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Abstract
A recent asymptotic model for solidification shrinkage-induced macrosegregation in
the continuous casting of binary alloys is extended for the purposes of understanding
the link between solute segregation and centreline shrinkage porosity, a defect that
commonly occurs in the continuous casting of steel. In particular, the analysis
elucidates the relationship between microsegregation, mushy-zone permeability,
heat transfer and centreline pressure, yielding an inequality that constitutes a criterion
for whether or not centreline porosity will form. The possibilities for developing this
approach to take account of gas porosity and the implementation of mechanical soft
reduction to reduce macrosegregation and shrinkage porosity are also discussed.
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1 Introduction
The formation of porosity in the casting of metals has been the subject of numerous solidi-
fication research studies since the 1960s. Piwonka and Flemings [29] and Kubo and Pehlke
[18] were the first to identify porosity formation mechanisms and to develop mathematical
models to describe porosity evolution, with much of the subsequent work being summa-
rized in reviews by Lee et al. [19] and Stefanescu [35], as well as in the book by Dantzig
and Rappaz [6]. However, apart from isolated works by Jacobi and co-workers [15, 41] and,
most recently, a thesis by Du [8], there is little work on porosity formation in the continu-
ous casting of steel, a schematic for which is shown in Fig. 1. This under-researched topic
is therefore the focus of this paper.

Porosity in the continuous casting of steel tends to occur at the centreline of a solidified
casting, as is demonstrated in Fig. 2, which shows the vertical cross-section, taken through
the centreline, of a continuously cast steel sample; the direction of casting was from left
to right. In general, the porosity is believed to be caused by three main effects [8]:

• a lack of feeding of melt to compensate for the solidification shrinkage, which is in the
interval of 1–7% for metallic alloys [10];

• the rejection of gas, typically nitrogen, oxygen and hydrogen, from the newly formed
solid phase to the surrounding melt, in which it is more soluble;

• solid deformation as a result of tensile stresses, which can also be traced back to a lack
of feeding of melt.
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Figure 1 Schematic of the continuous casting process for steel. Melt passes from a ladle to a tundish and
then down through a cooled mould region where solidification commences on the mould walls. The partially
solidified steel passes through regions of spray cooling and withdrawal rollers, by which point complete
solidification has occurred. Throughout, the solidified steel is pulled with a constant speed, Vcast

Figure 2 Photograph of a continuous cast steel sample having pores along its centreline. The casting
direction was from left to right

In all three cases, when the pressure in the centre decreases below the equilibrium pres-
sure for gas phase, porosity will develop. To focus ideas, here we consider only solidifica-
tion shrinkage.

Although much attention has been paid to how to model porosity once it forms in a
casting process, an alternative activity in this context would be to model how it can be
avoided. Indeed, this attitude is consistent with practical attempts to reduce centreline
porosity by using the technique of mechanical soft reduction [7, 33, 43], whereby mild
roll tapering is applied; the reduced roll gap squeezes the solid shell towards the centre
and thus the solid phase feeds and reduces the porosity level. Moreover, it appears that
although solidification shrinkage almost always occurs, shrinkage porosity need not; this
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suggests that there ought to be a criterion that determines what happens as a function of
the operating parameters. There do, of course, already exist criteria, the most well-known
being the Niyama criterion [27, 28], which states that porosity is most likely to form when

G/
√

Ṫ < constant, (1.1)

where G (K cm–1) is the thermal gradient and Ṫ (K min–1) is the cooling rate. The constant
on the right-hand side of (1.1) depends on the alloy being cast; for the casting of steel,
the constant is often taken to be 1 (K1/2min1/2cm–1), with the constant taking different
values for other alloys [6]. Another criterion was proposed by Hansen and Sahm [12],
who replaced (1.1) by

G/
[
Ṫ1/4v1/2

l
]

< constant, (1.2)

where vl is the flow velocity through the mushy zone. There are also criteria functions that
are used to predict where there is a higher probability for a pore to appear [20]; however,
these do not represent the physics and are not quantitative tools for calculation of frac-
tion or size of the porosity. According to their derivation, criteria functions only predict
the possibility of shrinkage porosity and are highly dependent on the material and casting
conditions. Since many experiments need to be done to provide data to find proper con-
stants in the criteria functions, their usage is limited. Furthermore, none of these criteria
take into account an actual continuous casting configuration, nor the link that is believed
to exist between porosity and solute segregation [8, 10, 11]. In this paper, on the other
hand, the goal is to take both of these factors into account by extending a recent asymp-
totic model for binary-alloy macrosegregation induced by solidification shrinkage [40]; we
note in passing that, although modern steels are made with varying combinations of alloy
metals to fulfil many purposes, carbon steel—composed simply of iron and carbon—still
accounts for around 90% of steel production [16], making a binary-alloy model a relevant
starting point.

The structure of this paper will be the following. In Sect. 2, the governing equations are
formulated, whereas in Sect. 3, they are nondimensionalized. In Sect. 4, we analyzed them
using asymptotic methods and derive a leading-order problem. Results are presented in
Sect. 5, and their consequences are discussed in Sect. 6. Conclusions are drawn in Sect. 7.

2 Mathematical model
2.1 Governing equations
We consider a steady state two-dimensional (2D) problem, as shown in Fig. 3, in which a
molten alloy at temperature Tcast and solute composition c0 enters a cooling mould region
at z = 0; if the alloy is carbon steel, the solute is carbon. We will take Tcast to be equal to the
liquidus temperature, Tliq, at the concentration c0; the case when Tcast > Tliq is deferred
to future work, as it would complicate the foregoing analysis without adding anything
conceptually new. In effect, this means that solidification starts immediately at z = 0, and
hence that there is no melt-only region; consequently, mush begins to form at the inner
mould surface at z = 0, whereas complete solidification occurs slightly further down along
the mould wall at z = zs,init, where zs,init > 0. For simplicity, and in line with many others [8],
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Figure 3 2D schematic for the idealized continuous casting of steel

we neglect the curvature of the casting geometry shown in Fig. 1 and simply consider a
vertical configuration. Thus, below the mould region, there is assumed to be spray cooling,
with complete solidification occurring on the centreline at y = W , which is assumed to be
an axis of symmetry, at z = zs,mid; thus, it is only necessary to consider the region 0 ≤ y ≤ W
and, overall, the mushy zone occupies ys(z) ≤ y ≤ W . Throughout, the solidified steel is
withdrawn with a constant casting speed, Vcast.

Here, we avail of the formulation given by Vynnycky et al. [40], which in turn was de-
veloped from those given by Ni and Beckermann [25], Reddy and Beckermann [32] and
Thevik et al. [38]. We also adopt the following assumptions:

1. the solid phase is rigid and, even in the mushy region, moves downward with the
casting speed;

2. the momentum transfer between the liquid and solid phases in the mushy zone is
modelled by a Darcy term;

3. there is no formation of gas pores;
4. there is no macroscopic diffusion of solute;
5. there are no dispersive fluxes;
6. all thermophysical properties are constant;
7. the alloy is binary;
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8. thermodynamical equilibrium prevails in the mushy zone, and the liquidus and
solidus lines in the thermodynamic phase diagram, which will be discussed shortly,
are linear.

Balancing the total mass over solid and liquid phases gives

∇ · (ρlχvl + ρs(1 – χ )vs
)

= 0, (2.1)

where ρl and ρl are the densities of the liquid and solid phases, respectively, and ρ is the
mixture density, which is related to ρl and ρs by

ρ = χρl + (1 – χ )ρs, (2.2)

where χ is the liquid fraction. In (2.1), vl and vs are, respectively, the liquid- and solid-
phase velocity vectors; for the current 2D model, we have

vl = (vy, vz), vs = (0, Vcast), (2.3)

where vy and vz denote the y- and z-components of the liquid velocity, respectively.
The momentum balance for the liquid phase is given by

μv = κ · (–∇p + ρlg), (2.4)

where v = χ (vl – vs), μ is the dynamic viscosity of the liquid phase, p is the pressure, g =
(0, g) is the gravity vector and κ is the permeability tensor for the mushy region. Typically,
κ is taken to be of the isotropic form κI, where I is the identity matrix and κ is a function
of the liquid fraction, given often by the Carman–Kozeny relation as

κ(χ ) =
κ0χ

3

(1 – χ )2 , (2.5)

where κ0 is given in terms of the primary or secondary dendrite arm spacings, λ1 and λ2

respectively [7, 17]; examples are

κ0 = 0.0006λ2
1, κ0 =

λ2
2

180
. (2.6)

Although κ is sometimes taken to be an orthotropic tensor [24, 30], the key quantity here
will turn out to be the power, σ , to which χ is raised as χ → 0; in [24, 30], σ = 2 or σ = 3.
For example, Poirier [30] has σ = 3 both parallel and normal to the primary dendrite arms,
although σ = 2 parallel and σ = 3 normal to the primary dendrite arms in later work [13,
14, 31]. In our analysis, it will turn out that only κzz, i.e. normal to the primary dendrite
arms, needs to be used, and we will only use the notation κ . Nevertheless, it should be
noted that most of these results are for columnar dendritic structures, whereas the centre
of the steel casting is preferably equiaxed. Note that (2.4), which is in essence Darcy’s law,
is consistent with the assumption that Tcast = Tliq and that the mushy zone starts at z = 0;
as a consequence, there is no reason to employ the full Navier Stokes equations as part of
the momentum balance. The y- and z-components of equation (2.4) are then

0 = –
∂p
∂y

–
μχvy

κ(χ )
, (2.7)
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0 = –
∂p
∂z

–
μχ (vz – Vcast)

κ(χ )
+ ρlg, (2.8)

respectively.
The equation for the conservation of energy is

∇ · (χρlvlHl + (1 – χ )ρsvsHs
)

=
∂

∂y

(
k
∂T
∂y

)
, (2.9)

where T is the temperature, and k is the mixture thermal conductivity, given by

k = χkl + (1 – χ )ks, (2.10)

respectively. In (2.10), kl and ks are the liquid- and solid-phase thermal conductivities,
respectively, both of which will be assumed constant. In (2.9), Hl and Hs are the liquid-
and solid-phase enthalpies, respectively, and are given by

Hl = CplT + �Hf , Hs = CpsT , (2.11)

where Cpl and Cps are the respective specific heats for the liquid and solid phases, also
assumed constant, and �Hf is the latent heat. Moreover, since the geometry for the con-
tinuous casting of steel can be considered slender—the horizontal extent is typically tens
of centimetres, whereas the solidification length is around 20 metres—it is reasonable to
expect that ∂2/∂y2 � ∂2/∂z2; this explains why a term containing second derivatives in z
in equation (2.9) has been neglected. So, equation (2.9) becomes, in full form,

∂

∂y
(χρlvyHl) +

∂

∂z
(χρlvzHl) + Vcast

∂

∂z
(
(1 – χ )ρsHs

)

=
∂

∂y

((
χkl + (1 – χ )ks

)∂T
∂y

)
. (2.12)

The form of the equation for the conservation of solute, taken over solid and liquid
phases, depends on the assumption made regarding diffusion in the solid at the microscale.
Assuming this to be infinitely fast leads to what is often termed the lever rule, namely,

∇ · (ρlχclvl + ρs(1 – χ )csvs
)

= 0, (2.13)

with cl and cs as the respective solute concentrations in the liquid and solid phases, which
are related by

cs = k0cl, (2.14)

where k0 is the partition coefficient; at the other extreme, assuming diffusion in the solid
at the microscale to be negligible leads to

∇ ·
(

χρlclvl + ρs

{∫ 1–χ

0
cs dχ ′

}
vs

)
= 0, (2.15)
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which is often termed the Scheil assumption. (2.13) and (2.15) can be manipulated to give

Vcast
∂

∂z
(ρc) + ∇ · (ρlclv) = 0, (2.16)

where c is the mixture concentration, given by

ρc = χρlcl +

⎧
⎨

⎩
ρs(1 – χ )cs, lever rule,

ρs
∫ 1–χ

0 cs dχ ′, Scheil assumption.
(2.17)

For the purposes of generalization, it is possible to introduce a parameter α, where 0 ≤
α ≤ 1, that allows for a back-diffusion treatment that lies between the limits of zero back
diffusion (α = 0, the Scheil assumption) and complete back diffusion (α = 1, the lever rule);
as indicated in [36], this treatment of back diffusion is equivalent to using the Clyne and
Kurz correction [5] of the well-known back diffusion model of Brody and Flemings [3].
Following [36] in first setting

∫ 1–χ

0

∂cs

∂z
dχ ′ = α(1 – χ )k0

∂cl

∂z
, (2.18)

equation (2.16) becomes, in 2D,

Vcast

{
ρl

∂

∂z
(χcl) – k0ρscl

∂χ

∂z
+ ρsα(1 – χ )k0

∂cl

∂z

}

+
∂

∂y
(ρlclχvy) +

∂

∂z
(
ρlclχ (vz – Vcast)

)
= 0. (2.19)

We also have local thermodynamic equilibrium in the mushy region, so that

T = Tm – mcl for 0 ≤ χ ≤ 1, (2.20)

where Tm would typically denote the melting point of the solvent element and m > 0. In
addition, it is evident that Tliq = Tm – mc0; thus, we are taking Tcast = Tliq. To maintain
connection to the casting of steel, we show the equilibrium phase diagram for the Fe–
C system in Fig. 4. Note that, for carbon steel, we would have c0 ≤ 2.14 wt%, whilst for
alloyed steels, significantly more complex phase diagrams need to be considered, although
a degree of analytical tractability may still be possible for ternary alloys, such as Fe–Mn–C
[23] or Fe–S–C [33]. We will return to discuss Fig. 4 further, and in particular its relation
to α in (2.19), in Sect. 2.3.

2.2 Boundary conditions
The boundary conditions for equation (2.9) are

k
∂T
∂y

= h(T – To) at y = 0, (2.21)

∂T
∂y

= 0 at y = W , (2.22)

T = Tcast at z = 0, (2.23)
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Figure 4 Equilibrium phase diagram for the Fe–C system

where To is the cooling temperature and h is the heat transfer coefficient. Equation (2.21)
is taken as a generalized form that encompasses cooling in the mould region, as well spray
and radiative cooling in the secondary cooling region. Whilst To and h are, in general,
functions of z, we take them for simplicity to be constant; as will become evident later,
their exact forms are not of importance for the ongoing analysis or this paper’s ultimate
conclusions, as regards shrinkage porosity. We also have

p = pa at z = 0, (2.24)

vz = ρsVcast/ρl at z = 0, (2.25)

vy = 0 at y = 0 and W , (2.26)

vz = Vcast at z = L, (2.27)

where pa is the atmospheric pressure. For c, we have

c = c0 at z = 0; (2.28)

moreover, as there is no solid there, the above implies that

χ = 1 at z = 0. (2.29)

We must also have

∂cl

∂y
= 0 at y = W ; (2.30)
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this condition appears to have been omitted in [40], but is consistent with (2.20) and (2.22)
and is necessary in light of the forthcoming discussion in Sect. 2.3.

2.3 Further comments: mush-solid interface
As in [40], it is convenient to be able to make an explicit distinction between the solid and
mush, so as to be able to set conditions at the interface between them. Three conditions
are required here; two of these—the continuity of temperature and a heat balance—are
straightforward, but the third is less so. It is evident that the temperature on the mush
side of this interface must satisfy (2.20), but this in itself does not provide a third condition,
since cl is not yet known. However, since (2.28) and (2.30) can be considered as Cauchy
data for (2.19), it should mean that cl is computed at y = ys(z). Hence, we set

T = Tm – mcl at y = ys(z), (2.31)

with the continuity of temperature and a heat balance being given, respectively, by

[T]+ = 0 at y = ys(z), (2.32)
[

k
∂T
∂y

]+

–
= ρs�Hfχ

dys

dz
at y = ys(z), (2.33)

with the notation [ ]+
– in (2.32) and (2.33) denoting the difference in the value of a func-

tion above and below y = ys(z), and with the right-hand side in (2.33) containing a latent
heat term; see [2, 40] for further discussion. It should be noted that this description is not,
strictly speaking, valid for a carbon steel in which a peritectic reaction occurs [4, 34], as is
the case for the Fe–C system at 0.16 wt% C, meaning that more than one solid phase is pre-
cipitated; however, this situation is avoided if 0.51 wt% < c0 < 2.14 wt%. For convenience
later on, we refer to the second of these numbers as k0ceut, where ceut denotes the eutectic
composition, i.e. the composition that gives the lowest possible melting temperature over
all of the mixing ratios for the involved component species, which can be read off from
Fig. 4 as 4.3 wt%.

In addition to (2.31)–(2.33), an initial-like condition is required for ys; this is simply

ys(zs,init) = 0. (2.34)

The definitions of all of the symbols can be found in the Table of Nomenclature.

3 Nondimensionalization
Next, we nondimensionalize using

Y =
y

W
, Z =

z
L

, VY =
vy

VcastW /L
, VZ =

vz

Vcast
, P =

p – ρlgz – pa

μVcastL/κ0
,

κ̄ =
κ

κ0
, θ =

T – To

Tcast – To
.

For later use, we also set

Zs,init =
zs,init

L
, Zs,mid =

zs,mid

L
, θs =

Ts – To

Tcast – To
,
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and β = ρs/ρl; a further dimensionless parameter that will be of significance in the model
is the solidification shrinkage, ε, given by ε = β – 1.

3.1 Governing equations
From equation (2.1), we have

∂

∂Y
(χVY ) +

∂

∂Z
(
χ (VZ – β)

)
= 0. (3.1)

Equations (2.7) and (2.8) give

0 = –
∂P
∂Y

– δ2 χVY

κ̄(χ )
, (3.2)

0 = –
∂P
∂Z

–
χ (VZ – 1)

κ̄(χ )
, (3.3)

respectively, where δ = W /L. Equation (2.12) gives

∂

∂Y

(
χVY

(
C(θ + θo) +

1
St

))
+

∂

∂Z

(
χVZ

(
C(θ + θo) +

1
St

))

+ β
∂

∂Z
(
(1 – χ )(θ + θo)

)
=

β

Pe
∂

∂Y

((
χK + (1 – χ )

) ∂θ

∂Y

)
, (3.4)

where

K =
kl

ks
, θo =

To

Tcast – To
, C =

Cpl

Cps
,

St =
Cps(Tcast – To)

�Hf
, Pe =

ρsVcastCpsW 2

ksL
;

(3.5)

in particular, St is the Stefan number and Pe is the Péclet number.
Equation (2.19) gives

∂

∂Y
(clχVY ) +

∂

∂Z
(clχVZ) + βk0

{
α(1 – χ )

∂cl

∂Z
– cl

∂χ

∂Z

}
= 0. (3.6)

Moreover, equation (2.20) gives

θ = θm – m̃cl for 0 ≤ χ ≤ 1, (3.7)

where m̃ = m/(Tcast – To) and θm = (Tm – To)/(Tcast – To), whereas equation (2.14) remains
unchanged.

3.2 Boundary conditions
Equations (2.21)–(2.28) become, respectively,

[
(K – 1)χ + 1

] ∂θ

∂Y
= Bi θ at Y = 0, (3.8)

∂θ

∂Y
= 0 at Y = 1, (3.9)
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θ = 0 at Z = 0, (3.10)

P = 0 at Z = 0, (3.11)

VZ = β at Z = 0, (3.12)

VY = 0 at Y = 0 and 1, (3.13)

VZ = 1 at Z = 1, (3.14)

c = c0 at Z = 0, (3.15)

where Bi is the Biot number, which is given by

Bi =
hW
kl

; (3.16)

also, (2.29) becomes

χ = 1 at Z = 0, (3.17)

whereas (2.30) gives

∂cl

∂Y
= 0 at Y = 1. (3.18)

Also, equations (2.31)–(2.33) become

θ = θm – m̃cl at Y = Ys(Z), (3.19)

[θ ]+
– = 0 at Y = Ys(Z), (3.20)

[[
(K – 1)χ + 1

] ∂θ

∂Y

]+

–
=

Pe
St

χ
dYs

dZ
at Y = Ys(Z), (3.21)

respectively, whilst (2.34) gives

Ys(Zs,init) = 0. (3.22)

4 Analysis
With

Cpl, Cps ∼ 700 Jkg–1K–1, g ∼ 10 ms–2, h ∼ 103 Wm–2K–1

kl, ks ∼ 20 Wm–1K–1, k0 ∼ 0.5, m ∼ 90 K/wt%, L ∼ 20 m,

pa ∼ 105Nm–2, Tcast ∼ 1700 K, To ∼ 300 K, Vcast ∼ 0.01 ms–1,

�Hf ∼ 2.2 × 105 Jkg–1, κ0 ∼ 10–9 m2, μ ∼ 0.007 kgm–1s–1,

W ∼ 0.1 m, ρl ∼ 7000 kgm–3, ρs ∼ 7200 kgm–3,

which are based on typical characteristic values for the continuous casting of steel [7, 26,
33], we arrive at

Bi ∼ 5, K ∼ 1, m̃ ∼ 0.06, Pe ∼ 1.3, St ∼ 4.5,
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β ∼ 1.03, ε ∼ 0.03, δ ∼ 5 × 10–4, C ∼ 1, θo ∼ 0.2,

as the characteristic values for the problem’s dimensionless parameters.
Since the main interest here is solidification shrinkage in a slender geometry, it is natural

to exploit the fact that δ and ε are small, with a view to simplifying the problem asymp-
totically; furthermore, we take all other dimensionless parameters to be nominally O(1).

First of all, we consider the fact that ε � 1. As in [40], we expect regular asymptotic
series expansions for

φ = (VZ , VY , P, cl, cs,χ , θ ), (4.1)

in the form

φ = φ(0) + εφ(1) + o(ε). (4.2)

For later use, we also introduce

Ys(Z) = Y (0)
s (Z) + εY (1)

s (Z) + · · · , (4.3)

for the location of the solid-mush interface, as well as its inverse function

Zs(Y ) = Z (0)
s (Y ) + εZ (1)

s (Y ) + · · · ; (4.4)

strictly speaking, the unknowns Zs,init and Zs,mid should also be expressed as expansions
in ε, but since we never need any term higher than the leading order, we suppress the ( )

notation for these.
Thence, we consider the governing equations—(3.1)–(3.3), (3.4), (3.6) and (3.7)—and

boundary conditions (3.8)–(3.15) at orders ε0 and ε1. Henceforth, we will set K = 1, C = 1,
as nothing is gained from the extra generality, but a lot of algebra is spared because of the
simplication.

4.1 ε0

4.1.1 Equations
So, equation (3.1) gives, at O(1),

∂

∂Y
(
χ (0)V (0)

Y
)

+
∂

∂Z
(
χ (0)(V (0)

Z – 1
))

= 0. (4.5)

Equations (3.2) and (3.3) give

0 = –
∂P(0)

∂Y
– δ2 χ (0)V (0)

Y
κ̄(χ (0))

, (4.6)

0 = –
∂P(0)

∂Z
–

χ (0)(V (0)
Z – 1)

κ̄(χ (0))
, (4.7)

respectively. Equation (3.4) then gives

∂

∂Z

(
θ (0) +

χ (0)

St

)
+

∂

∂Y
(
θ (0)χ (0)V (0)

Y
)

+
∂

∂Z
(
θ (0)χ (0)(V (0)

Z – 1
))

=
1

Pe
∂2θ (0)

∂Y 2 . (4.8)
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Now, equation (3.6) gives, at O(1),

∂

∂Y
(
c(0)

l χ (0)V (0)
Y

)
+

∂

∂Z
(
c(0)

l χ (0)V (0)
Z

)
+ αk0

(
1 – χ (0))∂c(0)

l
∂Z

– k0c(0)
l

∂χ (0)

∂Z
= 0. (4.9)

Also, equation (3.7) gives

θ (0) = θm – m̃c(0)
l . (4.10)

From (3.8)–(3.15), the boundary conditions are

∂θ (0)

∂Y
= Bi θ (0) at Y = 0, (4.11)

∂θ (0)

∂Y
= 0 at Y = 1, (4.12)

θ (0) = 0 at Z = 0, (4.13)

P(0) = 0 at Z = 0, (4.14)

V (0)
Z = 1 at Z = 0, (4.15)

V (0)
Y = 0 at Y = 0 and 1, (4.16)

V (0)
Z = 1 at Z = 1, (4.17)

c(0)
l = c0 at Z = 0, (4.18)

whilst (3.17) implies that

χ (0) = 1 at Z = 0, (4.19)

whereas (3.18) gives

∂c(0)
l

∂Y
= 0 at Y = 1. (4.20)

In addition, (3.19)–(3.21) become

θ (0) = θs, (4.21)
[
θ (0)]+

– = 0 at Y = Y (0)
s (Z), (4.22)

[
∂θ (0)

∂Y

]+

–
=

Pe
St

χ (0) dY (0)
s

dZ
at Y = Y (0)

s (Z), (4.23)

respectively, whilst (3.22) gives

Y (0)
s (Zs,init) = 0. (4.24)

4.1.2 Solution
Equations (4.5)–(4.7) lead to

V (0)
Z = 1, V (0)

Y = 0, P(0) = 0, (4.25)
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whence equation (4.8) simplifies to

∂

∂Z

(
θ (0) +

χ (0)

St

)
=

1
Pe

∂2θ (0)

∂Y 2 , (4.26)

which is similar to that used in [39]. Equations (4.9) and (4.25) give

∂

∂Z
(
c(0)

l χ (0)) + αk0
(
1 – χ (0))∂c(0)

l
∂Z

– k0c(0)
l

∂χ (0)

∂Z
= 0, (4.27)

which, on using (4.18), leads to

c(0)
l = c0

(
χ (0) + αk0

(
1 – χ (0))) k0–1

1–αk0 , (4.28)

and hence

c(0)
s = k0c0

(
χ (0) + αk0

(
1 – χ (0))) k0–1

1–αk0 . (4.29)

If α = 1, we obtain

c(0)
l =

c0

χ (0) + k0(1 – χ (0))
, (4.30)

which is the expression for the lever rule; if α = 0,

c(0)
l = c0

(
χ (0))k0–1, (4.31)

which is the same expression as that given by the Scheil equation. Thus, for these two
extreme cases, it appears that whatever assumption was made about solidification at the
microscale resurfaces at leading order at the macroscale. This observation was already
made in [40] for the case α = 1; however, the whole picture now seems to be more complex
than this, even for the case α = 1. Starting with (4.30) and setting χ (0) = 0, we obtain c(0)

l =
c0/k0. However, if c0 > k0ceut, we would have already reached the eutectic composition; thus
χ (0) cannot reach zero, but instead some value χeut such that 0 < χeut < 1. More generally,
for 0 ≤ α ≤ 1, we have

ceut = c0
(
χeut + αk0(1 – χeut)

) k0–1
1–αk0 ,

whence

χeut =
( ceut

c0
)

1–αk0
k0–1 – αk0

1 – αk0
. (4.32)

Even for c0 < k0ceut, there appears to be a further problem. At leading order, we would
not expect any macrosegregation at all when solidification is complete, so that c(0)

s = c0

across the casting section; however, when setting χ (0) = 0 in (4.29), we obtain

c(0)
s = k0c0(αk0)

k0–1
1–αk0 at Y = Y (0)

s (Z),
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which only equals c0 when α = 1. The only resolution here, analogous to that for c0 > k0ceut,
is that χ (0) decreases to some value 0 < χs < 1 such that

k0
(
χs + αk0(1 – χs)

) k0–1
1–αk0 = 1,

meaning that

χs =
k

1–αk0
1–k0

0 – αk0

1 – αk0
; (4.33)

consequently, we will have just

c(0)
l = c0/k0 at Y = Y (0)

s (Z), (4.34)

as required. On the other hand, if α = 0, equation (4.32) will prevail. Another important
quantity will be θ (0) at Y = Y (0)

s (Z), which can be constructed from (4.22) and c(0)
l .

In order to determine the macrosegregation and the possible onset of porosity, it is nec-
essary to consider the model equations at O(ε), as is done next.

4.2 ε1

4.2.1 Equations
At ε1, equation (3.1) gives

∂

∂Y
(
χ (0)V (1)

Y
)

+
∂

∂Z
(
χ (0)(V (1)

Z – 1
))

= 0. (4.35)

Equations (3.2) and (3.3) give

0 =
∂P(1)

∂Y
– δ2 χ (0)V (1)

Y
κ̄(χ (0))

, (4.36)

0 = –
∂P(1)

∂Z
–

χ (0)V (1)
Z

κ̄(χ (0))
. (4.37)

Equation (3.4) gives

∂

∂Y
(
θ (0)χ (0)V (1)

Y
)

+
∂

∂Z

(
θ (0)χ (0)(V (1)

Z – 1
)

+ θ (1) +
χ (1)

St

)
=

1
Pe

∂2θ (1)

∂Y 2 , (4.38)

whilst equation (3.6) gives

∂

∂Y
(
c(0)

l χ (0)V (1)
Y

)
+

∂

∂Z
(
c(0)

l χ (0)V (1)
Z

)
+

∂

∂Z
(
χ (0)c(1)

l + χ (1)c(0)
l

)

– αk0

{
c(0)

l
∂χ (1)

∂Z
+ c(1)

l
∂χ (0)

∂Z
+ c(0)

l
∂χ (0)

∂Z

}
= 0. (4.39)

From (3.7), we have

θ (1) = –m̃c(1)
l . (4.40)
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At this order, equations (3.8)–(3.15) yield

∂θ (1)

∂Y
= Bi θ (1) at Y = 0, (4.41)

∂θ (1)

∂Y
= 0 at Y = 1, (4.42)

θ (1) = 0 at Z = 0, (4.43)

P(1) = 0 at Z = 0, (4.44)

V (1)
Z = 1 at Z = 0, (4.45)

V (1)
Y = 0 at Y = 0, (4.46)

V (1)
Y = 0 at Y = 1, (4.47)

V (1)
Z = 0 at Z = 1, (4.48)

c(1)
l = 0 at Z = 0, (4.49)

with (3.17) giving

χ (1) = 0 at Z = 0, (4.50)

and (3.18) giving

∂c(1)
l

∂Y
= 0 at Y = 1. (4.51)

Also, equations (3.19)–(3.21) at O(ε) give, at Y = Y (0)
s (Z),

θ (1) = 0, (4.52)
[
θ (1)]+

– = 0, (4.53)
[

Y (1)
s

∂θ (0)

∂Y
+

∂θ (1)

∂Y

]+

–
=

Pe
St

(
χ (0) dY (1)

s

dZ
+

{
χ (1) + Y (1)

s
∂χ (0)

∂Y

}
dY (0)

s

dZ

)
, (4.54)

the third of which simplifies to

[
∂θ (1)

∂Y

]+

–
=

Pe
St

(
χ (0) dY (1)

s

dZ
+

{
χ (1) + Y (1)

s

(
∂χ (0)

∂Y
– 1

)}
dY (0)

s

dZ

)
, (4.55)

whilst (2.34) gives

Y (1)
s +

dY (0)
s

dZ
= 0 at Z = Zs,init. (4.56)

4.2.2 Solution
First, we see that equations (4.35)–(4.37) for V (1)

Y , V (1)
Z and P(1) decouple from equations

(4.38)–(4.40). Cross-differentiating (4.36) and (4.37) so as to eliminate P(1), we have

δ2 ∂

∂Z

(
χ (0)V (1)

Y
κ̄(χ (0))

)
–

∂

∂Y

(
χ (0)V (1)

Z
κ̄(χ (0))

)
= 0. (4.57)
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Now, using the fact that δ � 1, (4.57) reduces to

∂

∂Y

(
χ (0)V (1)

Z
κ̄(χ (0))

)
= 0, (4.58)

giving

χ (0)V (1)
Z

κ̄(χ (0))
= f (Z), (4.59)

where f is a function of Z that has to be determined. In addition, once f is determined, we
will have just

∂P(1)

∂Z
= –f (Z). (4.60)

Hence, equations (4.35) and (4.59) should be solved to find V (1)
Y , V (1)

Z and P(1), with f (Z)
being such that boundary conditions (4.45)–(4.48) are satisfied.

V (1)
Y , V (1)

Z and P(1) are determined in Sect. 4.3, whereas the analysis for determining χ (1),
c(1)

l and θ (1) is presented in Sect. 4.4.

4.3 V (1)
Y , V (1)

Z and P(1)

The solutions for V (1)
Y ,V (1)

Z and P(1) are exactly the same as those derived in [40], and we
simply quote them. We have

V (1)
Y =

⎧
⎨

⎩

1
χ (0)

∫ Y
0

∂
∂Z (χ (0) – χ (0)V (1)

Z )) dY ′ for 0 ≤ Z ≤ Zs,init,
1

χ (0)

∫ Y
Y (0)

s (Z)
∂
∂Z (χ (0) – χ (0)V (1)

Z )) dY ′ for Z > Zs,init,
(4.61)

V (1)
Z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κ̄(χ (0))
χ (0)

∫ 1
0 χ (0)(Y ′ ,Z) dY ′
∫ 1

0 κ̄(χ (0)) dY ′ for 0 ≤ Z ≤ Zs,init,

κ̄(χ (0))
χ (0)

∫ 1
Y (0)

s (Z)
χ (0)(Y ′ ,Z) dY ′

∫ 1
Y (0)

s (Z)
κ̄(χ (0)) dY ′ for Z > Zs,init,

(4.62)

P(1) = –
∫ Z

0
f
(
Z′)dZ′, (4.63)

where

f (Z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ 1
0 χ (0)(Y ′ ,Z) dY ′
∫ 1

0 κ̄(χ (0)) dY ′ for 0 ≤ Z ≤ Zs,init,
∫ 1

Y (0)
s (Z)

χ (0)(Y ′ ,Z) dY ′
∫ 1

Y (0)
s (Z)

κ̄(χ (0)) dY ′ for Z > Zs,init.
(4.64)

In fact, the results at this stage are already enough to infer conclusions regarding the
onset of shrinkage porosity. Nevertheless, for completeness, we include the equations that
it would be necessary to solve in order to compute the macrosegregation before returning
once again to the shrinkage porosity in Sect. 5.
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4.4 χ (1), c(1)
l and θ (1)

χ (1), c(1)
l and θ (1) satisfy (4.38)–(4.40), subject to (4.41)–(4.43), (4.49), (4.53) and (4.55). In

particular, equations (4.38) and (4.39) can be rewritten as

∂θ (1)

∂Z
–

1
St

∂χ (1)

∂Z
–

1
Pe

∂2θ (1)

∂Y 2 = F1(Y , Z), (4.65)

∂

∂Z
(
χ (0)c(1)

l + χ (1)c(0)
l

)

– αk0

{
c(0)

l
∂χ (1)

∂Z
+ c(1)

l
∂χ (0)

∂Z
+ c(0)

l
∂χ (0)

∂Z

}
= F2(Y , Z), (4.66)

respectively, where

F1(Y , Z) = –
∂

∂Y
(
θ (0)χ (0)V (1)

Y
)

–
∂

∂Z
(
θ (0)χ (0)(V (1)

Z – 1
))

, (4.67)

F2(Y , Z) = –
∂

∂Y
(
c(0)

l χ (0)V (1)
Y

)
–

∂

∂Z
(
c(0)

l χ (0)V (1)
Z

)
; (4.68)

thus, (4.65) and (4.66) are linear partial differential equations for θ
(1)
l and χ (1) that contain

right-hand sides, i.e. F1 and F2 respectively, that would already be known at this stage.
Even so, equations (4.40), (4.65) and (4.66) for χ (1), c(1)

l , θ (1) still appear to be strongly
coupled, and would need to be solved in order to determine the macrosegregation profile,
which is constituted by the solid concentration at ε1 at Y = Y (0)

s (Z). To see this, we note first
that the actual macrosegregation profile in the solid sample will be cs|Y =Ys(Z), which can be
written in terms of cl|Y =Ys(Z) using (2.14). Thence, the two-term Taylor series expansion
for cs|Y =Ys(Z) is

cs|Y =Ys(Z) = k0

{
c(0)

l + ε

(
c(1)

l (Y ) + Y (1)
s (Z)

∂c(0)
l

∂Y

)}∣∣∣∣
Y =Y (0)

s (Z)+
, (4.69)

where a plus sign has been introduced in conjunction with the boundary location to in-
dicate the quantity within the parenthesis is being computed from the mush side of the
boundary, since cl is not defined on the solid side; observe also that (4.69) is a consequence
of the fact that both the dependent variable and the boundary of a domain are functions
of an asymptotically small expansion parameter. In view of (4.34), which indicates that
k0c(0)

l |Y =Y (0)
s (Z)+ = c0, i.e. a constant, it is clear that the first term in (4.69) does not given any

macrosegregation; instead, the quantity of interest as regards macrosegregation is

εk0

(
c(1)

l (Y ) + Y (1)
s (Z)

∂c(0)
l

∂Y

)∣∣∣∣
Y =Y (0)

s (Z)+
. (4.70)

As shown in [40], for the case when α = 1, this quantity turns out to be exactly equal to the
product of k0 and the integral with respect to Z of the right-hand side of (4.66). Since this
consists of quantities that are already known by this point, there is no need to compute θ

(1)
l ,

c(1)
l , χ (1) and Y (1)

s . However, when α < 1, this is no longer the case, and both the O(1) and
O(ε) problems would need to be computed. We do not do this here, but instead return to
the issue of shrinkage porosity which is, in any case, independent of the solutions of these
equations.
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5 Results
As mentioned in Sect. 1, porosity will develop when the pressure decreases below the
equilibrium pressure for gas phase, i.e. if ever p < 0, which is written in dimensionless
variables as

P < –
(

ρlgLZ + pa

μVcastL/κ0

)
, (5.1)

or, with the two-term expansion for P,

P(0) + εP(1) < –
(

ρlgLZ + pa

μVcastL/κ0

)
. (5.2)

Since P(0) = 0 from (4.25) and since it is evident from (4.63) and (4.64) that P(1) is negative
and monotonically decreasing, it is clear that the behaviour of χ and κ̄ in (4.64) will deter-
mine if (5.2) is ever fulfilled. Moreover, it is evident that the numerator and denominator
of f (Z) in (4.64) vanish as the base of the mushy zone is reached, meaning that the actual
forms of χ and κ̄ will be critical in determining what happens:

• f → ∞, and hence (5.2) will definitely be satisfied;
• f is finite, and (5.2) is satisfied;
• f is finite, but (5.2) is not satisfied.
The simplest possibility to consider first is when χ (0) > 0 at Y = Y (0)

s (Z), in which case

f → χs

κ̄(χs)
. (5.3)

In fact, this appears to occur for the majority of cases, as it corresponds to 0 ≤ α < 1 and
c0 < k0ceut, as well as 0 ≤ α ≤ 1 and k0ceut ≤ c0 < ceut; ironically, it does not occur for the
one considered in [40], for which α = 1 and c0 < k0ceut. The behaviour given in (5.3) corre-
sponds to the second and third of the possibilities listed above. (5.2) is likely to be satisfied
the greater the value of χs/κ̄(χs). If κ̄ ∼ χσ near χ = 0, with σ > 0, we are left consider-
ing χ1–σ

s ; from the point of view of avoiding centreline porosity, clearly if σ > 1, larger
χs is preferable, whereas if 0 < σ < 1, smaller χs would be preferable. Nevertheless, in ei-
ther case, P(1) remains finite at the centreline as Y → Y (0)

s , meaning that there is a greater
likelihood that (5.2) will be satisfied.

The remaining case is for α = 1 and c0 < k0ceut. In fact, this is arguably of greater signifi-
cance for the continuous casting of steel: not only is the range for c0 is more appropriate,
as was mentioned earlier, but also α = 1, corresponding to the infinitely fast diffusion of
solute in the solid is the limit often used for the modelling of microsegregation in the Fe–
C system [9]. The significance here is that, unlike in the case when α < 1, we have that
χ (0) → 0 as Y → Y (0)

s (Z), and consequently κ̄ → 0. It is instructive to see what happens
with different forms for χ and κ̄ . Suppose we take the simplest possible form for χ , so that
it is symmetric about Y = 1; this would be

χ ∼ (
Y 2 – Y 2

s (Z)
)γ , γ > 0, (5.4)

where we now drop the (0) superscripts on χ and Ys. In fact, there is no need to assume
that the form (5.4) holds for the entire length of the casting, but simply at the very bottom
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of the mush. We have

∫ 1

Ys(Z)
χ

(
Y ′, Z

)
dY ′ ∼ (

1 – Ys(Z)
)γ +1, (5.5)

∫ 1

Ys(Z)
κ̄(χ ) dY ′ ∼ (

1 – Ys(Z)
)σγ +1, (5.6)

so that

dP(1)

dZ
∼ (

1 – Ys(Z)
)(1–σ )γ . (5.7)

Moreover, since Ys(Z) → 1 as Z → Z–
s,mid, i.e. with the limit being taken from below, and

with symmetry about Y = 1, so that Y ′
s (Z) → ∞, we must have

1 – Ys(Z) ∼ (Zs,mid – Z)λ, (5.8)

where 0 < λ < 1. Thus, (5.7) becomes

dP(1)

dZ
∼ (Zs,mid – Z)(1–σ )λγ , (5.9)

which then gives

P(1) ∼
⎧
⎨

⎩
–(Zs,mid – Z)(1–σ )λγ +1 (1 – σ )λγ < –1,

– ln(Zs,mid – Z) (1 – σ )λγ = –1;
(5.10)

if (1 –σ )λγ > –1, it is clear that P(1) would be finite. Hence, shrinkage porosity would form
if (1 – σ )λγ + 1 ≤ 0, i.e.

(σ – 1)λγ ≥ 1. (5.11)

Clearly, the greater σ is, the greater the likelihood of porosity. Furthermore, from earlier
work [39] (see appendix C therein), it can be inferred that λ = 1/2, reducing (5.11) to

(σ – 1)γ ≥ 2. (5.12)

It is perhaps not entirely clear what the actual value of γ is, although there are strong
grounds for believing that simply γ = 1, as follows. Clearly, the heat flux across χ = 0 is
finite and non-zero, so we would have

θ ≈ θs + Q(s)n,

where n is the variable normal to χ = 0, which coincides with n = 0, and

Q :=
(

∂θ

∂n

)

n=0
,
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which is a function of the arc length s along χ = 0. Since the analysis already shows that χ

follows the lever rule, we will find that

χ ≈ Q(s)n,

and since n ∼ Ys(Z) – Y , we will have

χ ∼ Q(s)
(
Y – Ys(Z)

)
,

so that γ = 1. Thus, with γ = 1, λ = 1/2, (5.10) becomes

P(1) ∼
⎧
⎨

⎩
–(Zs,mid – Z) 1

2 (1–σ )+1, σ > 3,

ln(Zs,mid – Z), σ = 3
as Z → Z–

s,mid. (5.13)

For the usual Carman–Kozeny relation, σ = 3, so that P(1) has a logarithmic singularity as
Z → Zs,mid, which indicates that the pressure will indeed approach zero and that shrinkage
porosity will form; if σ > 3, the singularity is algebraic and the likelihood of porosity even
more extreme. A mathematical interpretation of this is that the regular perturbation series
for P is no longer well-ordered as Z → Zs,mid. On the other hand, if σ = 2, which is a case
that has also been popularized [1, 21–23, 29, 42], there is no singularity at all.

6 Discussion
Although the original model included many physical features, it has turned out that it
was possible to treat these hierarchically, leading to a logical, and initially unobvious, link
between the model parameters and the phenomena of macrosegregation and shrinkage
porosity:

• the key parameters are initial solute concentration (c0), the solidification shrinkage
parameter (ε), the microsegregation parameter (α), and the expression used to relate
the permeability of the mush to the liquid fraction, χ—in particular the power, σ , to
which χ is raised;

• the fact that ε is small means that we can make progress by considering a regular
perturbation about ε = 0;

• the values of c0 and α chosen determine whether χ → 0 in the mush as complete
solidification is reached;

• if χ → 0, it is more likely that centreline porosity is formed, since the pressure tends
to zero, if σ ≥ 3;

• if σ < 3, the pressure will not tend to zero and it is less likely that centreline porosity is
formed;

• if χ does not tend to zero, it is less likely that centreline porosity is formed;
• the macrosegregation and porosity problems decouple from each other, although both

depend on the O(ε) velocities and pressure.
Figure 5 shows a qualitative schematic, ostensibly for σ > 3 in view of the above dis-

cussion, showing the relationship of c0 and α to the likelihood that centreline porosity is
formed. From this, we see that porosity is more likely for higher values of α, corresponding
to lever-rule solidification at the microscale, and smaller values of c0.
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Figure 5 Schematic showing the relationship between c0,
α and the likelihood of centreline porosity formation for
σ ≥ 3. As σ increases, centreline porosity is more likely for a
greater range of (c0, α) values. For σ < 3, the region at
bottom right disappears completely

A further question is then whether it might be possible to control or prevent the forma-
tion of centreline porosity. One may imagine that controlling α, which has to with pro-
cesses on the microscale, is impossible from the physical point of view; choosing a value
of c0 closer to ceut may be impractical from the technological point of view. This leads
to the question whether it might be possible to control σ ; this may certainly be easier in
a laboratory experiment than in the final solidification zone of a continuous casting ma-
chine. Nevertheless, it is necessary to emphasize that, at this stage, the purpose of this
investigation has been to give qualitative information on the expected behaviour of a full
model based in computational fluid dynamics, as might normally be undertaken by ma-
terial scientists and engineers [8], rather than to seek to control centreline porosity per
se.

Another issue is whether it would be possible to validate these findings in practice. Not
all steel alloys that are cast industrially are binary, and often have more components than
the two ternary alloys, Fe–Mn–C or Fe–S–C, mentioned earlier. In such cases, it is nec-
essary to make use of software tools, such as the TCAL2 database [37], to generating the
relevant multicomponent phase diagram, although even this can be unreliable as the num-
ber of components is increased. Ultimately perhaps, the greatest likelihood of experimen-
tal validation in an industrial setting may be through using the two industrially relevant
ternary alloys just mentioned, but extending the current model to include a third compo-
nent.

7 Conclusions
This paper has extended a recent asymptotic model for the solidification shrinkage-
induced macrosegregation in the continuous casting of binary alloys for the purposes of
understanding the link between solute segregation and centreline shrinkage porosity in
the continuous casting of steel. In particular, the analysis has elucidated, in a quite sys-
tematic way, the relationship between microsegregation, mushy-zone permeability, heat
transfer and centreline pressure; the end result was an inequality, (5.1), that constitutes a
criterion for whether centreline porosity will form or not. Furthermore, lever rule diffu-
sion at the microscale, together with a mush permeability that varies as the third power, or
greater, of the liquid fraction, χ , for small χ , increases the likelihood of centreline porosity.

Although this work has predominantly relied on analysis rather than numerical com-
putations, it does nevertheless provide a framework for the latter; indeed, carrying out
computations in the absence of any framework would lead to difficulty in interpreting any



Vynnycky Journal of Mathematics in Industry           (2020) 10:14 Page 23 of 26

numerical results, in view of the subtle dependency of the results on α, ε, σ and c0. More-
over, the analysis presented here can constitute the starting point of a model that includes
mechanical soft reduction; mathematically, this will mean that vy > 0 at y = 0 in equation
(2.26), the effect of which should be to mitigate the singularities encountered in (5.13) or,
if there are no singularities, to at least ensure that (5.1) is never satisfied.

Whilst the focus here was on shrinkage porosity, an asymptotic approach may also
prove suitable for the modelling of the onset of centreline porosity due to gas rejection
or solid deformation—situations which are also both characterized by a surfeit of inter-
acting model parameters.

Nomenclature
Bi Biot number, hW /kl

c solute mixture concentration, [wt%]
C dimensionless constant, Cpl/Cps

c0 solute composition of alloy at inlet, [wt%]
ceut eutectic concentration, [wt%]
Cpl liquid–phase specific heat capacity, [Jkg–1K–1]
Cps solid–phase specific heat capacity, [Jkg–1K–1]

cl solute concentration in the liquid phase, [wt%]
cs solute concentration in the solid phase, [wt%]
f function of Z defined in equation (4.64)
g gravitational acceleration, [ms–2]
g gravity vector, (0, g), [ms–2]
h heat transfer coefficient, [Wm–2K–1]

Hl liquid-phase enthalpy
Hs solid-phase enthalpy

k mixture thermal conductivity, [Wm–1K–1]
K dimensionless constant, kl/ks

k0 partition coefficient
kl liquid-phase thermal conductivity, [Wm–1K–1]
ks solid-phase thermal conductivity, [Wm–1K–1]
L length scale in z-direction for complete solidification, [m]

m slope of the liquid line in the phase diagram, [Kwt%–1]
m̃ dimensionless constant, m/(Tcast – To)
p pressure, [Pa]
P dimensionless pressure

pa atmospheric pressure, [Pa]
Pe Péclet number, ρsVcastCpsW 2/ksL
St Stefan number, Cps(Tcast – To)/�Hf

T temperature, [K]
To cooling temperature, [K]

Tcast casting temperature, [K]
Tliq liquidus temperature, [K]
Tm melting temperature of pure solvent, [K]

Tsol solidus temperature, [K]
v relative velocity vector between solid and liquid phases, χ (vl – vs), [ms–1]
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Vcast casting speed, [ms–1]
vl liquid velocity vector, (vy, vz), [ms–1]
vs solid velocity vector, [ms–1]
vy y-component of liquid velocity, [ms–1]

VY Y -component of dimensionless liquid velocity
vz z-component of liquid velocity, [ms–1]

VZ Z-component of dimensionless liquid velocity
W half-width of the steel sample, [m]

y horizontal coordinate, [m]
Y dimensionless horizontal coordinate
ys y-location of complete solidification as a function of z, [m]
Ys Y -location of complete solidification as a function of Z

z vertical coordinate, [m]
Z dimensionless vertical coordinate
Zs inverse function of Ys

zs,init z-coordinate of complete solidification at y = 0, [m]
Zs,init Z-coordinate of complete solidification at Y = 0
zs,mid z-coordinate of complete solidification at y = W , [m]
Zs,mid Z-coordinate of complete solidification at Y = 1

Greek symbols
α back diffusion parameter
β density ratio, ρs/ρl

γ dimensionless constant introduced in equation (5.4)
δ casting geometry aspect ratio, W /L

�Hf latent heat, [Jkg–1]
ε solidification shrinkage parameter, β – 1
θ dimensionless temperature

θm dimensionless constant, (Tm – To)/(Tcast – To)
θo dimensionless cooling temperature, To/(Tcast – To)
κ isotropic permeability function for the mushy region as a function of χ , [m2]
κ permeability tensor for the mushy region, [m2]
κ̄ dimensionless permeability function
κ0 permeability constant in equation (2.5), [m2]
λ dimensionless constant introduced in equation (5.8)
μ dynamic viscosity of the liquid phase, [kg m–1s–1]
ρl density of alloy in liquid phase, [kgm–3]
ρs density of alloy in solid phase, [kgm–3]
σ dimensionless constant first discussed after equation (2.6)
χ liquid fraction
χs liquid fraction at y = ys(z)
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