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Abstract
Project selection for a portfolio is a pivotal decision in the pharmaceutical industry. In
this paper, we study a portfolio optimization problem for pharmaceutical companies
considering the uncertainty of the cost of each phase of drug development and the
specific value of the annual budget. The presented optimization model is suitable to
make investment decisions for multi-phase drug development projects and a
stochastic approach is applied to handle the uncertainty in the model.
Post-optimality analysis for annual budget is studied. An illustrative example is
included to demonstrate the presented approach.
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Pharmaceutical industry

1 Introduction
Selecting projects for a portfolio is one of the major decision-making problems in portfolio
management [1] and decision-making is a core function of drug development in the phar-
maceutical industry. Drug development in a pharmaceutical pipeline is a well-defined and
long-term process which must proceed through several crucial phases and is connected
with timing. Drug development can be described as a sequence of phases (Fig. 1).

In project management, decisions must be made at key points throughout the devel-
opment process, and whether to continue or terminate a particular project is a pivotal
decision. To state the obvious, the cost of development will not be refunded if the project
fails to reach market, and all phases must be sequentially accomplished before revenue is
realized. Therefore, allocating funds to projects with greater potential revenue and higher
probabilities of success in each phase is a major priority for portfolio managers. According
to a study from 2013, the cost of new medicine was estimated at $ 2.5 billion [2], and on
average only 5%–10% of potential drugs will successfully pass through all phases of drug
development [3]. Given that, any strategy for successfully achieving portfolio optimiza-
tion in the pharmaceutical industry should consider long-term survival the fundamental
driving force [4]. There are, however, other factors to consider when selecting a drug can-
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Figure 1 Schematic illustration of the phases of a drug development process

didate for a portfolio, for example success risk, expected revenue, development costs, and
budget allocation.

Since the execution of a drug development project is exceptionally costly, the company
may not have sufficient R&D resources to pursue all available projects. Consequently, a
selection needs to be made of which projects to fund. Optimization techniques have been
widely used to improve decision-making for portfolios and an appropriate optimization
model can efficiently improve the procedure of selecting projects. Several mathematical
models have been developed in the form of linear, nonlinear, multi-objective optimization,
etc. for solving portfolio optimization problems [5, 6]. A binary multi-objective linear pro-
gramming was presented by Ghasemzadeh et al. [7], and different approaches have been
presented which take into an account the uncertainty of data [8–10].

A key to achieving successful portfolio optimization is to capture the uncertainty of im-
portant parameters and also the factors that affect them. As such, mathematical models
built on deterministic optimization are not suitable approaches for portfolio optimiza-
tion since they cannot account for uncertainty. An obvious source of uncertainty is the
cost of running the projects through the development process. To account for this uncer-
tainty, stochastic programming may be applied as an approach for modeling optimization
problems that involve uncertainty with random parameters. The stochastic framework
provides a roadmap for decisions when information about the future may be subjected
to significant uncertainty. Stochastic programming is among the most difficult problems
in the field of mathematical modeling and finding an exact solution to these problems is
quite challenging. Chance constrained (CC) programming was presented by Charnes et
al. [11]. It is a quintessential technique that can handle the uncertainty inherent in portfo-
lio optimization, in which the constraints in the model cannot be violated with more than
a predefined level of probability.

In this study, our aim is to develop an approach in the framework of chance constrained
programming that enables us to select projects for a portfolio that maximizes expected
revenue and addresses uncertainty while remaining computationally efficient. We will for-
mulate the problem as an abstract chance constrained program and present an approach
to convert it into a form that can be tractably handled by modern optimization solvers.
Furthermore, we will employ parametric programming for our mathematical modeling to
investigate how the optimal value of the expected revenue and optimal project selection
depend on the annual budget.

The rest of the paper is organized as follows: Sect. 2 presents the background of math-
ematical optimization and in Sect. 3, we outline the structure of the data underlying the
optimization problem. In subsequent sections we introduce the mathematical formula-
tion of the problem and the approaches employed for solving the problem. An illustrative
example of the proposed approach is included, and a discussion section concludes the
paper.
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2 Mathematical background
The general mathematical model of optimization problem is:

maximize f (x)

subject to Gi(x) ≤ 0, i = 1, . . . , m,
(1)

where f is the objective function, G is the inequality constraints and x is the vector of
decision variables.

Stochastic programming has been developed to model optimization problems where
coefficients of decision variables, in the objective function and constraints, are under un-
certainty. To handle uncertainty in the optimization problem, the stochastic information
is combined with the model of the optimization problem (1). The general mathematical
model of the optimization problem with uncertain coefficients can be written as follows:

maximize f (x, ζ )

subject to Gi(x, ζ ) ≤ 0, i = 1, . . . , m,
(2)

where ζ is the vector of coefficients’ uncertainties.
Several approaches have been proposed for solving (2). In 1959, Charnes and Cooper

[11] proposed chance constrained programming and it has received a great deal of at-
tention for solving optimization problems with uncertain coefficients in constraints G. In
chance constrained programming, the inequality of constraints G in (2) must be satisfies
with the predefined confidence level and these constraints are called chance constraints.
Furthermore, an optimization problem which employs chance constrained programming
is called a chance constrained optimization problem. In the following, we describe the
general mathematical model of a chance constrained optimization problem:

maximize f (x)

subject to Prob
{

Gi(x, ζ ) ≤ 0, i = 1, . . . , m
} ≥ (1 – α),

(3)

where α ∈ (0, 1). The model (3) searches to find the optimal decision vector that maximizes
the objective function f subject to the constraints being satisfied with probability at least
(1 – α).

In chance constrained programming, inequalities Gi(x) (i = 1, . . . , m) can be handled
in two ways: individually and jointly. In individual chance constrained programming, it
would be guaranteed that each constraint is satisfied with its own confidence level. In joint
chance constrained programming, all constraints will be satisfied with a certain confidence
level. Joint chance constrained programming is more robust than the individual version
but it is significantly more difficult to solve as the problem may become non-convex (see
[12–16]). Generally, chance constrained programming is powerful when modeling opti-
mization problems under uncertainty but solving the problems can be challenging in real
applications. Chance constrained programming is widely used in practice, including for
water management [17], chemical processes [18], energy management [19], and supply
chain planning [20].

If we assume the sample space is finite and that G is bounded, we can change (3) into
an integer program [21]. By employing binary control variables zk , (k = 1, 2, . . . , N ) and
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“big-M” coefficients, the joint chance constrained program can be reformulated as a set
of linear constraints as follows:

minimize f (x)

subject to Gi(x, ζ ) – Mzk ≤ 0, i = 1, . . . , m, k = 1, 2, . . . , N ;

N∑

k=1

zkπk ≤ α,

(4)

where M > 0 is a large constant and α ∈ (0, 1). There are N scenarios and πk , (k =
1, 2, . . . , N ) is the probability of each scenario. When zk = 0, the related constraint must be
satisfied, otherwise when zk = 1, the constraint can be violated and big value of M ensures
that it would be an inactive constraint. The constraints in (4) are called Big-M constraints.
Even when we do not have full knowledge of the sample space, (4) can still be a useful proxy
for (3). When combined with Monte Carlo sampling, this is known as the sample average
approximation (SAA) and its statistical properties are well studied [22, 23].

For simplicity, we call (4), CC-MBP. The CC-MBP (4) with binary decision variables is
an integer programming problem that can be solved by integer programming solvers, as
will be further described in later parts of this article.

3 Input data structure
The drug development process was described schematically in Fig. 1. There are many pa-
rameters that impact the outcome of such a process. For the specific decision problem at
hand, i.e. the selection of projects to form an optimal portfolio, the following parameters
are of particular importance:

• The cost of a project in each phase,
• The expected revenue of a project,
• The probability that a project proceeds to the next phase of development.

We will for the optimization problem presume that some assumptions have been made
regarding these parameters for each of the available projects. We assume that a cost of
running a phase is distributed over the duration of that phase, and let G∗

ij denote the cost
associated with running project i in year j. Further, let R∗

i denote the revenue from project
i if it is successfully launched to the market.

In the problem described in this paper, the values of G∗
ij and R∗

i are outcomes from a
Monte Carlo simulation. The simulations are made to represent the drug development
process as illustrated in Fig. 1, and they follow the framework for modelling of drug devel-
opment processes outlined by [24]. The simulations account for the fact that many drug
projects are terminated before completion, as illustrated in Fig. 1 by the possibility that
the project is stopped after each phase. The terminated projects will consequently induce
zero costs for the phases after termination, and they will also in these cases generate zero
revenue.

Following an often-used terminology in the optimization literature, we will refer to the
iterations of the Monte Carlo simulations as scenarios. Assume that simulations have gen-
erated K scenarios. The actually realized cost of project i in year j in scenario k is then

Cijk =

⎧
⎨

⎩
C∗

ijk if j ≤ τ ,

0 if j > τ ,
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where τ is the time of termination of the project. Similarly, the revenue is

Rik =

⎧
⎨

⎩
R∗

ik if τ ≥ L,

0 if τ > L,

where L is the time at which the project might be launched to the market and start gen-
erating revenue. From the simulated scenarios we then estimate the expected revenue,
R̄i = (

∑K
k Rik)/K . The values of Cijk and R̄i are key inputs to the optimization problem

to be described in the subsequent sections. A numerical illustration of the optimization
problem, using these variables as input, is given in a later section.

4 Mathematical modeling of the problem
In this section we will present the mathematical model of the project selection problem by
adopting the general mathematical model of the optimization problem under uncertainty
(2). The aim is here to maximize the expected revenue, R̄i, subject to the constraint that
the cost under uncertainty, Cij, may not exceed a defined annual budget, Bj. Let xi denote
the binary decision variables, defined as

xi =

⎧
⎨

⎩
1 if project i is selected,

0 otherwise.

We then have the problem as:

maximize
n∑

i=1

xiR̄i

subject to
n∑

i=1

xiCij(ζ ) ≤ Bj, j = 1, . . . , T ,

xi ∈ {0, 1} i = 1, . . . , n.

(5)

The objective function vector, coefficient matrix and right-hand side values are defined as
R̄i, Cij and Bj, respectively. Since the cost of each project in each year is a random variable
and we are interested to ensures that the probability of being within the annual budget
Bj is above a defined confidence level, we employ chance constrained programming. We
replace the constraint in (5) with a chance constraint and present the mathematical model
as follows:

maximize
n∑

i=1

xiR̄i

subject to P

( n∑

i=1

xiCij(ζ ) ≤ Bj,∀j

)

≥ 1 – α j = 1, . . . , T ,

xi ∈ {0, 1} i = 1, . . . , n,

(6)

where α ∈ (0, 1) and will be decided by decision makers. The chance constraint in (6) guar-
antees that the probability of exceeding the annual budget should be less than a predefined
risk level α.
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5 Approach to solution
5.1 The big-M constraint
We next adapt the general form of the CC-MBP (4) to our project selection problem, as
defined in (6). In our problem, we sample the cost K times in the Monte Carlo simula-
tion, and since K is typically a large number, this results in a large number of stochastic
scenarios for cost. All scenarios from the simulation have the same probability, pk = 1/K .
Let zk be a binary variable for each scenario controlling the enforcement of constraints
of scenario k. If zk = 0, the budgetary constraint is enforced, otherwise it can be violated.
Model (6) can then be reformulated with a set of linear constraints as follows:

maximize
n∑

i=1

xiR̄i

subject to
n∑

i=1

xiCij(ζ ) – Mzk ≤ Bj, j = 1, . . . , T , k = 1, . . . , K ,

K∑

k=1

zkpk ≤ α,

xi, zk ∈ {0, 1} i = 1, . . . , n,

(7)

where α ∈ (0, 1),
∑K

k=1 pk = 1 and M is a sufficiently large number which handles viola-
tion when zk = 1. If the budgetary constraints are satisfied in a scenario, it is referred to
as a responsive scenario, otherwise it is a non-responsive scenario and its constraints are
ignored. Now our chance constrained optimization problem is converted into an integer
programming problem that can be solved by integer programming solvers, as will be fur-
ther described in later parts of this article.

5.2 Related approaches
We have in the sections above presented the CC-MBP for solving the optimization prob-
lem under uncertainty of coefficient at hand. While this is a computationally challeng-
ing approach, there are other simpler approaches that could also have been applied. Two
such approaches are briefly described below, i.e. the Deterministic optimization and the
Quantile chance constraint. In the Numerical Illustrations section, we will also give some
numerical results comparing the performance of these two approaches with the proposed
CC-MBP.

5.2.1 Deterministic optimization
In deterministic optimization, the stochastic nature of the cost would be ignored. Instead,
the cost of a project would be represented with a fixed number. In our application, this
would correspond to replacing the distribution of costs generated from the Monte Carlo
simulation and instead use the expected cost of each project in each year. Let the mean,
C̄ij =

∑
k Cijk/K , be the estimate of the expected cost, we have the following model for the
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deterministic optimization problem

maximize
n∑

i=1

xiR̄i

subject to
n∑

i=1

xiC̄ij ≤ Bj, j = 1, . . . , T ,

xi ∈ {0, 1} i = 1, . . . , n.

(8)

5.2.2 Quantile chance constraint
With the Quantile chance constraint, Q-CC, the stochastic nature of the cost is handled by
replacing the actual distributions with the (1 –α) percentile of the underlying distribution.
Let C̃ij be the (1 – α) percentile, for each project in each year, from the empirical distri-
bution of the K scenarios from the Monte Carlo simulation. We then have the following
deterministic formulation of the optimization problem.

maximize
n∑

i=1

xiR̄i

subject to
n∑

i=1

xiC̃ij ≤ Bj, j = 1, . . . , T ,

xi ∈ {0, 1} i = 1, . . . , n.

(9)

It can be noted that the simplification of the Deterministic optimization and Q-CC reduces
the number of constraints of the problem. While there is (K · T + n + 1) constraints in the
CC-MBP, the other approaches only involve (T + n) constraints. Despite the large number
of constraints in CC-MBP, it is possible to solve the portfolio problem in a very reasonable
amount of time.

5.3 Perturbation analysis of the annual budget
In the previous section, we developed the CC-MBP to deal with the presence of cost un-
certainty and to enable us to solve the optimization problem at hand. In this section, we
employ a parametric linear programming approach for investigating how the optimal port-
folio selection changes as the annual budget limitation varies.

The parametric approach was developed in parallel with sensitivity analysis [25]. Both
approaches use the information of post-optimality analysis and investigate how the opti-
mal solution changes with uncertain parameters, but they are different. By employing the
sensitivity analysis approach we can just investigate the current situation and what amount
of changes in the current annual budget are allowed, such that the current optimal value
of expected revenue as well as optimal project selection remain optimal. On the contrary,
parametric programming can handle global uncertainty and by applying a parametric ap-
proach, the optimization problem is solved as a function of one parameter. Information
can be provided about the dependence of the optimal solution on the uncertain param-
eter for the entire range from the minimum to the maximum value of expected revenue
without the need to resolve the model.

Let B̄ be the same size of B and consider the parametrized linear program z∗(λ) =
maximize{ET x : Cx = B + λB̄, x ∈ {0, 1}}. We try to answer the question of over what range
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of λ an optimal project selection and expected revenue remain optimal for the current
budget. By replacing the budget constraint in (7) as follows, we describe the parametric
program for our model:

maximize
n∑

i=1

xiR̄i

subject to
n∑

i=1

xiCij(ζ ) – Mzk ≤ Bj + λB̄i, j = 1, . . . , T , k = 1, . . . , K ,

K∑

k=1

zkpk ≤ α,

xi, zk ∈ {0, 1}, u1 ≤ λ ≤ u1 i = 1, . . . , n,

(10)

where α ∈ (0, 1),
∑K

k=1 pk = 1, λ is a scalar and B̄j is the perturbation of the annual budget.
First the mathematical problem (10) is solved based on the current budgetary constraint.
Then parametric linear programming is employed to investigate the effect of budget vari-
ation, for more details, see [26]. This provides information about the critical region as
a subset of all the parameters λ for which the optimal project selection set remains un-
changed and the break point of λ which is the point when the optimally selected projects
and expected revenue change.

6 Software
We have in the previous sections described the mathematical model of the optimization
problem at hand (6), as well as the approach that we propose for solving the model (7),
i.e. the CC-MBP. The final step in the analysis is to employ appropriate software to per-
form the actual numerical optimization procedure. Since our variables are restricted to be
binary, we use the integer optimizer in the packages PULP and GLPK, and the code was
written in Python 3 for solving models (7),(8) and (9). The calculations were performed
on an Intel(R) i5 CPU, 2.5 GHz, with 8 GB of RAM.

7 Numerical illustration
In this section, we analyze the performance of the proposed approaches by applying each
to a sample portfolio in the pharmaceutical industry. The sample portfolio contains a total
of 15 independent candidate drugs in different stages of their development process. The
number of simulation K is equal to 1000. At the time of the modelled decision-making, five
projects are in the pre-clinical phase (PC), two projects are in phase 1 (PH1), six projects
are in phase 2 (PH2), and two projects are in phase 3 (PH3). Each phase of drug develop-
ment may take several years and the planning horizon, T , is set to 23 years. The timelines
for the projects in the portfolio are illustrated in Fig. 2. There is a limitation for the annual
budget and therefore all projects in the portfolio cannot be developed. Decision makers
must decide which projects should be selected to maximize the expected revenue, while
also considering the uncertainty in the related cost.

In Table 1, we summarize the assumptions regarding average costs to begin subsequent
phases of each drug development project and expected revenue of each project. These
costs are then distributed over the duration of the actual phase, to provide a cost per year
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Figure 2 Timelines for the development of the projects in the portfolio

Table 1 Expected cost and expected revenue of each project ($ million)

Project Phase Reg Expected revenue

PC PH1 PH2 PH3

Project 1 1 7 27 126 7 191
Project 2 1 7 27 101 7 235
Project 3 – 5 27 127 7 14,205
Project 4 – 1 47 63 7 8100
Project 5 – – 22 164 7 955
Project 6 – – 11 75 5 744
Project 7 – – – 27 7 6043
Project 8 1 7 27 123 6 179
Project 9 – – – 26 6 5677
Project 10 – – – 27 8 13,530
Project 11 – – 20 155 8 668
Project 12 – – 21 164 7 1036
Project 13 – – 27 132 9 1347
Project 14 – – 12 140 9 1285
Project 15 3 7 32 146 7 259

as described in the Input Data Structure Section. While the expected costs are summa-
rized in Table 1, the underlying distributions are illustrated in Fig. 3. The costs presented
in Table 1 and Fig. 3 are the costs conditional on the actual phase of development being
conducted, not adjusted for the early termination of projects, hence being the basis for
C∗ as defined for the input data. It may be noted from Table 1 that both the cost and the
expected revenue vary substantially between the project. Each of the three approaches,
CC-MBP, Deterministic optimization and Q-CC, were employed for portfolio optimiza-
tion. The results are shown in Table 2, where the expected revenue of selected portfolios,
the risk of exceeding the specified annual budget and computation time are reported. The
risk level was set to α = 0.1 and the budgetary constraint was Bj = 210 MUSD. The re-
sults in Table 2 shows that the Deterministic optimization leads to a portfolio selection
with a high expected revenue, but with a very large risk of exceeding the budget. Q-CC
is conservative in that it has a much lower risk than the nominal 10%, and consequently
selects a portfolio with lower expected revenue. The CC-MBP is successful in selected an
optimal portfolio close to the specified nominal risk level. It may also be noted that de-
spite the large number of constraints in CC-MBP, the applied approach is able to solve
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Figure 3 Cost distribution of each phase of the projects in the portfolio

the portfolio problem in a very reasonable time. In Table 3, we report the result of em-
ploying the CC-MBP with different risk levels and the annual budget set to 220 MUSD.
Corresponding results are also visualized in Fig. 4. From these results it can be seen that
the expected revenue changes significantly between α = 0.0 and α = 0.01, and after that the
expected revenue is monotonically increasing. This type of data allows the decision maker
to strike a balance between higher expected revenue and an increased risk of exceeding
the allocated budget.

Table 4 shows the numerical result of post-optimality analysis for a ranges of annual
budgetary restrictions with α = 0.2 risk. The effect of budget perturbation on expected
revenue and optimal project selection is studied globally. In this study, the budget of all
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Table 2 Optimal project selection

Approach Selected projects E(Revenue)
($ million)

Probability
of over
budget

CPU time
(seconds)

Deterministic optimization 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15 54,456 29.5% 8e–3
CC-MBP 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15 53,182 9.4% 9.5
Q-CC 3, 4, 6, 7, 9, 10, 13, 15 49,906 1.3% 2.13e–2

Table 3 Optimal project selection

Risk level Selected projects Expected revenue ($ million)

0% 2, 3, 7, 9, 10, 14, 15 41,235
1% 1, 2, 3, 4, 6, 7, 9, 10, 14, 15 50,270
5% 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15 52,381
10% 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 15 53,417
15% 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15 53,787
20% 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15 54,085

Figure 4 Portfolio expected revenue versus risk level

Table 4 Optimal project selection

Annual budget ($ million) Expected revenue ($ million) Selected projects

224 54,276 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15
222 54,265 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
217 54,085 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15
210 53,850 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15
200 53,787 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15
192 53,608 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15
190 53,552 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15
182 53,417 1, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15
177 53,182 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15
173 52,923 3, 4, 5, 6, 7, 9, 10, 12, 13, 14

years is perturbed equivalently and perturbation vector B̄ is considered as vector of ones,
−→
1 . The result of λ is converted into budget in which the decision maker is able to find

break points on the annual budget. The optimal selected projects, and corresponding ex-
pected revenue of each break point of annual budgetary constraint, are listed in the Table 4.
Critical regions can be found by the difference of two successive budget break points im-
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plying that increasing annual budget in these regions does not change the optimal selected
projects and maximum expected revenue. As an example, Table 4 demonstrates that by
allocating 200 million dollars each year, all projects except project 11 can be in the port-
folio, yielding an expected revenue of 53,787 MUSD. An increase of budget to 210 MUSD
is required to change the selected portfolio, hence increasing the expected revenue.

8 Discussion
The aim of this paper was to develop a model for stochastic portfolio optimization in the
pharmaceutical industry. We have developed a chance constraint with Big-M coefficients
and binary decision variables, CC-MBP, accounting for the uncertainty in the cost of drug
development phases which leads to maximizing the expected revenue of the portfolio,
while satisfying an annual budgetary limitation. A parametric programming technique
was applied to systematically study the effect of annual budget variation on the optimal
solution. The presented model can be a very valuable tool for decision makers, where ad-
justments can be made to cost distributions, expected revenues, risk level and budgetary
limitations to intelligently select projects for a portfolio without dealing with mathemati-
cal formulae.

Even though the representation of pharmaceutical assets in these models is simplified,
the results will provide valuable insights for portfolio decision makers not in the sense
that the optimal solution is the one that a decision maker should necessary implement,
but in the sense that the solutions provide more knowledge about the portfolio and its
dynamics and constraints. The perturbation analysis provides insights about the relative
value of assets in the portfolio in a very straight-forward way; it shows the thresholds at
which the optimal solution changes. Furthermore, it prioritizes the assets based on risk,
cost and return from a portfolio perspective, and will then be a well-rounded evaluation
of the relative value of each asset. An addition to the perturbation analysis will be to add
sensitivity on the risk appetite of the decision maker. If a greater appetite for exceeding
budget is tolerated, will the composition of the optimal portfolio change? The answer will
give yet another level of insight to the decision maker and will enable optimality across
several portfolios that share budget constraints.

This study addressed the strategic objective of maximizing expected revenue subject
to budgetary limitation. The cost for each project has uncertainty that we manage in the
suggested models. Further additions to the model would be to introduce uncertainty in the
target function (revenue), i.e., just as we are using uncertainty for project costs, we should
do the same for project revenue. Rather than using a risk-adjusted expected revenue, it
would be interesting to see if taking into account the volatility of the project revenue (see
Fig. 5 for an example) may influence the selection of the optimal set of projects.

Figure 5 Volatility of the project revenue
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We have throughout the methodology section given a brief illustration of the general
version of the methodology, alongside the adaptation of the methods to the current sit-
uation of our application. This serves to indicate that the developed approaches should
be generally applicable to a wide range of stochastic optimization problems, not confined
to the current pharmaceutical portfolio selection problem that was the focus of our in-
vestigation. As an example, the current data did not take into account the uncertainties
and complexities involved in the pharmaceutical portfolio such as the dependency among
drug development projects, the uncertainty in the lengths of phases, the budget limita-
tions varying over time, as well as non-mathematical aspects such as the decision maker’s
preferences. However, the general approach should also allow the handling of these types
of situations.
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