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Abstract
Control of stochastic interacting particle systems is a non-trivial task due to the high
dimensionality of the problem and the lack of fast algorithms. Here, we propose a
space mapping-based approximation of the stochastic control problem by solutions
of the deterministic one. In combination with the receding horizon control technique
this yields a reliable and fast numerical scheme for the closed loop control of
stochastic interacting particle systems. As a numerical example we consider the
herding of sheep with dogs. The numerical results underline the feasibility of our
approach and further show stabilizing behaviour of the closed loop control.
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1 Introduction
Collective behaviour of crowds or swarms has been investigated by various researchers
in the past decades [14–17, 33]. First, the focus was on the simulation of large groups,
like flocks of birds and schools of fish, and their attractive and repulsive self-interaction
[11, 18]. The resulting models are able to reflect major properties of the interaction such
as flocking and the formation of mills [10]. Further, the stability of these patterns was
analysed [1, 12, 18]. Later, the models were refined to take into account view cones or
topographical aspects like walls [9, 13, 24]. To include a random disturbance of the indi-
viduals’ behaviour one introduces an additive Brownian motion in the velocity component
of the dynamics [6, 28]. Mathematically, this changes the model from ordinary differential
equations (ODEs) to a system of stochastic differential equations (SDEs).

Based on this knowledge, the investigation of the interaction of crowds and external
agents became of interest [3, 21]. In particular, the idea of controlling crowds with the help
of the external agents [7, 8]. The corresponding optimal control problem (OCP) is then
constrained by the dynamics of the respective ODE or SDE system. For the deterministic
problem one can employ standard techniques from variational calculus to derive the gra-
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dient of the cost functional and to implement a tailored iterative scheme to compute the
controls.

Unfortunately, these classical methods cannot be directly adapted to the stochastic prob-
lems [34]. In fact, the stochastic influence forces the decoupled forward and backward
equations of an deterministic optimal control problem, to be a fully coupled Forward–
Backward SDE system involving a ghost process to capture the uncertain terminal condi-
tion, see, e.g., [20] for the derivation of such a system based on a Hamiltonian formulation.
First, steps towards a numerical realization in special cases can be found in [22].

Here, we are interested in controlling the crowd over a large time horizon, such that open
loop control is not appropriate. Instead we use the closed loop receding horizon control
to allow for feedback during the time evolution (see also [2]). To deal with the stochastic
nature of the model we employ the space mapping approach [4, 36], which allows for the
control of a high fidelity model (here the stochastic one) by the optimization of a surrogate
model (here the deterministic one).

The space mapping approach first came up in the engineering community [5] as a tool
to solve large scale optimization problems with the help of an easier surrogate model.
Through the years the technique became well-established in engineering and has been
also recognized by the mathematics community for various applications like radiative heat
transfer, control the dispersion of particles in a fluid, dynamic compressor optimization
of gas networks and optimal inflow control of transmission lines, see, e.g., [19, 23, 25, 26,
29, 31, 35].

Here, we consider as new application the herding of a crowd of sheep using dogs with
repulsive influence on the crowd. The combination of the space mapping technique with
the receding horizon control will finally allow for the construction of a tailored closed loop
algorithm to control interacting stochastic particle systems.

The manuscript is organized as follows: in the next section the details of a general class
optimal control problems with SDE constraints are given. Then, the space mapping ap-
proach is discussed in Sect. 3 and the Aggressive Monte Carlo Space Mapping Algorithm
is presented. We derive the first-order optimality system of the deterministic ODE model
and the gradient of the respective reduced cost functional which is needed for the nu-
merical implementation in Sect. 4. The algorithms for the numerical investigation are
described in Sect. 5. We present a projected gradient method for the deterministic op-
timization and discuss the receding horizon procedure for the closed loop control of the
stochastic particle system. The feasibility of our approach is underlined by the numerical
results presented in Sect. 6. We discuss a space-mapping approach based on a mean-field
approximation in Sect. 7, before we give conclusions and an outlook in Sect. 8.

2 The control problem
In this section we define the general class of control problems constrained by a stochastic
interacting particle system.

2.1 Stochastic interacting particle system
Let D denote the space dimension and T the length of the time interval under considera-
tion. The positions and velocities of the particles are represented by

Xi : [0, T] →R
D, Vi : [0, T] → R

D, i = 1, . . . , N ,
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and combined in the vectors

X(t) =
(
X1(t), . . . , XN (t)

)T ∈R
ND,

V (t) =
(
V1(t), . . . , VN (t)

)T ∈R
ND

for each t ∈ [0, T], respectively. In analogy, we consider M external agents having positions

am : [0, T] → R
D, m = 1, . . . , M,

with a(t) = (a1(t), . . . , aM(t))T ∈R
MD for each t ∈ [0, T].

Their velocities

um : [0, T] →R
D, m = 1, . . . , M,

are combined in u(t) = (u1(t), . . . , uM(t))T for each t ∈ [0, T]. Later, they act as control func-
tions. We assume u ∈ L2([0, T],RMD).

The self-organisation of the crowd and the interaction of the particles with the agents is
modelled with the help of radially symmetric interaction potentials

Φ1,Φ2 : R+
0 →R, Φj

(|x|) = Φj(r), j = 1, 2.

For the sake of well-posedness, we assume that their first and second derivative

∇rΦj(r) =: Gj(r) and ∇2
r Φj(r) =: Hj(r)

are locally Lipschitz and globally bounded, i.e., Φj ∈ C2
b (R+

0 ) for j = 1, 2.
Further, we include a friction term with parameter α > 0 and additive stochastic noise

with strength σ ≥ 0 influencing the velocities of the individuals. The friction models
the lethargy of the individuals, while the stochasticity allows for disturbances of the sur-
roundings, that are not considered explicitly. Let Bi

t , i = 1, . . . , N , denote independent D-
dimensional Brownian motions. Then, the stochastic state system is given by

dXi = Vi dt, i = 1, . . . , n, (1a)

dVi =

(

–
1
N

N∑

j=1

G1
(|Xi – Xj|

)
–

M∑

m=1

G2
(|Xi – am|) – αvi

)

dt + σ dBi
t , (1b)

dam = um dt, m = 1, . . . , M, (1c)

supplemented with initial data Y0 := (X0, V0, a0). The full state is a random variable Y =
(X, V , a).

Remark 1 Clearly, for σ = 0 the above system reduces to an ODE system, which we are
going to use as the surrogate model for the space mapping procedure.

It would be interesting to generalize the approach for common noise situations, i.e.,
Bi

t = Bt in order to model effects on the system as a whole, instead of single particles. This
will have impacts on the cost-functional and also on the mean-field equation discussed
later on. For simplicity, we restrict ourselves here to the case of individual noise.



Totzeck and Pinnau Journal of Mathematics in Industry           (2020) 10:11 Page 4 of 19

2.2 Well-posedness of the state systems
Assuming a maximal velocity umax for the agents, we define the set of admissible controls

Uad =
{

u ∈ L2([0, T],RMD)
:
∣
∣um(t)

∣
∣ ≤ umax for a.e. t, m = 1, . . . , M

}
.

Note, that the ODE for the agents can be solved explicitly for given u ∈ Uad which yields

a(t) = a0 +
∫ t

0
u(s) ds.

Indeed, we get an absolutely continuous function a, which can be plugged into the SDE
system governing the dynamic of the crowd. Using the assumption Φj ∈ C2

b (R+
0 ), we obtain

weak solutions of the stochastic system in the sense of Itô due to standard SDE theory, see,
e.g., [32]. Further, the state fulfills Y ∈ C([0, T],RND).

Remark 2 Note, that the stochastic system can be generalized to space and time dependent
σ = σ (x, t) without any effect on the well-posedness as long as the following conditions are
satisfied

∣
∣σ (t, x)

∣
∣ ≤ C

(
1 + |x|),

∣
∣σ (t, x) – σ (t, y)

∣
∣ ≤ D|x – y|

for some positive constants C, D and x, y ∈R
D.

Remark 3 Note, that u ∈ L1([0, T , ],RMD) would be enough regularity to obtain the abso-
lutely continuous function a. But to identify the gradient for the numerical algorithm later
on, we need a Hilbert-space structure. Thus, we choose the stronger assumption for Uad.

In the case σ = 0, we obtain a deterministic ODE system which attains a unique solution
by standard results from ODE theory. This allows us to define the control-to-state map
Sc which assigns to each u ∈ Uad the unique solution y of the ODE system. In analogy,
we define Sf (u) = Y for the solution of the SDE system. For better readability we refer
to states of the ODE system with lower-case letters and states corresponding to the SDE
system with upper-case letters.

2.3 The cost functional
In general, cost functionals involving empirical quantities, like expectation, variance or
other kind of moments of the particle crowd are appropriate for the space mapping ap-
proach.

In the following, we consider a specific cost functional that is based on the expected
trajectory of the centre of mass of the crowd reflecting the aim of our application, i.e.,
steering the crowd to a predefined destination Zdes. To do so we define a time dependent
reference state Z̄ : [0, T] → R

D. Similar to the approach in [8], we measure the spread of
the crowd around Z̄. In particular, due to the stochastic behaviour of the state system we
use the expected paths E[X].

This leads to the following cost functional

J(Y , u; Z̄, ū) :=
∫ T

0

1
2N

N∑

k=1

∥∥E
[
Xk(t)

]
– Z̄(t)

∥∥2 +
γ

2
∥∥u(t) – ū(t)

∥∥2
RMD dt, (2)
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where the first term tracks the expected centre of mass of the crowd and penalizes its
distance to the desired trajectory. The second term measures the control costs and is
weighted with the parameter γ > 0.

Remark 4 The predefined desired trajectory Z̄(t) and the reference velocities ū are input
parameters for the cost functional. In the space mapping procedure, Z̄ shall be replaced
by the expected centre of mass and ū by the optimal control of the surrogate mode.

To sum up, the SDE constrained optimal control problem of consideration is given by

Problem 1 Find u∗ ∈ Uad such that

u∗ = argmin
u∈Uad

J(Y , u; Z̄, ū) subject to (1a)–(1c) with initial condition Y (0) = Y0.

Remark 5 The existence of an optimal control can be shown with standard techniques
from variational calculus [27]. In fact, an existence result can be obtained for all sequen-
tially weak lower semicontinuous and coercive cost functionals J(Y , u). Note that, in gen-
eral, we cannot expect its uniqueness due to the non-convexity which is introduced by the
nonlinearity in the state system.

3 The space mapping approach
The direct solution of this SDE constrained optimal control problem is a non-trivial task.
Nevertheless, we can exploit the fact that the deterministic ODE model is for small noise
σ a good approximation for the stochastic one in combination with the space mapping
procedure.

The general idea of space mapping for optimization problems is to approximate a com-
plex (fine) model by a simple (coarse) surrogate model such that its main features are still
resolved and the coarse model allows for a fast optimization. In particular, no gradient in-
formation of the fine model needs to be computed. Space mapping goes back to Bandler
[5] and an excellent introduction is given in the review [4] and the references therein.

Let Gf and Gc be two operators mapping the fine control and the coarse control to some
observable, respectively. To get an approximation of the fine model optimization

u∗
f = argmin

u∈Uad

∣∣Gf (u) – w̄
∣∣

for a desired value w̄, one uses optimizers of the coarse model, i.e.,

u∗
c = argmin

u∈Uad

∣
∣Gc(u) – w̄

∣
∣.

For a better approximation the space mapping function

T : Uad → Uad, T(uf ) = argmin
u∈Uad

∣∣Gc(u) – Gf (uf )
∣∣

is introduced, which assigns to an input uf of the fine model a control uc for the coarse
model, yielding the best approximation of the fine model output Gf (uf ) by the coarse
model output Gc(uc).
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If the observables to the respective optimizers are similar, i.e., Gf (u∗
f ) ≈ Gc(u∗

c ), we expect
that it holds

T
(
u∗

f
)

= argmin
u∈Uad

∣∣Gc(u) – Gf
(
u∗

f
)∣∣ ≈ argmin

u∈Uad

∣∣Gc(u) – w̄
∣∣ = u∗

c .

Indeed, the space mapping is fixed by the observable defined by the operators Gf and Gc.
In the following we use

Gf (u) = J(Y , u; Z̄, ū) =
1

2N

N∑

i=1

∥
∥∥
∥∥

(
E[Xi] – Z̄√

γ (u – ū)

)∥
∥∥
∥∥

2

L2(0,T)

and

Gc(u) = J(y, u; Z̄, ū) =
1

2N

N∑

i=1

∥
∥∥
∥∥

(
xi – Z̄√
γ (u – ū)

)∥
∥∥
∥∥

2

L2(0,T)

and compute E[X] with the help of a Monte Carlo simulation as proposed in [31]. There-
fore, it makes sense to set w̄ = 0. That means, in the following, the stochastic interacting
particle system (σ > 0) will act as the fine model, while the coarse model is given by the
deterministic particle system (σ = 0).

Another possible choice could use the solution operators of the state equations, i.e.,
Gf = Sf and Gc = Sc with w̄ being an desired state.

Remark 6 Note, that the space mapping function T might be formally set valued if the
optimization problem admits multiple solutions. Assumptions on the models ensuring
that T is well defined are discussed in detail in [19, 26].

In general, the space mapping function T is directly not accessible, such that there are
several approximations proposed in the literature [4, 5, 19]. These update the controls of
the fine models iteratively. For example, Aggressive Space Mapping (ASM) and Trust Re-
gion Aggressive Space Mapping (TRASM) borrow the idea from quasi-Newton methods
to approximate the Jacobian with the help of Broyden-type matrices. On the other hand,
Hybrid Aggressive Space Mapping (HASM) combines the classical space mapping method
with classical optimization techniques (cf. [4]).

We use the ASM approach for the numerical computations below. Hence, the update hk

for the next iterate is given by

Bkhk = –
(
T

(
uk

f
)

– u∗
c
)
, uk+1

f = uk
f + ρhh,

where Bk is the kth Broyden matrix iterate and ρ > 0 the step-length.
For a smooth presentation of the algorithm, we define the expected centre of mass of

the stochastic particle crowd as

X̄(t) = E

[
1
N

N∑

k=1

Xk(t)

]

, t ∈ [0, T]. (3)
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Data: initial values and parameters
Result: control u∗

f

initialize counter k = 0, approximate Jacobian B0 = I and tolerance εSM;
Compute u0

f = u∗
c = argminuc J(Z, uc; Z̄, 0) subject to the deterministic model;

while ‖T(u∗
f ) – u∗

c ‖/‖u∗
c ‖ > εSM do

evaluate the expected center of mass X̄ given in (3) using MC simulations;
perform coarse model optimization

T(uk
f ) = argmin

uc
J
(
Y , uc; X̄, u∗

c
)

if k > 1 then
compute Bk = Bk–1 + ((T(uk

f ) – u∗
c ) ⊗ hk–1)/|hk–1|2;

end
solve Bkhk = –(T(u∗

f ) – u∗
c ) for the update hk ;

update the control uk+1
f = uk

f + hk ;
end

Algorithm 1: Aggressive Monte Carlo space mapping (AMCSM)

The resulting Aggressive Monte Carlo Space Mapping (AMCSM) approach[31] is stated
in all details in Algorithm 1.

Remark 7 For the present application of dogs herding sheep, we need just one solve of the
fine stochastic model, which involves the expensive Monte Carlo simulation in each step
of the algorithm. The optimization step is only involving the coarse deterministic model,
for which fast numerical algorithms based on gradient information are available. Clearly,
for N � 1, the determinsitic problem is still challenging, one idea is to use a mean-field
appoximation in this case. See the discussion on the mean-field limit in Sect. 7. Further
note, that the space-mapping approach discussed here does in general not yield a per-
fect space mapping, such that the algorithm might terminate with a suboptimal solution
(cf. [19]). This does not matter in our case, since we are designing a closed loop control
with the help of the receding horizon control technique. The numerical results below in-
dicate that the method proposed here, works fine for the problem at hand. Nevertheless,
for other problems with short time horizons the space mapping solutions may fail to be
robust. A qualitative study of the approximation and the robustness are subject to future
work.

4 Optimal control of the coarse model
The core of the space mapping approach is the fast optimization of the coarse model.
Since we intend to use a steepest descent algorithm, we derive the first-order optimality
conditions for the coarse optimization problem. The derived adjoint information can then
be used for the evaluation of the gradient of the reduced cost functional.

4.1 First-order optimality condition
For the deterministic optimal control problem with ODE constraints we can derive the
adjoint system and the optimality condition with the help of the extended Lagrangian.
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Note, that the calculations are very similar to [8]. The deterministic system

d
dt

xi = vi, i = 1, . . . , N , (4a)

d
dt

vi = –

(
1
N

N∑

k=1

G1(xi – xk) +
M∑

m=1

G2(xi – dm) + αvi

)

=: –W i(y), (4b)

d
dt

dm = um, m = 1, . . . , M, (4c)

can be compactly denoted by d
dt y = F(y, u), supplemented with the initial conditions y(0) =

y0.
We define the set of controls U and the state space Y as

U =
{

u ∈ L2([0, T],RMD)}
, Y =

[
H1([0, T],RND)]2 × H1([0, T],RMD)

.

Obviously it holds Uad ⊂ U . Further, we define X := [L2([0, T],RND)]2 × L2([0, T],RMD)
and

Z := X × ([
R

ND]2 ×R
MD)

,

as the space of Lagrange multipliers, with Z∗ being its dual.
We define the state operator e : Y × U →Z∗ for deterministic ODE as

e(y, u) =

(
d
dt y – F(y, u)

y(0) – y0

)

and the dual pairing

〈
e(y, u), (ξ ,η)

〉
Z∗ ,Z =

∫ T

0

(
d
dt

y(t) – F
(
y(t), u(t)

)) · ξ (t) dt +
(
y(0) – y0

) · η.

Let (ξ ,η) ∈ Z denote the Lagrange multiplier which is in fact the adjoint state. Then, the
extended Lagrangian corresponding to the coarse problem reads

L(y, u, ξ ,η; Z̄, ū) = J(y, u; Z̄, ū) +
〈
e(y, u), (ξ ,η)

〉
Z∗ ,Z .

As usual the first-order optimality condition of the coarse problem is given by

dL(y, u, ξ ,η; Z̄, ū) = 0.

Following the standard approach from variational calculus for the derivation of the adjoint
equations (cf. [27]), we obtain the following first order optimality system.

Theorem 1 Let (y∗, u∗) be an optimal pair. Then, the first-order optimality condition cor-
responding to the coarse problem reads

∫ T

0

(
γ
(
u∗(t) – ū(t)

)
– ξ3(t)

) · (u(t) – u∗(t)
)

dt ≥ 0 for all u ∈ Uad, (5)



Totzeck and Pinnau Journal of Mathematics in Industry           (2020) 10:11 Page 9 of 19

where ξ = (ξ1, ξ2, ξ3) ∈ Y satisfies the adjoint system given by

d
dt

ξ1 = –dxW
(
y∗)[ξ2] –

1
NT

(x – Z̄),
d
dt

ξ2 = ξ1 – αξ2,

d
dt

ξ3 = –ddW
(
y∗)[ξ2],

(6)

supplemented with the terminal conditions ξ1(T) = 0, ξ2(T) = 0, ξ3(T) = 0.

Remark 8 The variational inequality in (5) can be derived as well with the help of the Pon-
tryagin maximum principle. In view of the numerical implementation, the inequality is not
handy. We therefore choose the Lagrangian approach here, leading to explicit expressions
for the adjoint which can be used in the algorithm. Together with a projection onto the
feasible set Uad we can design a projected gradient-descent method for the optimization
problem, see Algorithm 2.

4.2 Gradient of the reduced cost functional
In this section we introduce the reduced cost functional for the coarse model constraint
and formally calculate its gradient which we need for the descent algorithm. Using the
control-to-state map Sc we define the reduced cost functional as

Ĵ(u) := J
(
Sc(u), u; Z̄, ū

)
.

Assuming sufficient regularity for Sc we further derive the gradient of the reduced cost
functional. Making use of the state equation e(y, u) = 0 we implicitly obtain dSc(u) via

0 = due
(
Sc(u), u

)
= dye

(
Sc(u), u

)[
dSc(u)

]
+ due

(
Sc(u), u

)
.

With the help of the adjoint equation

(
dye(y, u)

)∗[ξ ] = –dyJ(y, u)

we compute the Gâteaux derivative of Ĵ in direction h ∈ U

dĴ(u)[h] =
〈
dyJ(y, u), dSc(u)[h]

〉
Y∗ ,Y +

〈
duJ(y, u), h

〉
U =

〈
γ (u – ū) – ξ3, h

〉
U .

Since U is a Hilbert space, we may use the Riesz representation theorem to identify the
gradient of the reduced cost functional as

∇ Ĵ(u) = γ (u – ū) – ξ3. (7)

Now, we have all ingredients at hand to state the gradient descent method for the numer-
ical simulations.

5 Numerical schemes
The Aggressive Monte Carlo Space Mapping algorithm (AMCSM) proposed in Algo-
rithm 1 uses solutions of the coarse optimal control problem and only evaluations of the
fine stochastic particle system.
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Data: initial data for states and control, stopping tolerance εopt, time steps K , desired
destination Z∗

Result: optimal control u, optimal states y
initialize;
while ‖un+1 – un‖L2 > εopt do

solve deterministic state system (4a)–(4c);
solve adjoint problem given in (6);
compute gradient corresponding to (7);
compute step size using the Armijo rule with projection;
update controls by nonlinear conjugate gradient;

end
Algorithm 2: Optimal control algorithm for the coarse problem

5.1 Optimization algorithm for the coarse model
We solve the deterministic ODE systems of state and adjoint problem with the explicit
Euler scheme. In the optimal control loop for the deterministic problem, we update the
controls using nonlinear conjugate gradient (NCG) steps. The step size for the gradient
update is obtained by a line search based on the Armijo rule with projection (cf. [27]).
These ingredients define the numerical scheme for the deterministic optimization stated
in Algorithm 2, where we denote by un the control of the nth optimization iteration. When
the optimal solution of the coarse problem u∗

c is found, we compute x̄ = 1
N

∑N
i=1 xi, where

the xi refer to the optimal positions extracted from Sc(u∗
c ).

In our particular case, the projection PU has the explicit representation

PU (h)(t) =

⎧
⎨

⎩
umax

hm(t)
|hm(t)| for |hm(t)| > umax,

hm(t) otherwise,
(8)

for m = 1, . . . , M and t ∈ [0, T].

5.2 Receding horizon control
The appropriate time horizon for steering the crowd to the given destination depends on
the distance of the crowd to the destination and might be large. Since the space map-
ping procedure is based on optimal controls, we need to store the full forward infor-
mation to compute the adjoints. On large time intervals this leads to an extensive mem-
ory consumption. Additionally, having the application of dogs herding sheep in mind, an
open loop approach is rather unrealistic. In reality, a dog will react on the current state
of the crowd, such that it makes more sense to model the problem using a closed loop
ansatz.

This is why a closed loop control for a large time horizon is preferable. Now, we are go-
ing to combine the above numerical approaches with the receding horizon control [2]. In
more detail, we split the time interval of interest [0, T] into K smaller intervals I1, . . . , IK .
Then, we apply the space mapping algorithm to these smaller intervals. In fact, we com-
pute the stochastic output by an Euler–Mayurama scheme on I1 but store only the first
half of the solution. Then, we initialize the values using the optimal values at time t = I1/2
and compute the solution on the interval [ I1

2 , I2
2 ] and glue half of this solution to the one
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Figure 1 Visualization of the receding horizon procedure. The first iteration computes the optimal control on
the interval I1. Only the first half of it, u1∗ , is accepted as optimal solution. Then the optimal control on the
interval [I1/2, I2/2] is computed. The first half, u2∗ , is accepted and clued to u1∗ . These two steps give us the
optimal control on I1. We proceed iteratively up to the terminal time T

stored before. After two steps, we have the optimal control on the full interval I1 available.
We proceed iteratively until we reach the terminal time T . The receding horizon proce-
dure is visualized in Fig. 1. Note that here is some freedom in choosing the length of the
smaller interval. Numerical studies motivated us to use Ik

2 .

Remark 9 Using this receding horizon procedure we need to adapt the desired trajectory
Z̄. Indeed, we cannot expect that the controls lead the crowd to the destination in one
subinterval. Hence, we adapt Z̄ on Ik in the following way: we interpolate the distance
of the initial centre of mass of the crowd and the desired destination Zdes with the time
steps used in one subinterval. Of course, this is not attainable for small k, nevertheless we
simulate the deterministic optimal control using this interpolation as Z̄ on t ∈ [Ik–1, Ik].
Then, we compute the trajectory of the center of mass corresponding to this solution. We
expect this trajectory to be appropriate and use it in the space mapping procedure on the
interval [Ik–1, Ik].

6 Numerical results
In the following we present numerical results underlining the feasibility of our approach.
In particular, we investigate the number of space mapping iterations needed to obtain
appropriate results. Further, we shall see how the number of dogs is influencing the success
of the herding procedure. Finally, we analyze numerically if the system is stabilized for
large times T � 1.

For the simulations we choose Morse potentials [18] to model the interaction:

Gj
(|Xi – Xk|

)
= ∇Pj(Xi, Xk), j ∈ {1, 2},

Pj(Xi, Xk) = Cr,je–|Xi–Xk |/
r,j – Ca,je–|Xi–Xk |/
a,j .

To realize the self-organization of the sheep we assume that they have some long range
attraction and short range repulsion, i.e., we set

Cr,1 = 1, Ca,1 = 5e–4, 
r,1 = 2, 
a,1 = 1e–2.
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Further, we assume the dogs to scare the sheep and therefore have stronger repulsive in-
fluence. This leads to

Ca,2 = Ca,1, 
a,2 = 
a,1, Cr,2 = 1e–2, 
r,2 = 0.5.

Remark 10 We emphasize that the space mapping control approach discussed here can
be adapted to various other applications by changing the interaction potentials or the cost
functional.

The following parameters are fixed for all simulations

γ = 1e–2, umax = 5e–2, K = 20, εopt = 5e–3,

dt = 1e–2, α = 0.5,

where dt denotes the time step size. Moreover, we choose σ (x, t) = σ , i.e. the stochas-
tic force is independent of space and time. Nevertheless, σ will be changed for dif-
ferent simulations and is thus specified explicitly later on as well as other parame-
ters.

6.1 Influence of the stochasticity σ

To study the influence of the stochasticity on the number of space mapping iterations, we
set

N = 30, M = 5, T = 20,

run 100 Monte Carlo samples and stop the iteration if

∥
∥uf – u∗

c
∥
∥/

∥
∥u∗

c
∥
∥ < 0.3 or

∥
∥un

f – u∗
c
∥
∥/

∥
∥u∗

c
∥
∥ –

∥
∥un+1

f – u∗
c
∥
∥/

∥
∥u∗

c
∥
∥ < 0.005

for two consecutive iterates un
f and un+1

f .
The accuracy of the deterministic controls deteriorates as the stochastic influence in-

creases, see Fig. 2 (up) as well as Table 1. For σ = 0.03 the stochastic influence starts to
superimpose the crowd behaviour. Figure 2 (down) shows the trajectories of the center of
mass of the crowd using space mapping. We see that space mapping works well for small
values of σ . As the stochasticity starts to superimpose the crowd behaviour, the space
mapping technique is not so efficient. This is expected, since for large volatility the de-
terministic model is not a good approximation of the stochastic one. The second part of
Table 1 shows results obtained with 1000 Monte Carlo samples. The values change only
slightly, which justifies to fix the number of MC samples to 100 for the following compu-
tations.

Remark 11 We would like to emphasize that a basic Monte Carlo approach works fine in
the present setting. For problems that are more involved, it may be necessary to use Multi-
level Monte Carlo techniques in order to get efficient approximations for the stochastic
states.
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Figure 2 Up: We show the trajectories for the centre of mass of the crowd employing the optimal
deterministic controls. The accuracy of the deterministic controls deteriorates as the stochastic influence
increases. For σ = 0.03 the stochastic influence starts to superimpose the crowd behaviour. Down: The
trajectories of the centre of mass of the crowd resuting from the space mapping procedure. We see that the
trajectory corresponding to σ = 0.02 was improved

6.2 Influence of the number of dogs M
In the following figures, we depict sheep as blue dots, dogs as red triangles. The trajectories
of the dogs are depicted as red lines and the trajectory of the center of mass of the crowd
is the blue line. A cross marks the desired location Zdes.

Varying the number of dogs leads to very different controls which can be visualized
implicitly by the trajectories of the dogs. For this study we chose the parameter values

εSM = 0.5, N = 20, σ = 0.01.

Moreover, instead of fixing T we used |X̄ – Zdes| < 0.05 as stopping criterion and did 100
Monte Carlo runs. The change of the stopping criterion is necessary because we expect
that a different number of dogs will need different times to steer the crowd to the desired
destination.

Figure 3 compares the trajectories of the dogs (red) and the resulting trajectory of the
centre of mass of the crowd (blue). Note, that one dog has a hard time of leading the crowd
as the iteration stops at T1 = 3400. The situation is getting better for two dogs. They are
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Table 1 Numerical investiation of the space mapping procedure. For σ = 0.01 no space mapping is
needed, the optimal deterministic control is accepted. The number of space mapping steps
increases with increasing stochastic strength. The L2-error of the trajectory of the center of mass
compared to the center of mass of the optimal deterministic solution increases as well for larger σ .
The space mapping procedure is decreasing the error by a factor three for σ = 0.02. As the stochastic
starts to superimpose the crowd behaviour for σ ≥ 0.03, we see that the space mapping approach
decreases the error only marginally. The second part of the table shows results obtained with 1000
Monte Carlo samples. The values change only slightly, which justifies to fix the number of MC
samples to 100 for the following computations

σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04

MC = 100
Space mapping iterations 0 1 3 –
L2 error with deterministic control 7.00 · e–3 3.73 · e–2 9.09 · e–2 1.57 · e–1
L2 error after space mapping 7.00 · e–3 1.05 · e–2 7.05 · e–2 –

MC = 1000
Space mapping iterations 0 1 3 –
L2 error with deterministic control 9.28 · e–3 4.25 · e–2 9.70 · e–2 1.60 · e–1
L2 error after space mapping 9.28 · e–3 1.31 · e–2 7, 07 · e–2 –

successful at time T2 = 80. Three dogs finish at time T3 = 60. In the other cases we have
T4 = 60, T5 = 70, T6 = 40.

Remark 12 We emphasize that the initial positions of the dogs were chosen manually and
not included in the optimization. Hence, we cannot deduce the optimal number of dogs
from these results.

6.3 Stabilization
Next, we show snapshots of a simulation with T = 250,γ = 1e–3 and 5 dogs in order to
investigate if the herding process stabilizes. Indeed, we see in Fig. 4 that the dogs begin
to circle around the crowd when the task of steering the centre of mass to the destination
Zdes is achieved. This behaviour can be interpreted as stabilization of the system. For this
simulation the maximum number of space mapping iterations was limited to two. The
stabilization indicated by this example is underlined by the following computations. For
simplicity we set the friction parameter to α = 0 and consider the deterministic model.

Herding one sheep with two dogs. We first investigate the case having two dogs and only
one sheep. Suppose the sheep is located at the destination Zdes and the dogs are initially
positioned at a circle with radius αp1 around Zdes, one at each end of a diameter. Then,
the positions of the dogs can be parametrized with the help of p1 as

a1 = Zdes + αp1, a2 = Zdes – αp1.

In this setting the deterministic state equations are given by

ẋ1 = v1, v̇1 = –G2
(|x1 – a1|

)
– G2

(|x1 – a2|
)
,

ȧi = ui, i = 1, 2.

Choosing the initial conditions x1 = Zdes, v1(0) = 0, a1 = Zdes + αp1, a2 = Zdes – αp1, we ob-
tain due to the radial symmetry of the interaction potentials

v̇1 = –G2
(|x1 – a1|

)
– G2

(|x1 – a2|
)

= 0.
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Figure 3 Space mapping trajectories for 1–6 dogs. The simulations are stopped if |X̄ – Zdes| < 0.05 holds true.
The corresponding times are T1 = 3400, T2 = 80, T3 = 60, T4 = 60, T5 = 70, T6 = 40, where the subscript refers to
the number of dogs involved in the simulation. We see that already one dog is able to steer the crowd.
Nevertheless, more dogs significantly decrease the time needed for the steering process. The stochastic
influence in the system is implicitly displayed in the trajectory of the dogs in the figure on the top left. As for
deterministic systems one would expect to have a homogeneous helix

Thus, the system is stable for ui = 0. Note, that we have reduced the system from two
controls to only one control affecting both dogs at the same time. One can even change
the positions of the dogs by ṗ1 = f for some function f without any effect on the position
of the sheep. This shows the stability of the configuration in this toy example.

Herding 2N sheep with 2M dogs. The observation of the previous section can be general-
ized to the following framework having an even number of dogs 2M and an even number
of sheep 2N involved.

We assume the initial configuration to fulfil the following assumptions:
(A1) vi = 0, i = 1, . . . , 2N .
(A2) The centre of mass is located at the destination Zdes, i.e.

1
2N

2N∑

i=1

xi = Zdes.
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(A3) For each xi exists xj with i �= j and xi – ak = –(xj – a
) where ak and a
 are
positioned at a circle around Zdes each on one end of a diameter.

Further, we note that we have assumed the interaction potentials to be radially symmet-
ric. Using these assumptions we find

d
dt

(
1

2N

2N∑

i=1

xi

)

=
1

2N

2N∑

i=1

vi

=
1

2N

2N∑

i=1

(

vi(0) +
∫ t

0

1
2N

2N∑

j=1

G1
(|xi – xj|

)
+

2M∑

k=1

G2
(|xi – ak|

)
ds

)

= 0.

Thus, setting uk = 0 for all k = 1, . . . , 2M we obtain stability for the location of the centre
of mass. Moreover, changing the velocities of the dogs as discussed in the framework with
one sheep and two dogs, the position of the centre of mass is conserved as well. These
findings are illustrated by the black circle added to the terminal configuration of the sim-
ulation shown in Fig. 4. The dog at the bottom of the picture is far away from the crowd
such that its contribution to the forces can be neglected.

Of course, the stochastic influence and the error in the numerical integration will lead
to dogs circling around the crowd. Thus, we do not expect to obtain numerically a stable
setting with all sheep and dogs standing still.

7 Space-mapping using the mean-field limit
Crowds consisting of many individuals, i.e. N � 1, are often investigated from a meso-
scopic point of view with the help of a mean-field equation, see e.g. [3, 6, 7, 9]. Following
the steps in [8], this equation can be obtained via the empirical density

f N (t, x, v) =
1
N

N∑

i=1

δ0
(
x – xi(t)

) ⊗ δ0
(
v – vi(t)

)
.

Formally passing to the mean-field limit N → ∞ leads the deterministic optimization
problem

J(f , u; Z̄, ū) :=
∫ T

0

1
2N

N∑

k=1

∥∥E
[
f (t)

]
– Z̄(t)

∥∥2 +
γ

2
∥∥u(t) – ū(t)

∥∥2
RMD dt, (9)

subject to the state system given by

∂t f + v · ∇xf = divv

([

(G1 ∗ f ) +
M∑

k=1

G2(x – am) + αv)

]

f

)

,

d
dt

am = um, m = 1, . . . , M.

with initial conditions f (0, x, v) = f0(x, v), am(0) = am
0 for m = 1, . . . , M. Here we used

E
[
f (t)

]
=

∫

R

xf (t, x, v) dx dv.
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Figure 4 Snapshots of the optimization procedure at t = 10, 25, 50, 75, 125, 250 (top-left to bottom-right). We
see that the five dogs are able to steer the centre of mass of the crowd to the destination and that the crowd
stays together. The latter is a new information which is not accessible by investigating only the centre of mass.
Moreover, we see a stabilization as the dogs begin to circle around the crowd (t = 75, 125, 250) after the centre
of mass reached the desired destination. The black circle is underlining the discussion of the stabilization of
the crowd

Now, drawing the random initial conditions i.i.d. from f0(x, v), it is well-known that f (t, x, v)
assigns the probability of finding a particle at time t at position x with velocity v. Hence,
one could use the deterministic mean-field problem for f as coarse model for a space-
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mapping in order to control the stochastic limit for many particles. Note that a similar
deterministic optimization problem was solved in [8].

Remark 13 We want to emphasize that in the common noise case the limiting equation
is not deterministic but a stochastic PDE [30]. Thus, it is not clear whether it is an appro-
priate choice as coarse model. The cost for computing optimal controls with the SPDE are
probably very high.

8 Conclusion and outlook
We discussed a space mapping approach in combination with receding horizon control for
the closed loop control of a stochastic interacting particle system. The numerical results
underline that the method is feasible for interacting particle systems with small stochastic
perturbation. Further, they indicate that a sub-optimal control for the stochastic system is
found efficiently already after few space mapping iterations.

In near future, we plan to use the space mapping approach to control a stochastic system
involving a large number of interacting particles. In this case, the mean-field approxima-
tion can be used as coarse model for the space mapping approach. Moreover, a rigorous
analysis of the space mapping procedure applied to stochastic problems is of interest. An
investigation of the stabilizing effect of the feedback control is planned. A rigorous gen-
eralization to the setting with common noise and its influence on the space-mapping per-
formance are interesting future projects as well.
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