sect. 4 is run with the following settings:

N, =1000, N, = 180, p. = 0.45 and p,, = 0.15, which are suggested in [14, 17].

+ CRS: The Controlled Random Search algorithm is also considered for solving the
selected benchmark problems. Their parameters have been set according to the values
recommended in [38]. In particular, we consider 200 individuals in the population, as
many trial points as the size of the problem, 3000 iterations as the maximum
threshold and a rate of 0.55 for the success test.

+ DE: Finally, the Differential Evolution method is run with the parameters prescribed
for low dimensional optimization problems in [39]. More precisely, the crossover
operator is set to rand/1/exp with 0.9 for the crossover probability and 0.5 for the
mutation probability. Additionally, we consider a maximum number of 5000 iterations
and the population size is set to 5 times the dimension of the benchmark problem.

As done for improving the GMA accuracy, at the end of the GA, CRS and DE, 10 iterations
of the SD configured with the same above-detailed settings are performed.

Since the global minimum of those benchmark problems is known, we implement the
following stopping criterion [36], which is based on the distance between this minimum
point, denoted by /), and the current solution of the algorithm, denoted by hy:

g — ho| < e1|hg] + €2, 7)

where €; = 1072 and €, = 1072 for the algorithms DE, CRS, GA and GMA, but ¢; = 10™*
and €, = 107° for the SD.
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Moreover, we consider another complementary stopping criterion consisting in a max-
imum number of evaluations of the objective function. In this work, we set this maximum
value to 50,000 for each performance because, according to the literature [12, 13, 16, 17],
it is a high enough value. If such an algorithm consumes all the 50,000 evaluations and its
solution does not satisfy the first stopping criterion (7), we consider that the algorithm has
failed solving numerically the problem at hand.

In order to establish a fair comparison among the different algorithms, since they are
all heuristic, we perform 100 runs of each of them for solving each benchmark problem.
Then, we calculate the success rate of an optimization algorithm as the percentage of runs
satisfying the stopping criterion (7) (see Table 1). Furthermore, taking only into account
those successful performances, the number of evaluations of the objective function that
consumes each algorithm for each considered optimization problem is averaged and re-
ported in Table 2.

In view of those results, GMA shows a good performance in comparison to the other
analyzed algorithms. In fact, according to Table 1, it has success rates similar to the ones
of GA and better than DTS, CRS and DE. Moreover, as we can observe in Table 2, GMA

Table 1 Success rate (%) of the optimization algorithms when solving the considered benchmark
problems (Func)

Func. DTS CGR sD GA CRS DE GMA
Bra 100 100 100 100 100 100 100
Eas 82 100 0 100 100 100 100
G-P 100 100 53 100 100 100 100
Shu 92 100 25 100 100 100 100
Hm3 100 100 51 100 100 100 100
Hmé 83 100 48 100 90 51 100
Rb2 100 100 80 100 100 100 100
Rb5 85 100 74 96 87 97 92
Rb10 85 100 71 95 68 93 81
Sk5 57 100 16 97 17 74 96
Sk7 65 100 7 ) 23 88 98
Sk10 52 100 0 96 10 93 97
Za5 100 100 100 100 100 100 100
Za10 100 100 100 100 100 100 100

Table 2 Average number (considering only the runs satisfying the stopping criterion (7)) of
evaluations needed by the optimization algorithms to solve the considered benchmark problems

(Func)

Func. DTS CGR SD GA CRS DE GMA
Bra 212 10,090 251 1304 2953 2347 252
Eas 223 5093 - 40,125 2877 3851 3488
G-P 230 53 295 465 2429 1937 439
Shu 274 18,608 120 7748 9947 3049 1270
Hm3 438 1719 466 1119 1493 447 425
Hmé6 1787 29,894 217 4418 2907 8456 1054
Rb2 254 23,544 2275 3918 6177 7952 1675
Rb5 1684 182,520 3465 43,604 7927 41,939 43,972
Rb10 9037 725,281 5096 44557 43,822 44,156 44,828
Sk5 819 9274 229 37,328 5702 40,032 6991
Sk7 812 11,766 208 36,046 3618 3479 4619
Sk10 6828 17,612 - 40,217 3540 2386 1637
Za5 1003 12,467 268 24,988 5384 40,026 2674

Za10 4032 2,297,937 540 40,489 9004 40,031 20,719
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needs a number of evaluations which is, in the majority of the cases, lower than the one
required by GA, CRS and DE. Therefore, for those problems where the gradient of the
objective function is not available or it is difficult to compute, the GMA can be a good
alternative to classical evolutionary algorithms.

Finally, we analyze the level of improvement that achieves the GMA with respect to the
GA used without the multi-layer method. For this aim, we define the following improve-
ment threshold (in %) as:

Tev(GA) — Tev(GMA)

Imp(GMA) = 100 x Tev(GA) , (8)

where Tev(A) is the total number of evaluations needed by the algorithm A for solv-
ing all the benchmark problems. For its calculation, we also include those runs that are
considered unsuccessful regarding the stopping criterion (7). Then, we obtain a value of
Imp(GMA) = 58%, which give us an idea of the computational effort reduction reached
when using the GMA instead of the GA.

From those results, the GMA seems to enhance the convergence and to achieve a reduc-
tion of the computational effort associated with the number of functional evaluations. In
addition, the GMA has been also applied for solving some industrial design problems, as
the one concerning us, here, about the optimization of microfluidic mixers. In this kind of
real-world problems, where the objective functions are frequently computationally expen-
sive and exhibit several local minima, the improvements in convergence and the savings

in evaluations are of vital importance.

5.2 Microfluidic mixer optimization results

In this subsection, we present the optimization results obtained when solving Problem (5)
with the Genetic Multi-Layer Algorithm (GMA), and its parameters, presented in Sect. 4.
The number of evaluations of 7" used by GMA was approximately 6000 and the optimiza-
tion process took about 40 h (on a 3.6 Ghz I7 Intel Computer with 32 Gb of RAM).

We denote by ¢°P* the result reported at the end of the optimization process. Its values
are presented on Table 3. The geometry of the optimized mixer is plotted in Fig. 3. Its
denaturant concentration distribution and the transient concentration of a particle in the
central streamline is depicted in Fig. 4. The mixing time corresponding to the optimized
mixer is T(¢°P*) ~ 0.10 us, this time being 10 times lower than those achieved by prior
mixer designs with the same model [3, 14] (in those works the mixing times were larger
than 1 us). This improvement could be attributed to three main factors:

« The width of the mixing region (i.e., the area where the center and side mixer
channels intersect and both fluids are mainly mixed) reaches a minimum value of
about 1.1 ym near y = 16.5 um. At that location, the maximum velocity comes up to
26 m s, helping to accelerate the mixing time.

+ The value of angle 6 (about 7 /5 radians) between the center and side mixer channels,
which was set to 0 in Refs. [3, 4, 14]).

Table 3 Value of the optimal parameters in ¢°Pt, solution of Problem (5)

Parameter  us o % le s lo oo h h o on h hy
Value 52 73x1073 06 25 9.1 16.3 1.1 166 05 03 09 189 0.1 1.1
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Figure 3 Shape of the optimized mixer and 24 1
denaturant concentration distribution
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Figure 4 Transient behavior of the denaturant concentration of a particle in the mixer symmetry streamline

+ The choice of suitable maximum injection velocities, set to #; = 5.2 m s™! and

u. = 0.038 m s71. In that case, the Reynolds number Re (defined in Sect. 3) is around 9,

satisfying the constraint Re < 15 imposed to avoid secondary flows.
We recall that the admissible intervals for variables 6, u; and u, on the space ® were cho-
sen to be [0,7/3], [0,7] m s! and [5.2 x 1073,0.52] m s7!, respectively. Thus, one can
easily see that the optimized values of 6, u, and u; are included in the interior of these
admissible intervals (and not on their boundary) which tends to show that the optimiza-
tion process is not conditioned by the design constraints. The existence of such optimal
values was also observed empirically in previous studies. More precisely, in Ref. [4] the
authors showed that, for these mixers, there exists an optimal ratio between the side and

center flows rates. For instance, if the flow is tuned too vigorously and the value of the
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injection velocities is constrained, then the area with significant diffusion ascends to the
slow moving center stream, and, thus, the diffusive mixing takes place in a relatively low
velocity region resulting in longer mixing times. Additionally, the analysis developed in
Ref. [5] underlines the benefits of having inclined side channels (i.e., 8 > 0). Nevertheless,
strong inclinations may cause centripetal accelerations of the fluid which bring secondary
flows that worsen the mixing performance. On the contrary, slight inclinations may re-
duce these centripetal accelerations but make decrease the rate of stretching of material

lines in the mixing region.

6 Conclusions

In this work, we dealt with the design of a microfluidic mixer based on hydrodynamic
focusing for protein folding. More precisely, we aimed to find the shape parameters and the
injection velocities that minimize the mixing time, which is the time needed for reducing
the denaturant concentration under a desired level.

In order to compute the mixing time of a device attending to given design variables,
we have presented a mathematical model consisting in the incompressible Navier—Stokes
equations coupled with a convection-diffusion equation. This model was solved numeri-
cally using the Finite Element Method approximation over a simplified two-dimensional
domain.

Then, we have formulated the mixer design optimization problem and we have proposed
a methodology for solving it efficiently. This methodology, called GMA, is composed by
a genetic algorithm (GA) and a multi-layer line search method for enhancing the GA ini-
tialization. Regarding the result, we have observed that applying it to some benchmark
problems, the GMA improves the convergence of the GA. Moreover, the GMA consumes
less number of evaluations of the objective function than the GA, achieving a reduction in
the computational effort. Therefore, the GMA is strongly recommended for dealing with
optimization problems whose evaluations of the objective function are computationally
expensive, as our mixer design problem.

Finally, solving our mixer design problem with the GMA, we have found an optimized
device which exhibits a mixing time of 0.1 us. This new design implies a great reduction
with respect to the previously developed mixers. In fact, according to the literature [3-5,
14, 40], the lowest mixing time among the previous similar mixers was 1 us and it was
achieved by the devices detailed in Refs [5, 14]. Therefore, the mixer designed with the
parameters determined by our optimization methodology presents a mixing time of only
10% of those previous works. Analyzing the factors that can be responsible for this im-
provement, we have noticed two important novelties in the obtained design parameters:
the angle of the side inlet channels and the inlet velocities. The angle parameter, with a
value of 77 /5 radians, helps avoiding strong centripetal accelerations in the inlet side chan-
nel streams, an experimentally-observed phenomenon, explained in Ref. [5]. On the other
hand, the inlet velocities have a great influence on the mixing time, but they were not op-
timized numerically in previous works. For instance, the values for those velocities were
ug=3.25ms ! and u, = 0.032 m s~! in Ref. [3]. Here, we have obtained #, = 5.2 m s~ and
u.=0.038 ms'.

For a deep sensitivity analysis of the mixing times regarding the optimized mixer pa-

rameters, we refer the interested reader to the Refs [16, 29].



Ivorra et al. Journal of Mathematics in Industry (2018) 8:4 Page 16 of 17

Acknowledgements
Not applicable.

Funding

This work was carried out thanks to the financial support of the “Spanish Ministry of Economy and Competitiveness”
under projects MTM2011-22658 and MTM2015-64865-P; the “Junta de Andalucia” and the European Regional
Development Fund through project P12-TIC301; and the research group MOMAT (Ref.910480) supported by “Banco
Santander” and “Universidad Complutense de Madrid"

Nomenclature

Bra, Branin benchmark optimization problem; CGR, Continuous Grasp optimization method; CRS, Controlled Random
Search optimization method; DE, Differential Evolution optimization method; DTS, Direct Tabu Search optimization
method; Eas, Eason benchmark optimization problem; G-P, Goldstein—Price benchmark optimization problem;

GA, Genetic Algorithm optimization method; GMA, Genetic Multi-Layer Algorithm optimization method; Hm3, Hartman
(with 3 variables) benchmark optimization problem; Hm6, Hartman (with 6 variables) benchmark optimization problem;
MSA, Multi-Layer Secant Algorithm optimization method; Rb10, Rosenbrock (with 10 variables) benchmark optimization
problem; Rb2, Rosenbrock (with 2 variables) benchmark optimization problem; Rb5, Rosenbrock (with 5 variables)
benchmark optimization problem; SD, Steepest Descent optimization method; Shu, Shubert benchmark optimization
problem; Sk10, Shekel (with 4 variables and 10 objectives) benchmark optimization problem; Sk5, Shekel (with 4
variables and 5 objectives) benchmark optimization problem; Sk7, Shekel (with 4 variables and 7 objectives) benchmark
optimization problem; Za5, Zakharov (with 5 variables) benchmark optimization problem; Za, Zakharov (with 5 variables)
benchmark optimization problem.

Availability of data and materials
The GMA can be freely downloaded at: http://www.mat.ucm.es/momat/software.htm. No other material is available.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have contributed to this work. All authors read and approved the final manuscript.

Authors’ information

Ivorra Benjamin, Miriam R. Ferrdndez, Maria Crespo and Angel M. Ramos are specialist in mathematical modelling and
optimization methods. Juana L. Redondo and Pilar M. Ortigosa are specialist in global optimization algorithms. Juan G.
Santiago is a specialist in chemical engineering processes and, in particular, microfluidic devices.

Author details

'Instituto de Matemtica Interdisciplinar (IMI), Grupo MOMAT, Dept. de Andlisis Matematico — Matematica Aplicada,
Universidad Complutense de Madrid, Madrid, Spain. ?Dept. de Arquitectura de Computadores y Electrénica, Universidad
de Almeria, ceiA3, La Canada de San Urbano, Spain. *Departamento de Matematica Aplicada, Ciencia e Ingenieria de los
Materiales y Tecnologia Electronica, Universidad Rey Juan Carlos, Madrid, Spain. “Mechanical Engineering Dept,, Stanford
University, Stanford, USA.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 4 December 2017 Accepted: 8 June 2018 Published online: 15 June 2018

References

1. Berg J, Tymoczko J, Stryer L. Biochemistry. 5th ed. New York: Freeman; 2002.

2. Brody J, Yager B, Goldstein R, Austin R. Biotechnology at low Reynolds numbers. Biophys J. 1996,71(6):3430-41.

3. Hertzog D, Ivorra B, Mohammadi B, Bakajin O, Santiago J. Optimization of a microfluidic mixer for studying protein
folding kinetics. Anal Chem. 2006;78(13):4299-306.

4. Hertzog D, Michalet X, Jager M, Kong X, Santiago J, Weiss S, et al. Femtomole mixer for microsecond kinetic studies of
protein folding. Anal Chem. 2004;76(24):7169-78.

5. Yao S, Bakajin O. Improvements in mixing time and mixing uniformity in devices designed for studies of proteins
folding kinetics. Anal Chem. 2007;79(1):5753-9.

6. Luenberger D, Ye Y. Linear and nonlinear programming. International series in operations research & management
science. Berlin: Springer; 2008.

7. Goldberg DE. Genetic algorithms in search, optimization and machine learning. 1st ed. Boston: Addison-Wesley;
1989.

8. Gongalves JF, de Magalhdes Mendes JJ, Resende MGC. A hybrid genetic algorithm for the job shop scheduling
problem. Eur J Oper Res. 2005;167(1):77-95.

9. Rocha M, Neves J. Preventing premature convergence to local optima in genetic algorithms via random offspring
generation. In: Imam |, Kodratoff Y, El-Dessouki A, Ali M, editors. International conference on industrial, engineering
and other applications of applied intelligent systems. Lecture notes in computer science. vol. 1611. Berlin: Springer;
1999. p. 127-36.

10. Carrasco M, Ivorra B, Ramos AM. A variance-expected compliance model for structural optimization. J Optim Theory
Appl. 2012;152(1):136-51.


http://www.mat.ucm.es/momat/software.htm

Ivorra et al. Journal of Mathematics in Industry (2018) 8:4 Page 17 of 17

11. Carrasco M, Ivorra B, Ramos AM. Stochastic topology design optimization for continuous elastic materials. Comput
Methods Appl Mech Eng. 2015;289:131-54.

12. Muyl F, Dumas L, Herbert V. Hybrid method for aerodynamic shape optimization in automotive industry. Comput
Fluids. 2004;33(5):849-58.

13. Gomez S, Ivorra B, Ramos AM. Optimization of a pumping ship trajectory to clean oil contamination in the open sea.
Math Comput Model. 2011;54(1):477-89.

14. Ivorra B, Mohammadi B, Santiago J, Hertzog D. Semi-deterministic and genetic algorithms for global optimization of
microfluidic protein folding devices. Int J Numer Methods Eng. 2006;66(2):319-33.

15. Ivorra B, Mohammadi B, Ramos AM. Optimization strategies in credit portfolio management. J Glob Optim.
2009;43(2-3):415-27.

16. Ivorra B, Redondo JL, Santiago JG, Ortigosa PM, Ramos AM. Two- and three-dimensional modeling and optimization
applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding. Phys Fluids.
2013;25(3):032001.

17. Ivorra B, Mohammadi B, Ramos AM. Design of code division multiple access filters based on sampled fiber bragg
grating by using global optimization algorithms. Optim Eng. 2014;15(3):677-95.

18. Ivorra B. Application of the laminar Navier-Stokes equations for solving 2D and 3D pathfinding problems with static
and dynamic spatial constraints: implementation and validation in comsol multiphysics. J Sci Comput.
2018;74(2):1163-87.

19. Hedar AR, Fukushima M. Tabu search directed by direct search methods for nonlinear global optimization. Eur J Oper
Res. 2006;170(2):329-49.

20. Lamghari A, Dimitrakopoulos R. A diversified tabu search approach for the open-pit mine production scheduling
problem with metal uncertainty. Eur J Oper Res. 2012;222(3):642-52.

21. Vieira DAG, Lisboa AC. Line search methods with guaranteed asymptotical convergence to an improving local
optimum of multimodal functions. Eur J Oper Res. 2014;235(1):38-46.

22. Gardeux V, Chelouah R, Siarry P, Glover F. Em323: a line search based algorithm for solving high-dimensional
continuous non-linear optimization problems. Soft Comput. 2011;15(11):2275-85.

23. Gardeux V, Chelouah R, Siarry P, Glover F. Unidimensional search for solving continuous high-dimensional
optimization problems. In: ISDA'09 — ninth international conference on intelligent systems design and applications,
2009. Los Alamitos: [EEE Comput. Soc.; 2009. p. 1096-101.

24. Glover F. The 3-2-3, stratified split and nested interval line search algorithms. In: Research report, OptTek systems.
Boulder. 2010.

25. Grosan C, Abraham A. Hybrid line search for multiobjective optimization. In: Perrot R, Chapman B, Subhlok J, de Mello
R, Yang L, editors. High. Lecture notes in computer science. vol. 4782. Berlin: Springer; 2007. p. 62-73.

26. Floudas C, Pardalos P. Handbook of test problems in local and global optimization. Norwell: Kluwer Academic; 1999.

27. Price WL. Global optimization by controlled random search. J Optim Theory Appl. 1983;40(3):333-48.

28. Price K, Storn RM, Lampinen JA. Differential evolution: a practical approach to global optimization (natural
computing series). New York: Springer; 2005.

29. Ivorra B, Redondo JL, Ramos AM, Santiago JG. Design sensitivity and mixing uniformity of a micro-fluidic mixer. Phys
Fluids. 2016;28(1):012005.

30. Danckwerts PV. Continuous flow systems. Chem Eng Sci. 1953;2(1):1-13.

31. Glowinski R, Neittaanméki P. Partial differential equations: modelling and numerical simulation. Computational
methods in applied sciences. Netherlands: Springer; 2008.

32. Debiane L, Ivorra B, Mohammadi B, Nicoud F, Poinsot T, Ern A, et al. A low-complexity global optimization algorithm
for temperature and pollution control in flames with complex chemistry. Int J Comput Fluid Dyn. 2006,20(2):93-8.

33. Ivorra B, Ramos AM, Mohammadi B. Semideterministic global optimization method: application to a control problem
of the Burgers equation. J Optim Theory Appl. 2007;135(3):549-61.

34. Isebe D, Azerad P, Bouchette F, Ivorra B, Mohammadi B. Shape optimization of geotextile tubes for sandy beach
protection. Int J Numer Methods Eng. 2008;74(8):1262-77.

35. Ivorra B, Mohammadi D, Dumas L, Durand O, Redont P. Semi-deterministic vs. genetic algorithms for global
optimization of multichannel optical filters. Int J Comput Sci Eng. 2006;2(3):170-8.

36. Hirsch M, Pardalos P, Resende M. Speeding up continuous GRASP. Eur J Oper Res. 2010,205(3):507-21.

37. Ivorra B. Optimisation globale semi-deterministe et applications industrielles. ANRT-grenoble. 2006.

38. Hendrix E, Ortigosa P, Garcia . On success rates for controlled random search. J Glob Optim. 2001,21(3):239-63.

39. Storn R, Price K. Differential evolution — a simple and efficient heuristic for global optimization over continuous
spaces. J Glob Optim. 1997;11(4):341-59.

40. Knight JB, Vishwanath A, Brody JP, Austin RH. Hydrodynamic focusing on a silicon chip: mixing nanoliters in
microseconds. Phys Rev Lett. 1998;80(17):3863-6.



	Modelling and optimization applied to the design of fast hydrodynamic focusing microﬂuidic mixer for protein folding
	Abstract
	Keywords

	Introduction
	Mathematical modelling
	Optimization problem
	Optimization method
	Results and discussion
	Validation of the GMA
	Microﬂuidic mixer optimization results

	Conclusions
	Acknowledgements
	Funding
	Nomenclature
	Availability of data and materials
	Competing interests
	Authors' contributions
	Authors' information
	Author details
	Publisher's Note
	References


