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Abstract
Automated Order Execution is the dominant way of trading at stock markets.
Performance of numerous execution algorithms is measured through slippage from
some benchmark. But measuring true slippage in algorithmic execution is a difficult
task since the execution as well as benchmarks are function of market activity. In this
paper, we propose a new performance measure for execution algorithms. The
measure, named Negative Selection, takes a posterior look at the trading window and
allows us to determine what would have been the optimal order placement if we
knew in advance, before the actual trading, the complete market information during
the trading window. We define the performance measure as the difference between
the hypothetical optimal trading position and the actual execution. This difference is
calculated taking into account all prices and traded quantities within the considered
time window. Thus, we are capturing the impact caused by our own trading as a cost
that affects all trades. Properties of Negative Selection, which make it well defined
and objective are discussed. Some empirical results on real trade data are presented.
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1 Introduction
Automated Order Execution is the dominant way of executing orders at major stock mar-
kets [1, 6, 8, 9, 12, 14]. There is a variety of algorithms that are designed to serve different
purposes and trader preferences. In Automated Order Execution a computer-based algo-
rithm is used to buy (or sell) a position while attempting to achieve a benchmark specified
by a client. Therefore the specified benchmark, i.e., the slippage to benchmark is used
as a measure of execution performance. It is undoubtedly difficult to define one standard
measure for all order executions and all trading objectives as they can be very different and
orders often come with many constraints. There are many types of benchmarks, some are
established before the trading process, like Arrival Price, AP, others are established during
the trading process like Volume Weighted Average Price, VWAP, some quantify delays or
measure the performance with respect to the closing price etc.

The most important performance measures are the slippage to VWAP and Implemen-
tation shortfall (IS) [13] based on Arrival Price. Both measures are widely used in practice
and represent the standard in the financial industry. Their properties are the subject of
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many academic studies and a number of algorithms are developed in order to minimize
the slippage to VWAP and AP, [2, 3, 5, 7]. One of the problems with measuring slippage,
whether it is VWAP or IS, is that they either distort the slippage measure or do not re-
flect the true nature of slippage. In the case of VWAP, by its own definition, this measure
distorts slippage with increasing order size due to the impact caused by one’s own orders.
Although a good algorithm, the slippage measure is fundamentally flawed for large order
size

In the case of the other equally dominant benchmark, IS, with Arrival Price as the ref-
erence price, although it is unbiased in terms of measuring slippage caused by price drift
and market impact, it does not reflect the true slippage due to its reference to a static price
(AP). In other words, it does not capture the nature of absolute slippage. Consider the sce-
nario where a buyer has to complete an order. Denote by t0 the time when the buyer enters
the market. If the price drifts up during the execution, the average execution price will be
much higher than the reference price at t0. This slippage is then naturally expected to be
relatively high due to the difficult market conditions. If however the price drifted down-
wards by the same amount and the entire order quantity was on the best bid at t0 and
stayed there, the slippage would remain constant, representing the difference between the
best bid price and Arrival Price. Although the slippage in the latter scenario is low, the IS
slippage measure relative to the fixed reference price does not reflect how much better we
could have done. In an easy market condition like the case of falling price, intuitively, one
may have expected to get negative slippage. However, the IS measure does not reflect this.

Hence the need for an absolute performance measure.
The performance measure which we propose in this paper aims at providing an alter-

native way of measuring the performance of execution algorithms. The measure takes a
posteriori view of market conditions and its main characteristic is that it is completely ob-
jective. Roughly speaking, a posterior approach allows us to determine what would have
been the optimal order placement if we knew in advance the complete market information
during the trading window. If the complete market information would have been known
one could have placed the order in a way that ensures the lowest possible execution price.
Such order placement is called optimal in the sequel. Thus, we define the performance
measure as the difference between the optimal trading position and the actual execution.
The difference is calculated taking into account all traded quantities and all prices within
the considered time window. This way, we are capturing the impact caused by our own
trading as a cost that affects all trades, including our own and avoid the main problem
with VWAP in the case of large trades [4, 8–10]. On the other hand the measure reflects
toughness of the market condition during the execution and avoids the drawback of IS
mentioned before.

Let us briefly explain the term Negative Selection. In execution, more specifically with
regard to price movements, one does not want to get filled when the price comes one’s way
as the price may keep heading in that direction. In this case, it may be better to become
more passive and hope to get a better price. Hence one’s order being “selected” or “exe-
cuted” is basically a sub-optimal execution. Negative Selection is an evolved term used to
distinguish itself from the original concept in economics, namely adverse selection, refer-
ring to skewed and undesirable results due to asymmetry in information held by negotiat-
ing parties. In the case of a buyer and seller, asymmetric information in market direction
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will lead to the one with information edge benefitting from a transaction on the expense
of the other.

Given a single buy order with a specified quantity Q and a time window [0, T] for the exe-
cution, we define the optimal placement of the order as a solution of Linear Programming,
LP, program. The unknowns of the LP are quantities placed at specific price levels, which
add up to Q and would have yielded the lowest possible price during [0, T], if we knew all
market conditions during the trading window in advance. Thus the optimal placement is
a vector calculated after the trade window [0, T]. The Negative Selection is then defined
as the distance between the actual trade, represented by the vector with a single nonzero
component, and the optimal placement.

Any performance measure has to have several important properties. First of all, it should
be able to distinguish clearly between filled and partially filled orders as well as between
orders filled at different price levels. Furthermore, the performance measure needs to pos-
sess continuity in the sense that a negligible change in the order size or in the fill price
should yield negligible changes in the performance measure. Perhaps the most important
property of a performance measure is that it should reflect the toughness of market con-
dition at a particular time window and thus allow one to judge the quality of execution.
We will show later on that the performance measure proposed in this paper possesses all
of these qualities.

The key contribution of this paper is the very definition of Negative Selection. Although
the mathematical tools used in definition and calculation of NS are rather simple, linear
programming and vector norm, the obtained measure is a powerful tool for measuring
the performance of trading algorithm, given that it takes into account complete market
activity within the trading window, provides absolutely objective measure of the quality of
execution and possesses desirable qualities like continuity with respect to order size.

This paper is organized as follows. In Sect. 2 we define Negative Selection for a single
(market or limit) order. All statements are given for the buy side to simplify the presenta-
tion and the sell side is completely symmetric. Then we define the Negative Selection of
a complex order consisting of several positions—both passive and aggressive. Some em-
pirical properties of Negative Selection are discussed in Sect. 3. We consider a black box
trading strategy to measure the quality of different execution algorithms using Negative
Selection. The results are compared with VWAP and IS as performance measures. Some
conclusions are drawn in Sect. 4.

2 Negative selection
The definition of Negative Selection is given here assuming that we have to buy Q shares
either by placing a single market order or taking a passive position at some of the bid
levels. For the opposite case, selling Q shares, the definition is completely symmetric. We
consider a market governed by the limit order book implying that the orders are placed in
queues by price and arrival time priority. Next, let us assume that the buy order of the size
Q has to be executed within the time window [0, T]. At t = 0 the following information is
available.

The price vector is

P = [P0, P1, . . . , Pk]T ,
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with P0 being the price for market orders (i.e. the ask price at t = 0), and P1, . . . , Pk being the
bid prices at the corresponding bid levels. Clearly Pk < Pk–1 < · · · < P1 < P0. In the sequel
we use the short notation bid1, . . . , bidk and the corresponding ask notation to denote the
sequence of bid and ask prices. Thus in the vector P above we have P0 as ask1 price, i.e.
the smallest ask price, P1 is called bid1 price and so on.

The volume ahead,

V = [V0, V1, . . . , Vk]T

represents the sizes of the existing orders in the corresponding bid queues at t = 0. We will
assume that V0 = 0, so a market order with price P0 is immediately traded.

The gain coefficients are defined as

G = [g0, g1, . . . , gk]T with gj =
P0 – Pj

P0
, j = 0, 1, . . . , k. (1)

Clearly, 0 = g0 < g1 < · · · < gk .
We consider first a simple order of size Q, which can be placed either as the market order

or as a passive order at some bid level at the end of the existing queue. We are assuming
that Q is small enough so it can be traded as a simple order, at a single price level. Later
on, we will discuss the case of larger Q, when one splits the quantity into several smaller
orders to be executed within the trading window [0,T]. For technical reasons it is more
convenient here to define the order vector

Q = [Q0, Q1, . . . , Qk]T . (2)

The order vector will have the following property

Qm = Q for some m ∈ {0, 1, . . . , k} and Qj = 0, j �= m, j = 0, 1, . . . , k.

At the end of the trading window, at t = T some additional information are available.
The traded quantity during (0, T] at every price level is represented by

T = [T0, T1, . . . , Tk]T

and we assume that T0 ≥ 0Q,. i.e., there has been enough liquidity so the market order
could have been filled at P0. To avoid technical difficulties we assume slightly stronger
condition, T0 > Q from now on.

The available quantity now is defined as

A = [A0, A1, . . . , Ak]T , Aj = max{Tj – Vj, 0}.

The assumption T0 > Q implies that the set of indices

IL = {j : Aj > 0, j = 1, . . . , k}

is nonempty. So, the buy order Q could have been completely filled during [0, T]. In other
words, we are assuming that the order size Q is up to some percentage of the average
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traded volume within [0, T]. Denote further by l = max{i : i ∈ IL}. We also define the set of
indices

IH =

{
j :

l∑
i=j

Aj ≥ Q, j = 0, 1, . . . , l

}
.

This set is nonempty and let h = max{i : i ∈ IH} be its maximal element.
We are now in position to define the optimal placement. It is defined afterwards, i.e.,

at t = T when all of the above vectors are available. The optimal placement represents
the best we could have done at t = 0 to execute the order during [0, T], if we knew in
advance, at t = 0 all information for the trading time interval. In other words, the optimal
placement represents the perfect scenario that would have allow us to execute the order
with the lowest possible price. So, let us denote the optimal placement as

O = [O0, O1, . . . Ok]T .

With this notation we are assuming that the quantity O0 has been traded as a market order,
O1 has been placed at the first bid level and so on. Since the objective is to buy Q shares
at the lowest possible price, the optimal placement is a solution of the following Linear
Programming Problem.

minimize
k∑

i=0

PiOi, (3)

subject to
k∑

i=0

Oi = Q, (4)

l∑
i=j

Oi ≤
l∑

i=j

Ai, j = 0, 1, . . . , k, (5)

Oj ≥ 0, j = 0, . . . , k. (6)

Let us briefly explain the objective function and the constraints above. The objective
function states that we want to minimize the total cost of buying

∑k
i=0 Oi = Q shares at

prices levels P0, . . . , Pl . The first constraint states that the quantity we want to buy is equal
to Q. The second constraint specifies that we can buy only the available quantities at each
price levels. But it is slightly more sophisticated that simply stating Oi ≤ Ai due to the
price-queue priority execution of the market order book. The following toy example shows
that filling the available quantities from below does not yield the smallest price for the total
order of Q shares. Assume that order with Q = 10 is submitted at price 99.0 and we have
ask1 and three available bid levels with the price vector

P = [100, 99.5, 99.0, 98.5]T .

Furthermore, let the queue in the order book at t = 0 (the volume ahead) be

V = [0, 50, 10, 4]T .
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At t = T the traded volume is

T = [80, 50, 10, 9]T ,

so the available quantity is defined as

A = [80, 0, 0, 5]T .

If one considers the positions obtained by filling from below i.e. by taking the available
quantities from the lowest price up until Q is reached, such order would be [5, 0, 0, 5]T

and the price of buying 10 shares with such order would be (5 · 98.5 + 5 · 100)/10 = 99.25.
On the other hand, solving the LP above one gets the optimal order as O = [1, 0, 9, 0]T and
its price is (9 · 99 + 1 · 100)/10 = 99.1. In other words, if we had submitted the order O
at t = 0 to the existing queue, then our 9 shares placed at bid2 would have been traded
before the 4 shares at bid3 due to price-time priority of the order book. Thus, the traded
volume would have changed and our order would have been executed with the average
price of 99.1. Hence the optimal placement i.e. the lowest price is not achieved by filling
from below. This fact motivated the definition above and is a consequence of price-order
trading mechanism.

The statement below claims that the LP (3)–(6) has an unique solution and its proof is
given in Appendix.

Theorem 1 The vector given by

Oj = 0, j = 0, 1, . . . , h – 1, (7)

Oh = Q –
l∑

j=h+1

Aj, (8)

Oj = Aj, j = h + 1, . . . , l, (9)

Oj = 0, j = l + 1, . . . , k, (10)

is the unique solution of (3)–(6).

Proof See Appendix. �

From now on we will refer to the vector (7)–(10) as the optimal placement. We are now
ready to define the performance measure.

Definition 1 For an order with the size Q at the price level Pm and execution time window
[0, T], Negative Selection is defined as

N = (O – Q)TG, (11)

where O is the optimal placement vector, Q is the order vector and G is the vector of gain
coefficients defined by (1).
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The following properties of Negative Selection make it a well defined performance mea-
sure with desired qualities, namely objectivity and continuity.

Theorem 2 The following properties hold:
(a) Negative Selection of an optimally placed order is zero.
(b) Negative Selection of a completely filled order is nonnegative.
(c) Negative Selection of a (partially) unfilled order is negative.
(d) Consider two orders with the same size Q placed at two price levels Pm and Pm+1 with

Pm > Pm+1. If Nm and Nm+1 are their Negative Selections respectively, then
Nm > Nm+1.

(e) Consider two different order of the sizes Q1 > Q2 placed at the same price level and
denote their Negative Selections by N1 and N2. Then
(1) If the larger order is filled then N1 ≥N2.
(2) If the larger order is unfilled then N1 < N2.

Proof See Appendix. �

Remark It is important to point out that Negative Selection is not a predictive model.
Instead, it is a post-trade measurement model that analyses one’s own trading decisions to
the activity of market for a specific security. At its core, this retrospective analysis observes
the state of the orderbook for a given stock before a trading commences and quantifies
whether the trading decisions were optimal with respect to the options available at t0 and
the market trading activity that followed.

When placing a buy order, one is faced with the dilemma of being aggressive and cross
the spread to buy at the prevailing asking price or take the chance of a better price by
bidding at some bid price. In a rising market, a passive order at the best bid at t = 0 will
remain unfilled which would lead to chasing the market to get filled, and yield a larger
slippage than the slippage obtained by crossing the spread at t = 0. While in a sideways
market, one is likely to save the spread cost by being passive. In the case of a falling market,
a buyer is considered too aggressive if the entire order is placed at the best bid since one
would achieve a better average price by having placed it at an even more passive price
level. However, in the latter case, the probability of fill decreases significantly with more
passive orders. Therefore, there is a need to split the orders into multiple price levels.

Let us now define Negative Selection for an order distributed across multiple price levels.
Assume that the buy order for Q shares is allocated as the market order for Q0 and a
sequence of passive orders Q1, . . . , Qk at the corresponding bid levels i = 1, . . . , k. Clearly
Qi ≥ 0, i = 0, 1, . . . , k and

∑k
i=1 Qi = Q. We can represent this multilevel order for buying Q

shares as

S = [Q0, Q1, . . . , Qk]T . (12)

Each component of this vector S has its own (simple) order vector as defined by (2) i.e.

Qi = [0, . . . , Qi, . . . , 0]T , i = 0, 1, . . . , k. (13)



Kumaresan et al. Journal of Mathematics in Industry            (2021) 11:6 Page 8 of 21

For each component of the vector in (13) we can calculate Negative Selection, Ni as stated
above. Then, Negative Selection for the complex orders is defined as the vector

N (S) = [N0, . . . ,Nk]T .

Naturally, we can compute the norm of N (S) and define it as a performance measure
suitable for comparison of different strategies if needed.

Unlike the case of simple order, here exists a certain interaction between the optimal
placements for simple orders at different price levels i.e. one must take into account one’s
own trading.

3 Empirical results
In this Section, we demonstrate some basic properties of Negative Selection using real
trade data. The test data consists of tick data for Vodafone Group (VOD.L), AstraZeneca
(AZN.L), Barclays PLC (BARC.L), and Sanofi SA (SASY.PA), during the period January—
August 2006, all trading days, from 8:15 to 16:25.

One of the principal advantages of the NS as a performance measure is that it reflects
the toughness of market at any given time. To demonstrate this property we compare the
behaviour of NS, VWAP and IS benchmarks in both falling and rising markets. A simple
example is considered. We place an order at the best bid level until filled or the time of 10
minutes expires. If the order is not completely filled within 10 minutes, the residual is filled
by crossing the spread at the end of given time window. For this simple trading strategy
a sequence of orders with increasing sizes, from 0 to 35% of average traded quantity in
the selected time window is tested. The average traded quantity for AZN is 50,000 shares
in 10 minutes so the simulations are performed for orders of size 1 to 17,500 shares with
the step size of 500 shares. The 10 minutes windows are chosen randomly. The relevant
trajectories for AZN are shown at Fig. 1 and Fig. 2. The price trajectories are shown at the
left-hand side pictures while the right-hand side pictures show the slippages with respect
to all three benchmarks at both Figures. The horizontal axis shows the traded amount in
thousands.

Figure 1 shows the case of falling market. The slippage to VWAP is positive and de-
creasing with the increase of order quantity. Being positive gives the true information of
the execution strategy, but the decrease with respect to traded quantity is actually a false
information. The decreasing slippage implies that the execution strategy is good, although
it is quite clear that in the failing market one should have placed orders at lower price lev-
els. This decrease in the slippage is a consequence of the already mentioned VWAP flaw
- the slippage is decreasing due to the impact of large traded quantity. With IS, the situa-
tion is different: the slippage is negative and constant. Its value is the difference of Arrival
Price and the best bid price at the beginning of the time window. The negative sign of slip-
page here gives again a false information on the execution performance as a consequence
of insensitivity of Arrival Price to the market conditions in the trading time window. The
Negative Selection is increasing with the order size and providing the correct information:
the execution is too aggressive and gets worse with the increase of the order size.

In the rising market shown in Fig. 2, an order placed at the best bid can be regarded as
passive. If the order is not filled, it will result in crossing the spread at the end of the time
window and paying a higher price. The slippage to VWAP is positive because the order is
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Figure 1 VWAP, Arrival Price and Negative Selection for falling market

filled at a price higher than the benchmark. But again, we see the decrease in the slippage
with the increase of the order size, giving the false impression that the execution strategy
is actually improving with the order size. The slippage to Arrival Price is high and positive.
It is constant while there is enough liquidity, but when the order size increases enough—
above the quantity available at the best ask, the order starts to “walk the book” and the
slippage to Arrival Price rises. Whereas, Negative Selection is negative and increasing with
the order size. Thus the information we get is correct—the execution strategy should have
been more aggressive.

To demonstrate some properties of NS empirically, we consider a sequence of orders
generated by a Black Box, BB trading strategy with inventory. It is a momentum trading
strategy generating signals using a mathematical model. The common parameters of a BB
trading strategy are time execution window, cancel threshold and order size. A combina-
tion of the time window width and the cancel threshold are used as the cancellation cri-
terion: an order is canceled if either time expires or the cancellation threshold is reached.
Therefore, there are only two possibilities: an order is (partially or completely) filled or
canceled within the time window. The algorithm keeps track of open position, i.e., all po-
sitions are closed with the opposite operation (buy/sell). For example, let us fix the order
size to 100 shares. The first signal is to buy, and assume that 85 shares are bought until
the cancel threshold is reached (or the execution time expires). The open position is now
85 shares. The second signal is sell and thus we want to sell 100 + 85 = 185 shares, and so
on. The BB parameters are selected as follows: the time window T is 10 minutes and the
cancel threshold is 45bps. The tested order sizes vary from 1% and 5% of average traded
volume in the time window, which is approximately 40,000 to 200,000 shares for Voda-
fone, 500 to 2500 shares for AstraZeneca, 3000 to 15,000 for Barclays PLC, 420 to 2100
shares for Sanofi SA, respectively.
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Figure 2 VWAP, Arrival Price and Negative Selection for rising market

In addition to the BB trading strategy, we also consider the so-called Default, D, strat-
egy which is formulated as the alternation of buy and sell signal every 10 minutes. When
producing signals, the strategy does not take into account the actual market conditions.
But like BB, it obeys rules regarding the possible cancellation of an order. As the quality
of signals, in terms of profitability, is quite random, the purpose of D strategy is to give
us the baseline for market conditions during the observed period. The D strategy, in fact,
reflects the toughness of the market as it landscapes the data.

The properties of D and BB are presented in Table 1. The dollar sign represents mone-
tary units. We report the results for three price levels; thus bid/ask1 means that we place
orders at the best bid and ask level, while bid/ask2 and bid/ask3 mean that the orders are
places at the second and third price level respectively. The tested order size is 5% of the av-
erage traded volume in the time window. For each price level and both BB and D strategy
we report several results: the total number of triggers (Trig), the total number of trades
(Trad) percentage of profitable days (Pday), the profit in thousands (P), then the slippage
to VWAP in basis points (VWAPs), the ratio of win and loss trades in monetary units
(W/L$), the average profit per trade in monetary units (AP$) and the percentage of prof-
itable trades (PT). Clearly, the BB strategy has short-term alpha and can generate profit.
The D strategy is obviously losing money.

Table 2 contains the simulation results for the BB strategy. We tested two order sizes
and five order placement positions, for all four stocks, across the whole data set. The order
sizes were 1% and 5% of average traded quantity in 10 minutes intervals. The placement
positions include all five bid/ask positions. In other words, for a buy signal we considered
placing the order at bid1, bid2,. . . ,bid5 and analogously for a sell signal. The mean val-
ues across the whole data set are given in Table 2. One can easily see that the theoretical
properties stated in Theorem 2 are empirically confirmed. For all stocks, NS of the smaller
order (1%) is smaller than the Negative Selection of the larger order (5%). Furthermore,
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Table 1 Properties of Default and Black Box trading strategy

Ticker: VOD AZN BARC SASY

D BB D BB D BB D BB

bid/ask1 Trig 8329 637 8219 1081 8337 1019 7505 438
Trad 2969 536 4917 952 4395 657 4662 418
Pday 5.36% 64.49% 3.61% 59.35% 2.38% 57.67% 8.19% 51.24%
P –68,230 12,942 –18,628 2483 –29,055 1996 –384 33
VWAPs 1.84 –7.36 1.84 –2.33 2.27 –0.75 2.14 –3.58
W/L[$] –0.35 1.55 –0.39 1.31 –0.35 1.23 –0.46 1.31
AP[$] –22,981 24,145 –3788 2608 –6611 3038 –82 80
PT 25.73% 54.10% 35.69% 52.84% 32.63% 52.97% 34.92% 53.59%

bid/ask2 Trig 8329 637 8219 1081 8337 1019 7505 438
Trad 475 91 3100 714 2066 326 2629 357
Pday 31.21% 51.11% 12.65% 59.15% 16.67% 64.44% 19.88% 59.13%
P –15,183 536 –11,856 2589 –12,404 1903 –191 70
VWAPs 0.78 –0.48 1.25 –2.8 1.12 –0.92 1.3 –7.23
W/L[$] –0.39 1.08 –0.43 1.45 –0.46 1.48 –0.55 1.95
AP[$] –31,965 5896 –3824 3626 –6004 5838 –73 196
PT 33.89% 46.15% 40.52% 56.72% 38.67% 59.2% 42.91% 60.22%

bid/ask3 Trig 8329 637 8219 1081 8337 1019 7505 438
Trad 137 31 1935 454 1002 153 1506 221
Pday 36.99% 50% 25.3% 59.68% 30.12% 68.48% 36.84% 67.44%
P] –3159 –286 –7447 1361 –5857 1087 –81 43
VWAPs 0.49 –0.12 0.85 –2.07 0.54 –0.62 0.71 –4.31
W/L[$] –0.58 –0.9 –0.46 1.34 –0.5 1.52 –0.69 1.9
AP[$] –23,056 –9215 –3848 2998 –5845 7103 –54 196
PT[%] 44.53% 48.39% 43.36% 57.49% 40.92% 67.32% 46.88% 60.18%

Table 2 Mean values of NS

Ticker: VOD AZN BARC SASY

bid/ask1 1% 5.73 0.36 0.52 0.55
5% 17.00 1.53 1.02 2.47

bid/ask2 1% –79.98 0.13 –1.90 0.26
5% –409.92 0.40 –11.12 1.03

bid/ask3 1% –164.15 –0.13 –4.49 –0.05
5% –831.74 –0.88 –24.11 –0.51

bid/ask4 1% –248.26 –0.43 –7.20 –0.36
5% –1251.97 –2.36 –37.61 –2.01

bid/ask5 1% –332.61 –0.78 –10.02 –0.69
5% –1673.73 –4.13 –51.76 –3.66

as the trading becomes more passive the Negative Selection is becoming more negative.
The actual mean values of NS vary quite significantly between four considered stocks. In
other words, Negative Selection indeed captures the true properties of the market. VOD
is the most liquid stock with the widest spread (21.65bps) in this data sample—trading
takes place at bid1 and ask1 for an extended period followed by a shift in price to the next
price level or a few price levels above/below and repeat the bid/ask bouncing. Unlike VOD,
AZN is the least liquid stock with the smallest spread (6.42bps). AZN price tends to trade
in a narrow price channel e.g. going from bid1 to bid3 and then bounce back and repeated
the process, with a different price trajectory. Such behaviour justifies the fact that VOD
has the best performance, in terms of profits and NS, at bid/ask1 and for AZN we see the
same at the second price level, bid/ask2.

More detailed results for the first three bid/ask levels are given in Table 3, where we
report the mean values of NS, the standard deviation, the coefficient of variation and the
median values of NS. Again, the results are in line with theoretical properties. In this table
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Table 3 Negative Selection statistics and Fill/Cancel average time for BB

Ticker: VOD AZN BARC SASY

bid/ask1 Mean (NS) 25.23 2.38 0.48 3.82
St. Dev. (NS) 605.60 4.76 25.00 5.13
Coeff. of variation (NS) 24.00 2.00 52.48 1.34
Median (NS) 0.00 1.12 0.00 2.61
Mean(Tfill) 4.37 3.86 4.33 3.36
Mean(Tcancel) 9.03 9.20 9.59 7.57

bid/ask2 Mean (NS) –450.57 0.49 –14.14 1.33
St. Dev. (NS) 428.19 4.21 22.90 4.36
Coeff. of variation (NS) –0.95 8.63 –1.62 3.28
Median (NS) –428.27 0.00 –14.40 0.00
Mean(Tfill) 5.99 4.76 5.33 4.48
Mean(Tcancel) 9.56 9.49 9.71 9.00

bid/ask3 Mean (NS) –863.71 –1.16 –26.60 –0.82
St. Dev. (NS) 406.38 4.09 21.21 3.95
Coeff. of variation (NS) –0.47 –3.52 –0.80 –4.78
Median (NS) –847.46 –1.52 –25.86 –1.38
Mean(Tfill) 5.62 5.36 5.62 5.17
Mean(Tcancel) 9.56 9.54 9.65 9.37

we also included mean values of the needed to fill an order, Tfill and the cancelation time,
Tcancel. Recall that cancellation is due either to the expiration of the execution time (in that
case Tcancel = 10 minutes) or to the price movement i.e. reaching the price threshold (so
Tcancel < 10 minutes).

Figure 3 illustrates the property of NS described in Theorem 2(d) for VOD. A random
sample of triggers is used. Orders of 5% of the average traded quantity are placed at five
price levels, from bid/ask1 to bid/ask5. Similar results are obtained for the other shares,
AZN, BARC, and SASY. Clearly, the Negative Selection behaves as stated in Theorem 2(d),
being more negative as the order placement is more passive.

When an order is filled we notice that passive orders have absolute NS lower than ag-
gressive, because the price went in our direction affecting optimal placement to be passive.
This way passive orders were “awarded” by the smaller value of NS, i.e. they were closer to
the optimal placement. In the opposite case, when for example for all bid levels the order
was unfilled, for each level NS is negative, but the best bid order has the lowest absolute
value. This reflects the fact that the price went in the adverse direction, so the best strategy
was to trade aggressively i.e. more passive orders were undesirable.

Figure 4 illustrates Theorem 2(e). We are interested in NS for the orders at the same price
level but of different size. Again, we consider two order sizes, 1% and 5% of the average
traded quantity. Clearly, if there was enough liquidity to fill the larger order, then there
was enough liquidity to fill the smaller one. In this case, NS of larger order dominates the
NS of the smaller order, which enable us to capture the impact caused by our own trading.
It also indicates that in the situation when the price is going in our direction, both orders
will be filled at an unfavourable price, but the effect is larger for the large order, i.e., the
overall costs are larger for suboptimal large order than the cost of a suboptimal smaller
order. On the other hand, if the larger order is unfilled, there are two possibilities: First, the
smaller order is filled i.e. there was enough liquidity to fill the smaller one, but not enough
to fill the larger. Hence, the smaller order has nonnegative NS, while the large order has
negative NS. In the second case, the smaller order is also unfilled. Then, both orders have
negative NS, with the larger order being more negative. Obviously, the strategy was too
passive for the smaller order, but for the larger order, there is an additional cost for passive
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Figure 3 Comparison of Negative Selection for VOD by price levels

behaviour, as filling the larger order, when the price is going away from us, requires more
aggressive behaviour.

Figure 5 represents the relative distribution of Negative Selection for the best bid/ask
of BB strategy. For more liquid stocks, Vodafone and Barclays, BB strategy has positive
Negative Selection for bid/ask1, and negative for bid/ask2. This indicates that price was
trending in an adverse direction so the aggressive strategy was more profitable. Moreover,
trading at bid/ask2 and especially at bid/ask3 level, because of passive behaviour we were
exposed to the cost of crossing the spread. For less liquid stocks AstraZeneca and Sanofi
trading at bid/ask1 resulted in positive Negative Selection, which means that with aggres-
sive trading, a majority of orders were filled at the unfavourable price, while at bid/ask2 BB
has slightly positive Negative Selection that implies that it was more profitable. At bid/ask3
we see that the strategy is too passive resulting in less profit.

The distribution of Cancel Time and Fill time for the same sequence of orders is de-
picted on Fig. 6. Cancel Time corresponds to points with negative Negative Selection,
while Fill time is on the nonnegative side of the axis. Basically, this is a consequence of
Theorem 2(a)–(c), because filled orders have nonnegative NS, while unfilled orders have
negative NS. Time limit for all orders was T = 10 minutes causing a grouping of cancel
time data at the 10th minute.

4 Conclusion
We presented Negative Selection as a post-trade performance measure for execution al-
gorithms. It is based on the concept of Optimal Placement—the placement at t = 0 that
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Figure 4 Comparison of Negative Selection by order size for bid/ask1

would provide the most favourable execution price in time window [0, T] if all market
information had been available. Thus, it is a posteriori measure. Negative Selection pos-
sesses theoretically desirable properties—it is continuous, captures the toughness of mar-
ket and price impact and thus it is completely objective.
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Figure 5 Retaliative frequency histogram of Negative Selection

Figure 6 The distribution of Cancel Time and Fill time

Properties of Negative Selection are tested using a simulator built in Matlab and MySQL,
on real trade data for three liquid stocks from London Stock Exchange and one stock from
Euronext. The obtained empirical results are aligned with the theoretical expectations
and demonstrate the ability of Negative Selection to capture all important properties of a
trading strategy. The comparison between NS and two main benchmarks, VWAP and IS
are also presented.
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Appendix
Consider the following linear programming problem,

minimize cT x,

subject to Bx = b,

Cx ≥ d,

(14)

where B ∈R
m×n, C ∈R

p×n, x, c ∈R
n, b ∈R

m, d ∈R
p.

Theorem 1 ([11]) A solution x∗ of linear programming problem (14) is unique if and only if
it remains a solution to all linear programs obtained from (14) by arbitrary but sufficiently
small perturbation of its cost vector c, or equivalently for each q ∈ R

n there exist a positive
real number ε such that x∗ remains a solution of the perturbed linear program

minimize (c + εq)T x,

subject to Bx = b,

Cx ≥ d.

(15)

Proof of Theorem 1 Given that Aj = 0 for j = l + 1, . . . k, constrains (5)–(6) imply Oj = 0 for
j = l + 1, . . . k. Thus (10) holds. So, it is sufficient to consider the following problem

min
O0,...,Ol

l∑
i=0

PiOi, (16)

s.t.
l∑

i=0

Oi = Q, (17)

l∑
i=j

Oi ≤
l∑

i=j

Ai, j = 0, 1, . . . , l, (18)

Oj ≥ 0, j = 0, . . . , l (19)

The standard form of (16)–(19) is the following

min cT x,

Mx = b,

x ≥ 0,

(20)

where c = [c0, . . . , c2l]T , x = [x0, . . . , x2l]T and b = [b0, . . . , bl]T are defined by

cj =

⎧⎨
⎩Pj, j = 0, . . . , l,

0, j = l + 1, . . . , 2l,
xj =

⎧⎨
⎩Oj, j = 0, . . . , l,

dj–l, j = l + 1, . . . , 2l,

bj =

⎧⎨
⎩Q, j = 0,∑l

i=j Aj, j = 1, . . . , l,
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and

M =

[
1 11×l 01×l

0l×1 U(1)l×l El×l

]
.

Recall that IL = {j : Aj > 0, j = 1, . . . , k}, l = max{i : i ∈ IL}, IH = {j :
∑l

i=j Aj ≥ Q, j = 0, 1, . . . , l}
and h = max{i : i ∈ IH}.

The following vector v is a basic solution of (20),

vj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, j = 1, . . . , h – 1,

Q –
∑l

i=h+1 Ai, j = h,

Aj, j = h + 1, . . . , l,

(
∑l

i=j–l Ai) – Q, j = l + 1, . . . , l + h,

0, j = l + h + 1, . . . , 2l,

(21)

with the basis matrix B and the non-basis matrix N

B =

⎡
⎢⎢⎣

1 11×(l–h) 01×h

1h×1 1h×(l–h) Eh×h

0(l–h)×1 U(1)(l–h)×(l–h) 0(l–h)×h

⎤
⎥⎥⎦ ,

N =

⎡
⎢⎢⎣

U(1)h×h 0h×(l–h)

01×h 01×(l–h)

0(l–h)×h E(l–h)×(l–h)

⎤
⎥⎥⎦ .

Here, U(c) is an upper triangular matrix with all nonzero elements equal to c, L(c) is a
lower triangular matrix with all nonzero elements equal to c, 0 is the zero matrix, and 1
has elements equal to 1, E is the identity matrix. As the inverse of B is

B–1 =

⎡
⎢⎢⎣

1 01×h [–1, 01×(l–h–1)]

0(l–h)×1 0(l–h)×h U(1)–1
(l–h)×(l–h)

–1h×1 Eh×h 0h×(l–h)

⎤
⎥⎥⎦ ,

and

B–1N =

⎡
⎢⎢⎣

11×h [–1, 01×(l–h–1)]

0(l–h)×h U(1)–1
(l–h)×(l–h)

L(–1)h×h 0h×(l–h)

⎤
⎥⎥⎦ .
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The Simplex table for the basic solution v is

O0 O1 . . . Oh–1 dh+1 dh+2 . . . dl vB

Oh 1 1 . . . 1 –1 0 . . . 0 Q –
∑l

j=h+1 Aj

Oh+1 0 0 . . . 0 1 –1 . . . 0 Ah+1

Oh+2 0 0 . . . 0 0 1 . . . 0 Ah+2
...

...
... . . .

...
...

... . . .
...

...
Ol–1 0 0 . . . 0 0 0 . . . –1 Al–1

Ol 0 0 . . . 0 0 0 . . . 1 Al

d1 –1 0 . . . 0 0 0 . . . 0 (
∑l

j=1 Aj) – Q
d2 –1 –1 . . . 0 0 0 . . . 0 (

∑l
j=2 Aj) – Q

...
...

... . . .
...

...
... . . .

...
...

dh –1 –1 . . . –1 0 0 . . . 0 (
∑l

j=h Aj) – Q

�O0 �O1 . . . �Oh–1 �dh+1 �dh+2 . . . �dl

All reduced costs are negative: �Oj = Ph – Pj < 0, j = 0, . . . , h – 1 and �dj = Pj – Pj–1 < 0, j =
h + 1, . . . , l. The basic solution v is an optimal solution of problem (20). Further, the vector

[
0, 0, . . . , 0, Q –

l∑
h+1

Aj, Ah+1, . . . , Al–1, Al

]T

is an optimal solution of (16)–(19) and the optimal solution of (3)–(6) is indeed given by
(7)–(10).

The uniqueness will be proved using Mangasarian’s result [11], Theorem 1 above.
Let q ∈ R

l+h+1 be an arbitrary vector. We will show that there is positive number ε > 0
such that the vector v, defined in (21), remains a solution of perturbed problem

minimize (c + εq)T x,

subject to Mx = b,

x ≥ 0.

(22)

The vector v is a basic solution of the problem (22), and the reduced costs for (22) are

�Oj = Ph + εqh – (Pj + εqj) = Ph – Pj + ε(qh – qj), j = 0, . . . , h – 1,

�dj = (Pj + εqj) – (Pj–1 + εqj–1) = (Pj – Pj–1) + ε(qj – qj–1), j = h + 1, . . . , l.

By choosing ε as

ε = min

({
Pj – Ph

2(qh – qj)
|qh > qj, j = 0, . . . , h – 1

}
∪

{
Pj–1 – Pj

2(qj – qj–1)
|qj > qj–1, j = h + 1, . . . , l

})
,

we get

�Oj <
1
2

(Ph – Pj) < 0, j = 0, . . . , h – 1,
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�dj <
1
2

(Pj – Pj–1) < 0, j = h + 1, . . . , l.

This means that v is an optimal solution of (22). �

Proof of Theorem 2
(a) If the order is optimally placed then O = Q, so

N = (O – Q)TG = (O – O)TG = 0.

(b) If the order is filled at level m then m ∈ IH and m ≤ h holds. Furthermore,

N = (O – Q)TG =
k∑

i=0

Oigi – Qgm ≥
k∑

i=0

Oigh – Qgm

= Qgh – Qgm = Q(gh – gm) ≥ 0.

(c) If the order is unfilled at level m then m ≥ l. Assume that m < l. Then Pm > Pl and
as Al > 0, it is clear that there has been some trading at the level l. Therefore, the price
decreased from Pm to Pl . But that further implies that all orders at the price Pm were filled,
which is in contradiction with the assumption m < l. Thus,

N = (O – Q)TG =
k∑

i=0

Oigi – Qgm <
k∑

i=0

Oigl – Qgm

= Qgl – Qgm = Q(gl – gm) ≤ 0.

(d) In this case we have

Nm – Nm+1 = (O – Qm)TG – (O – Qm+1)TG = (Qm+1 – Qm)TG

= Qgm+1 – Qgm = Q(gm+1 – gm) > 0.

(e) Let Pl be the lowest price level for which Al > 0. For Q1 > Q2 we have

IH1 =

{
j|

l∑
i=j

Ai ≥ Q1, j = 0, . . . , l

}
,

IH2 =

{
j|

l∑
i=j

Ai ≥ Q2, j = 0, . . . , l

}
,

h1 = max(IH1 ),

and

h2 = max(IH2 ).

It is quite clear that h2 ≥ h1. The optimal placements are given by OQ1 = [O1
0, . . . , O1

k]T

and OQ2 = [O2
0, . . . , O2

k]T . The order sizes could be rewritten as Q1 =
∑l

i=h1
O1

i and Q2 =
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∑l
i=h2

O2
i . The definition of optimal placement implies O1

i = O2
i , i = h2 + 1, . . . , l, and

Q1 – Q2 =
l∑

i=h1

O1
i –

l∑
i=h2

O2
i

=
h2–1∑
i=h1

O1
i + O1

h2 +
l∑

i=h2+1

O1
i –

l∑
i=h2+1

O2
i – O2

h2

=
h2–1∑
i=h1

O1
i + O1

h2 – O2
h2

1. If both orders are filled then m ≤ h1 ≤ h2 ≤ l. Let us consider the following two cases.

(a) If Al ≥ Q1 and m = l, then m = h1 = h2 = l,

N1 – N2 = (OQ1 – Q1)TG – (OQ2 – Q2)TG = (Q1 – Q1)gm – (Q2 – Q2)gm = 0.

(b) If Al < Q1 then m ≤ h1 < h2 = l or m ≤ h1 ≤ h2 < l,

N1 – N2 = (OQ1 – Q1)TG – (OQ2 – Q2)TG

= (OQ1 – OQ2 )TG – (Q1 – Q2)TG

=
l∑

i=h1

O1
i gi –

l∑
i=h2

O2
i gi – (Q1 – Q2)gm

=
h2–1∑
i=h1

O1
i gi +

(
O1

h2 – O2
h2

)
gh2 – (Q1 – Q2)gm

>
h2–1∑
i=h1

O1
i gh1 +

(
O1

h2 – O2
h2

)
gh1 – (Q1 – Q2)gm

= (Q1 – Q2)gh1 – (Q1 – Q2)gm

= (Q1 – Q2)(gh1 – gm) ≥ 0.

2. If the order with size Q1 is unfilled, then there are two possibilities:
(a) The order with size Q2 is filled and

N2 ≥ 0 > N1.

(b) The order with size Q2 is unfilled (m ≥ l) and

N1 – N2 = (OQ1 – Q1)TG – (OQ2 – Q2)TG

= (OQ1 – OQ2 )TG – (Q1 – Q2)TG

=
l∑

i=h1

O1
i gi –

l∑
i=h2

O2
i gi – (Q1 – Q2)gm
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=
h2–1∑
i=h1

O1
i gi +

(
O1

h2 – O2
h2

)
gh2 – (Q1 – Q2)gm

<
h2–1∑
i=h1

O1
i gl +

(
O1

h2 – O2
h2

)
gl – (Q1 – Q2)gm

= (Q1 – Q2)gl – (Q1 – Q2)gm

= (Q1 – Q2)(gl – gm) ≤ 0. �
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