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Abstract
The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
suggests a novel type of disease spread dynamics. We here study the case where
infected agents recover and only develop immunity if they are continuously infected
for some time τ . For large τ , the disease model is described by a statistical field
theory. Hence, the phases of the underlying field theory characterise the disease
dynamics: (i) a pandemic phase and (ii) a response regime. The statistical field theory
provides an upper bound of the peak rate of infected agents. An effective control
strategy needs to aim to keep the disease in the response regime (no ‘second’ wave).
The model is tested at the quantitative level using an idealised disease network. The
model excellently describes the epidemic spread of the SARS-CoV-2 outbreak in the
city of Wuhan, China. We find that only 30% of the recovered agents have developed
immunity.
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1 Introduction
The rapid spread of a disease across a particular region or regions (epidemic) or the global
outbreak of a disease (pandemic), see Porta [17], can have a detrimental effect on health
systems, on local and global economies including the financial markets and the socio-
economic interactions, ranging from the city to the international level. Measures to re-
duce the pandemic spread include curtailing interactions between infected and uninfected
parts of the population, reducing infectiousness or the susceptibility of members of the
public, see e.g., Ferguson et al. [5]. The two major strategies governments use to handle
an outbreak are to slow down an outbreak (mitigation) or to interrupt the disease spread
(suppression). Since each of those interventions bears itself significant risks for the societal
and economic well-being, it is crucial to understand the effectiveness of these strategies
(or any hybrid of them).

Mathematical methods provide essential input for governmental decision making that
aims at controlling the outbreak. Among those are statistical methods, Unkel et al. [22],
Becker and Britton [2], deterministic state-space models, Brauer et al. [3] with its pro-
totype developed by Kermack et al. [12], and a variety of complex network models, e.g.,
Hwang et al. [10], Shirley and Rushton [19]. The different mathematical approaches have
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different objectives: A significant application of the statistical methods frequently aims at
the early detection of disease outbreaks as described by Unkel et al. [22], while modelling
either tries to develop a model as realistic as possible for a given outbreak or to design
a simplistic model, which, however, reveals some universal truth about the outbreak dy-
namics.

In the simplest version, the so-called compartmental models (see Kermack et al. [12],
Hethcote [9]) consider the fraction of the population which is either susceptible (S), in-
fected (I) or removed (R) from the disease network. Coupled differential equations capture
the dynamics of the disease that determine the time dependence of S, I and R. Exten-
sions add more compartments to the Susceptible Infected Removed (SIR) model such as
(E) exposed. For example, such an Susceptible Exposed Infected Removed (SEIR) model
was used by Lekone and Finkenstädt [15] for a description of the Ebola outbreak in the
Democratic Republic of Congo in 1995. Compartmental models have been applied to de-
scribe the recent SARS-CoV-2 outbreaks. Selected publications are: Giordano et al. [7],
Krishna and Prakash [13], Tagliazucchi et al. [21], Lin et al. [16], Anastassopoulou et al.
[1], Wu et al. [23]. For example, the elaborate model from Giordano at al. uses a total of
8 compartments—susceptible (S), infected (I), diagnosed (D), ailing (A), recognized (R),
threatened (T), healed (H) and extinct (E)—to describe the COrona VIrus Disease 2019
(COVID-19) epidemic in Italy. Compartmental models have been extended by Dureau
et al. [4] in order to capture stochastically unknown influences, such as changing be-
haviours. Such models were recently used to analyse the COVID-19 outbreak in Wuhan
by Kucharski et al. [14]. A novel extended epidemic SEIR model, taking into account by
a socio-political classification of different interventions, was proposed by Proverbio et al.
[18] for assessing the value of several suppression approaches.

Compartmental models address global quantities such as the fraction of susceptible
individuals and assume that heuristic rate equations can describe the disease dynamics.
In cases of a strongly inhomogeneous (social) network, e.g. taking into account differ-
ent population densities, the above assumption seems not always be justified. In these
cases, spatial disease spread patterns can be described by a stochastic network model with
Monte-Carlo simulations a common choice for the simulation.

In this paper, we consider a disease dynamics for which the duration (severity) of the
illness depends on the amount of exposure. Using an elementary (social) network, we are
looking for universal mechanisms describing a pandemic spread. We will reveal a connec-
tion to statistical field theory, enabling us to characterise an outbreak with the tools of
critical phenomena. We will discuss the impact of the findings on policies to curb an out-
break and will draw conclusions from the COVID-19 outbreak in Wuhan, Hubei province,
China.

2 Modelling
2.1 Model basics
Each individual interacts with four ‘neighbours’ of the social network. The disease spread
is described as a stochastic process. At each time step (say ‘day’), the probability that an
individual gets infected (or recovers) depends on the status of the neighbours in the so-
cial network. Here, we only study the simple case of a homogeneous network with four
neighbours for each site. We also consider periodic boundary conditions to minimise edge
effects.
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2.2 Immunity
We study two closely related scenarios.

(i) There is no immunity. Every individual can be reinfected and can recover only to be
susceptible again (Susceptible Infected Susceptible (SIS) model).

(ii) Individuals can be reinfected and recover. Only if individuals stay infected for τ

consecutive days, they are considered immune.
In case (ii), the sites of immune individuals are removed from the disease network.

2.3 Disease dynamics
If x is a site of the disease network, at every time step the state ux ∈ {0, 1} is randomly
chosen with probability

P(ux) =
1
Nx

exp
{

(4βnx + 2h)ux
}

, nx =
∑

y∈〈xy〉
uy, (1)

where 〈xy〉 is an elementary link on the lattice joining sites x and y and, hence, n is the
number of infected neighbours, and Nx = 1 + exp{4βnx + 2h} is the normalisation. The
parameter h is linked to the probability to contract the disease from outside the network.
In fact, if no-one of the network is infected (nx = 0, ∀x), the probability p that any individual
contracts the diseases, is connected to h by

p =
exp{2h}

1 + exp{2h} .

The parameter β describes the contagiousness of the disease. The probability that any
individual gets infected (ux = 1) monotonically increases with 4βnx + 2h. The parameter
β hence describes how sensitive this probability depends on exposure, i.e., the number nx

of infected neighbours.
If the lattice contains N individuals (i.e., sites), one time step is said to be completed if

we have considered N randomly chosen sites for the update.

3 The pandemic spread as a critical phenomenon
3.1 Peak infection rate
Scenario (ii) shows the typical time evolution of an epidemic with the infections rate ap-
proaching zero for large times due to agents recovering and an increasing number being
immune. By contrast, scenario (i) has an asymptotic state independent from the initial
state and described by statistical field theory. After the change of variable zx = 2ux – 1,
the asymptotic state is described by the partition function of the Ising model, Ising [11],
Friedli and Velenik [6]:

Z =
∑

{zx=±1}
exp

{
β

∑

〈xy〉
zxzy + H

∑

x
zx

}

with H = h + 4β , which is the well-known partition function for Ising spins z in an external
magnetic field H . The disease dynamics of scenario (i) corresponds to a Markov chain of
local updates in the Ising model with Markov time identified as real time.

H = 0, h(β) = –4β , p(β) =
1

e8β + 1
. (2)
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Figure 1 Left: Asymptotic state of the scenario (i): average infection rate as a function of contagiousness β

and infection probability p. Also shown is the critical line p(β) in (2) (black dashed line). “W” indicates the
parameter set consistent with COVID-19 outbreak in Wuhan. Right: Dynamics of the rate of infected (red bars)
compared with the asymptotic value of the field theory (SIS model), which bounds the maximum rate of
infected agents

For a vanishing external field H , the model shows a critical behaviour with a phase tran-
sition at β = βc = ln(1 +

√
2)/2 ≈ 0.44. In the ordered phase for β > βc, a small seed proba-

bility p > 0 triggers an infection rate close to 100 % of the population. The model is in the
‘pandemic’ phase. For β < βc, the model is in the ‘response’ phase, i.e., the infection rate
is in response to the seed probability p, but no outbreak occurs. The asymptotic infection
rate can be calculated using Markov Chain Monte-Carlo (MCMC) methods. Starting, e.g.,
with no infected agents (ux = 0 or zx = –1), each time step (see Sect. 2) creates one sam-
ple of the disease spread. Each disease pattern only depends on that of the previous day,
and the sequence of the days form a Markov chain. After some time, which is called ‘ther-
malisation time’ in statistical physics, the daily infection rate starts to fluctuate around
the average, i.e, the asymptotic rate. The asymptotic rate is independent of the simulation
details if certain MCMC conditions are satisfied. Among those, ergodicity is easily vio-
lated in the pandemic phase for the so-called local update algorithms, most prominently
the Metroplis–Hastings one, Hastings [8]. Here, we used the state-of-the-art Swendsen–
Wang cluster algorithm, which performs well across both phases, see Swendsen and Wang
[20]. Our numerical findings are summarised in Fig. 1, left panel. Curve (2) clearly sepa-
rates both phases—the pandemic phase and the response regime.

3.2 Immunity
Let us now study scenario (ii), where individuals can develop immunity if they are infected
for τ consecutive days. For τ > tth, the peak infection rate is that of the asymptotic state
of the corresponding model (i) and, hence, inherits the classification ‘pandemic’ or ‘re-
sponse’ phase. This is illustrated in Fig. 1, right panel, for the pandemic phase for several
values of τ . Figure 2 illustrates the vastly different behaviour of the disease spread in the
pandemic phase (β = 0.41, p = 5%) and in the response regime (β = 0.38, p = 4%). Results
are for a N = 100 × 100 network and τ = 11. Note that the curve for ‘infected + immune’
(‘triangle’ symbol) in the pandemic phase is not monotonically increasing with time since
the infected individuals can return to ‘susceptible’ state, i.e., not every infected individual
becomes immune. Note that in the response regime (‘circle’ and ‘square’ symbol), the ‘pan-
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Figure 2 Scenario (ii): rate of infected (red bars) and
rate of infected + immune (green bars) for two sets
of model parameters: pandemic phase (p = 0.05,
β = 0.41) and response regime (p = 0.04, β = 0.38)
both for τ = 11

demic’ peak is absent altogether. However, on the downside, the so-called ‘herd immunity’
slowly develops over time.

3.3 Comparison with data
We stress that the model assumption of a homogeneous (social) network with ‘four neigh-
bours’ is unrealistic. A study of an heterogeneous disease netork is work in porgress. The
knowledge of the underlying disease network is essential to make quantitative predictions
for e.g. the critical value βc of the contagiousness. Here, we adopt a different approach:
we assume that qualitative time evolution of bulk quantities such as the fraction of in-
fected individuals is within the grasp of model scenario (ii) and use those as fit functions
to determine the model parameters such as β , p and τ by comparison with actual data.

For this study, we used data from the COVID-19 outbreak in 2020 in the city of Wuhan,
Hubei province in China, Yu [24] (accessed April 16, 2020). The data of the number of
infected individuals shows a jump at day 73 (on the arbitrary time scale) by 40%, which is
due to a change in reporting. We assume that the same ‘under-reporting’ has occurred in
the days before. Guided by the fact that the probability distribution (the infected rate) is
a continuous function, we have corrected the data by multiplying the number of infected
(and infected + recovered) by a factor 1.4 for times t ≤ 73. Let D(t, τ ,β , p) be the fraction
of the population of infected individuals as a function of time t and depending on the pa-
rameters τ (time to develop immunity), β (contagiousness) and p (seed probability) to get
infected. We have calculated D(t, τ ,β , p) using a N = 250 × 250 lattice. We checked that
the result is independent of the lattice size in the percentage range for the parameters rel-
evant in this study. If Dwuhan(t) quantifies the measured values for the number of infected
in the Wuhan outbreak, we want to approximate these data, i.e.,

Dwuhan(t) ≈ NpopD(t – ts, τ ,β , p)

with a suitable choice of the parameter Npop, ts, β and p. Since the offset of the time axis in
the Wuhan data is arbitrary, we have chosen the shift ts such that the peaks of simulated
data and measures data coincide. All other parameters are treated as fit parameters. Those
parameters have been obtained by fittng the model to the infected data only. Altogether,
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Figure 3 Comparison of scenario (ii) results with actual data from the COVID-19 outbreak in Wuhan

we find a good agreement with the data for (see Fig. 3):

Npop ≈ 68k, ts ≈ 50, τ ≈ 21, β ≈ 0.48, p ≈ 3.3%.

The results for ‘recovered + infected’ and ‘immune’ are then model predictions. The for-
mer can be compared with actual data to gauge the viability of the model.

The model data overshoot the data in the early days of the epidemic spread, which could
be related to underreporting due to limited testing capabilities. It is interesting to observe
that the curve of the infection rate is asymmetric: the slope of the raise at the beginning is
larger than the slope of the decline after the maximum. Also, the number of infected seem
to level off at a non-zero value. In the present model, this is explained as follows: with
more agents being immune, it is harder for susceptible agents to be continuously infected
for time greater or equal τ and, thus, to develop immunity. We also find that only about
30% of the infected (and recovered) develop an immunity.

4 Conclusions and interpretations
A new type of stochastic disease model is proposed: agents can recover from an infection
and are susceptible again. They only develop immunity if their infection lasts longer than a
characteristic time τ . For τ → ∞, the infection rate is described by statistical field theory.
For finite τ , the infection rate of the field theory provides an upper bound of the infection
rate of the dynamical model. This opens up the possibility to characterise the disease dy-
namics in the light of critical phenomena of the underlying field theory: a pandemic spread
corresponds to the ordered phase of the field theory, and the critical value for the conta-
giousness is that for the phase transition. The disease is in controllable response mode if
the corresponding field theory is in the disordered phase.

Quantitative results, reported here, are derived with an unrealistic homogeneous dis-
ease network for which each agent interacts with four neighbours. Nevertheless, we find
that the COVID-19 data of the Wuhan outbreak are well represented. For this case, we
find that only 30% of infected develop an immunity.
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The heavy tail of the decline of the number of infected, which levels off at non-zero val-
ues, is an inherent feature of the model and can be traced back to the fact that agents can
be reinfected. In a network with a sizeable portion of immune agents, it is increasingly
challenging to develop immunity. If these model assumptions were underpinned by med-
ical investigations, achieving ‘herd immunity’ would be difficult. This should influence the
decision to what extent efforts focus on developing a cure or a vaccine.
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