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Abstract

In this paper we apply the method of stochastic characteristics to a
Lighthill…Whitham…Richards model. The stochastic perturbation can be seen as errors
in measurement of the tra�c density. For concrete examples we solve the equation
perturbed by a standard Brownian motion and the geometric Brownian motion
without drift.
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1 Introduction
Many tra�c ”ow models go back to scalar conservation laws of generally non-linear type,
i.e.

ut + f (u)x = 0, (1)

see e.g. [4]. There are many di�erent results, making the area of scalar conservation laws
to an area of very active research in mathematics, see e.g. [3, 5, 15, 16, 21, 23], to name just
a few of those.

The function u in (1) describes the density of vehicles on a road and thus has values on
the compact set [0, 1]. A conservation law is derived under the assumption, that the time
propagation of a mass on a certain interval is only a�ected by the ”ux at the boundary of
the interval. Hence one often choosesf (u) = u · v(u), wherev is the Eulerian velocity of the
tra�c. There are many di�erent models for tra�c ”ow discussed in the literature where
the most famous ones are Aw…Rascle…Zhang model [1, 2, 24] and Lighthill…Whitham…
Richards model, which usesf (u) = u · (1 …u), i.e. a velocity depending linearly on the
density. The scalar conservation law (1) now reads

ut + (1 … 2u) · ux = 0. (2)

The ”ux function in the Lighthill…Whitham…Richards model is in a relatively good agree-
ment with tra�c measurements, see [19]. The main problem is that measurements show
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that data points are quite accurate for low and high densities but are noisy around the

maximum point. The ”ux function is hence rather given by

f (u) = u · (1 …u) + H(u) �
dMt

dt
,

whereH is a function vanishing atu = 0 andu = 1 andMt is a suitable nice enough stochas-

tic process. Plugging this in the above conservation law (1) yields

ut + f (u)x = ut + (1 … 2u) · ux + H(u)x �
dMt

dt
= 0. (3)

The random perturbation is chosen in such a way thatH(u)x controls the dependence of

the noise with respect to the density in space. The stochastic process itself give a temporal

noise, in order to represent ”uctuation in time. Of course with the use of a random “eld the

model may be more general. However, the method of characteristics can not be applied in

the same way as in this article.

The choice of the Stratonovich integral is due to the existence of the chain rule in the

same form as in the deterministic case. For Itô integral a correction term is needed, which

leads in some cases to non-existing solutions.

General results for such stochastic conservation laws can be found in e.g. [3,6…8,10…14,

20]. The results base on Itô- and Stratonovich type noise in “nite and in“nite dimensional

spaced as well as rough noise and going much further than the model studied in this short

article. We hence can of course not give a comprehensive list and refer to the above works

and their references.

Industrial application and especially the study of tra�c ”ows are nowadays interested

in shocks and nonlinearities. Such shocks occure if the corresponding characteristic in-

tersect, see [4]. In the method of stochastic characteristics, which we treat in this article,

this is exactly the same. Our focus in this paper, however, is to show how stochastically

perturbed conservation laws behave until the time of shocks. The investigation of shocks

would be an interesting study for the future.

In this manuscript, we use the method of stochastic characteristics to solve such equa-

tions for the stochastically perturbed Lighthill…Whitham…Richards model explicitly for

di�erent cases, where the driving process is given by a Brownian motion or a geometri-

cal Brownian motion. This work can be seen as the starting point to the investigation of

di�erent stochastically perturbed hyperbolic equations in direct applications.

The main advantage of the applied method is that the solutions are given in an explicit

expression. This makes tedious and highly involved numerical simulation unnecessary.

The motivation of the method is given by tra�c ”ow equations, however, it can be applied

to other stochastically perturbed conservation laws.

2 Prelimiaries
We look at some examples for the Lighthill…Whitham…Richards model for di�erent initial

conditions. Due to the underlying model the initial condition describes the density of our

tra�c problem at time t = 0 and at positionx � [0, 1].
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Lemma 2.1 Consider the following partial di�erential equation on[0,1]

⎧
⎨

⎩

du = …(1 … 2u) · ux dt,

u(x, 0) =g(x),
(4)

where g(x) is a smooth function. Let (ξt ,ηt ) be the solutions to the so called characteristic
equations given by

⎧
⎨

⎩

dξt = (1 … 2ηt ) dt,

ξ0(x) = x,
and

⎧
⎨

⎩

dηt = 0dt,

η0(x) = g(x).

Hence we obtain

ηt (x) = g(x), ξt (x) = x +
∫ t

0
1 … 2g(x)ds= x + t … 2g(x)t. (5)

Then the solution to(4) is given by u(x,t) = g(ξ…1
t (x)),whereξ…1

t denotes the inverse function
of ξt .

Proof The proof is an direct consequence of Chap. 3 in [9], in particular [9, § 3.2, The-
orem 2] with an application of the inverse mapping theorem [18, Chapter XIV, Theo-
rem 1.2]. �

Example2.2 Consider the following partial di�erential equation (PDE) for the Lighthill…
Whitham…Richards model on [0,1]

du = …(1 … 2u) · ux dt, u(x, 0) =g(x). (6)

Due to Lemma2.1we obtain with the initial condition g(x) = 1 …x:

ξt (x) = x …t + 2xt,

ηt (x) = 1 …x,
hence ξ…1

t (x) =
x + t
1 + 2t

. (7)

Thus the solution of the above PDE (6) is given by

u(x,t) =
1 …x + t
1 + 2t

. (8)

If we change the initial condition to beg(x) = 1 …x2, we obtain

ξt (x) = x …t + 2x2t,

ηt (x) = 1 …x2,
and hence ξ…1

t (x) =

�
1 + 8t2 + 8tx … 1

4t
. (9)

Thus the corresponding solution is equal to

u(x,t) =

⎧
⎨

⎩

1 …(
�

1+8t2+8tx…1)2

16t2
, for t �= 0,

1 …x2, for t = 0.
(10)

One can easily verify that (10) solves indeed the PDE (6).
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The main advantage of this method is the precise expression of a solution to a PDE …
provided that the corresponding initial conditiong(x) and coe�cient functions are ex-
plicitly given. Due to this fact and for a better comparison between the deterministic and
stochastic case we present a collection of solutions in AppendixA.

Along the characteristics the solution remains constant. In the case of the tra�c prob-
lem and under the considered initial conditions the characteristics never cross each other
which means that no shocks appear and hence the solutions are global. As written in the
introduction we will study the perturbed case (3) for H(u) �= 0 and for Mt to be the stan-
dard Brownian motion (Bm) as well as the so called geometric Brownian motion de“ned
in the following way.

Definition 2.3 A stochastic processSt , t � 0, is said to be ageometric Brownian motion
(gBm), if it satis“es

dSt = μSt dt + σSt dWt = St dWt , (11)

whereWt is a Brownian motion. Hence the geometric Brownian motion without drift is
given by

St := exp

(

…
t
2

+ Wt

)

.

Definition 2.4 Let Wt be a standard one-dimensional Brownian motion on a complete
separable probability space (�,F ,P,Ft ), with right-continuous “ltration ( Ft )t>0. Then we
de“ne for any smooth functionH(x,u,p,t), x,u � [0, 1], p bounded,t � [0,T], for 0 < T <
� the following integral expression

∫ t

0
F(x,u,p,� ds) :=

⎧
⎨

⎩

∫ t
0 …(1 … 2u)pds+

∫ t
0 H(x,u,p,s) � dWs, for Bm,

∫ t
0 …(1 … 2u)pds+

∫ t
0 H(x,u,p,s) � dSs, for gBm.

The integrals are given in the sense of Stratonovich.

Based on these de“nitions we are able to apply the so called method of stochastic char-
acteristics to the PDEs as (4) but perturbed by Brownian motion respectively geometric
Brownian motion. Since we consider partial di�erential equations with perturbations by
(geometric) Brownian motions we get anω - dependence in the solutions. The idea of the
method is nearly the same as before: now we “xω � � and transform a stochastic par-
tial di�erential equation (SPDE) into a system of stochastic di�erential equations (SDEs),
solve it and determine the solution to the original SPDE by using stopping times. Hence
the precisely determined solutions are given for almost allω and all space and time vari-
ables (x,t) up to a certain stopping time denoted byσ (x). In contrast to the deterministic
case we will introduce in the following the method of stochastic characteristics in a more
detailed way. Based on De“nition2.4a perturbed Lighthill…Whitham…Richards model (3)
is equivalent to the Cauchy problem

⎧
⎨

⎩

du = F(x,u,ux, � dt),

u = g on � := {x � [0, 1]× [0,T]|x = (x1,t),t = 0}.
(12)
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Therefore the solution to equation (12) is denoted byu(x,t,ω), but for short notation

we only write u(x,t). Supposeu is a solution to (12) and at least one-times continuously

di�erentiable with respect to space and time for “xedω � �. Furthermore, we assume

that there exists a curveξs(r) which maps the pointr � � to a point of a neighborhood

in � at time s. Additionally, we assumeξ0(x) = x for all x � [0, 1] as the initial condition.

Due to these assumptions we consider and de“ne the following functions, now for “xed

ω, r � [0, 1] ands� [0,T]:

(
ξs(r,ω),s

)
,

ηs(r,ω) := u
(
ξs(r,ω),s

)
,

χs(r,ω) := uξs

(
ξs(r,ω),s

)
.

(13)

In the next step we combine (12) with equations (13) and obtain

d
dt

[

u
(
ξt (r),t

)
…u

(
ξ0(r), 0

)
…

∫ t

0
F
(
ξs(r),ηs(r),χs(r),� ds

)
]

= 0.

By similar calculations as in [9, § 3.2.1, equation (11)] we get

⎧
⎪⎪⎨

⎪⎪⎩

dξt = …Fχt (ξt ,ηt ,χt , � dt),

dηt = F(ξt ,ηt ,χt , � dt) …χt · Fχt (ξt ,ηt ,χt , � dt),

dχt = Fξt (ξt ,ηt ,χt , � dt) + Fηt (ξt ,ηt ,χt , � dt)χt .

(SCE)

The above stochastic di�erential equations (SCE) are calledstochastic characteristic

equations, for a more detailed description and proofs, see also [17]. Given a pointx � [0, 1]

and assuming that there exist unique solutions to (SCE) starting from x at time t = 0, these

solutions solve the corresponding integral equation with initial functiong:

ξt (x) = x …
∫ t

0
Fχs

(
ξs(x),ηs(x),χs(x),� ds

)
,

ηt (x) = g(x) …
∫ t

0
χs · Fχs

(
ξs(x),ηs(x),χs(x),� ds

)
+

∫ t

0
F
(
ξs(x),ηs(x),χs(x),� ds

)
,

χt (x) = gx(x) +
∫ t

0
Fξs

(
ξs(x),ηs(x),χs(x),� ds

)
+

∫ t

0
Fηs

(
ξs(x),ηs(x),χs(x),� ds

)
χs.

Let us assume that the solutions (ξt (x),ηt (x),χt (x)) exist up to a stopping timeT(x). As

mentioned above we have to work on di�erent stopping times based on the following def-

inition of an explosion time.

Definition 2.5 Let Xt , t � [0,τ ), be a local process. The stopping timeτ is calledterminal

time of the local processXt . If

lim
t � τ

|Xt | = � ,

then τ is calledexplosion time.
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In the case of our solutions (ξt ,ηt ,χt ) this yields to the following de“nitions of stopping

times.

Definition 2.6 Let T(x) be the in“mum of all explosion times of the solutions (ξt ,ηt ,χt ).

Then we de“ne for allx,y � [0, 1] the stopping times

τinv(x) := inf
{
t > 0| det Dξt (x) = 0

}
,

τ (x) := τinv(x) 	 T(x),

σ (y) := inf
{
t > 0|y /� ξt

({
x � [0, 1]|τ (x) > t

})}
,

whereDξt denotes the Jacobian matrix.

Now let the inverse processξ…1
t of ξt exist up to some stopping timeσ (x). Then we de“ne

for almost allω and for all (x,t) with t < σ (x,ω) the solution

u(x,t) := ηt
(
ξ…1

t (x)
)
. (14)

Detailed derivations and introductions can be found in [22, Chap. 3]. Now we are able

to solve di�erent SPDEs concerning the Lighthill…Whitham…Richards model by using the

method of stochastic characteristics.

3 Application & representation
In particular industrial applications the equations are much more involved than in the

examples this played in here. Of course to use our method the characteristics have to

computed explicitly. After that standard ODE or SDE methods can be used, if needed.

Based on the ”ow rate functionH(u) and the continuity equation the most natural

choice of the drift term isH(u) = u…u2. In a “rst step we perturb the Lighthill…Whitham…

Richards model by a standard Brownian motion. Hence we consider

⎧
⎨

⎩

du = …(1 … 2u) · ux dt … (1 … 2u) · ux � dWt ,

u(x, 0) =g(x).
(15)

By using direct computation one can show that the corresponding stochastic characteris-

tic equations are given for almost allω and all (x,t) up to a stopping timeσ (x) by

⎧
⎨

⎩

dξt = (1 … 2ηt ) dt + (1 … 2ηt ) � dWt ,

ξ0(x) = x,
and

⎧
⎨

⎩

dηt = 0dt + 0 � dWt ,

η0(x) = g(x).
(16)

Due to the linearity in the space derivativeux the solution ηt (x) = g(x) is always valid.

Therefore we receive the solution

ξt (x) = x +
(
1 … 2g(x)

)
(t + Wt).

At this point we compare the characteristics in the deterministic case with the correspond-

ing perturbed one, see Fig.1. As the initial condition we use hereg(x) = 1 …x.
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Figure 1 Characteristics for the Lighthill…Whitham…Richards model with and without stochastic perturbation

Figure 2 Sample path of the Lighthill…Whitham…Richards model with initial condition 1 …x perturbed by the
term …(1 … 2u) · ux � dWt . Here we took a sample path without doubling points due to stochasticity

In this case ofg(x) = 1 …x there exists obviously a processξ…1
t , such that the inverse

property is ful“lled for almost all ω and all (x,t) up to stopping timeσ (x), i.e.

ξ…1
t (x) =

x + t + Wt

1 + 2t + 2Wt
.

The solution to the considered SPDE (15) is given for almost allω and all (x,t) up to stop-

ping time σ (x) by

u(x,t) =
1 …x + t + Wt

1 + 2t + 2Wt
, (17)

which looks similar to the deterministic solution (8). Due to the explicit expression of the

solution we are able to visualize a sample path easily, see Fig.2. As introduced in De“ni-

tion 2.6the stopping time can be determined explicitly in this example by

σ (x) = inf

{

t > 0
∣
∣
∣

x + t + Wt

1 + 2t + 2Wt
/� [0, 1]

}

	 inf{t > 0|1 + 2t + 2Wt = 0}

= inf

{

t > 0
∣
∣
∣

x + t + Wt

1 + 2t + 2Wt
/� [0, 1]

}

	 � .



Müller and BockJournal of Mathematics in Industry           (2021) 11:7 Page 8 of 13

The perturbation by a geometric Brownian motion as given in De“nition2.3 is in this

case straightforward. According to De“nition2.4we practically can replace the Brownian

motion Wt by exp(…t/2 + Wt) … 1. Let us consider

⎧
⎨

⎩

du = …(1 … 2u) · ux dt … (1 … 2u) · ux � d[exp(…t/2 + Wt)],

u(x, 0) = 1 …x2.
(18)

By an application of the method of stochastic characteristics we “nally get the precise

solution for almost allω and (x,t) up to a stopping timeσ (x) by

u(x,t) =

⎧
⎨

⎩

1 …(
�

8(t+e(…t/2+Wt )…1)(t+x+e(…t/2+Wt )…1)+1…1)2

16(e(…t/2+Wt )+t…1)2
, if t �= 0,

1 …x2, if t = 0,
(19)

where we can use the classical l•Hospital argument. The corresponding stopping time is

equal to

σ (x) = inf

{

t > 0
∣
∣
∣

√
8(e(…t/2+Wt ) + t … 1)(t + x + e(…t/2+Wt ) … 1) + 1 … 1

4(e(…t/2+Wt ) + t … 1)
/� [0, 1]

}

	 inf

{

t > 0
∣
∣
∣

1
√

8(t + e(…t/2+Wt ) … 1)(t + x + e(…t/2+Wt ) … 1) + 1
= 0

}

= inf

{

t > 0
∣
∣
∣

√
8(e(…t/2+Wt ) + t … 1)(t + x + e(…t/2+Wt ) … 1) + 1 … 1

4(e(…t/2+Wt ) + t … 1)
/� [0, 1]

}

	 � .

In Fig. 3 we display one sample path with initial condition 1 …x2 perturbed by the term

…(1 … 2u) · ux � d[exp(…t/2 + Wt)].

Due to this approach we have to verify that the equations (17) as well as (19) really solve

the underlying problems. For the sake of simplicity these necessary but lengthy calculation

can be found in the AppendixC for equation (17).

Figure 3 Sample path of the Lighthill…Whitham…Richards model with initial condition 1 …x2 perturbed by
the term …(1 … 2u) · ux � d[exp(…t/2 + Wt)]. Here we took a sample path without doubling points due to
stochasticity
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Figure 4 Sample path of the Lighthill…Whitham…Richards model with initial condition 1 …x perturbed by the
term …(1 … 2u) · ux � dWt . The solution is just de“ned on a small time interval

For reader•s convenience we add some other examples in AppendixB with precise ex-
pressions of solutions and di�erent choices ofH(u), but which may not rigorously “t the
Lighthill…Whitham…Richards model.

4 Conclusions and discussion
The method of stochastic characteristics can be used e�ectively to solve a stochastically
perturbed Lighthill…Whitham…Richards model. The solutions are explicitly given up to
a stopping time in closed form. Numerical simulations based on these models can hence
been implemented straightforward. However one has to be careful, that the intersection of
characteristics due to stochastic perturbation can lead to solutions which are only de“ned
on a smaller time interval than the non-perturbed ones. On the other hand, it may be also
possible, that the stochastic perturbations increase the time interval where solutions are
de“ned. An example for a solution which is ill-de“ned due to intersecting characteristics
can be seen in Fig.4.

A collection for di�erent examples of stochastic perturbations can be found in Ap-
pendix B. Note that with the considered perturbations measurement errors can be mod-
elled e�ectively. This could be of high interest for more complicated tra�c ”ow models.

Appendix A: Collection of examples in the deterministic case
For reader•s convenience the authors itemize the corresponding solutions to the deter-
ministic Lighthill…Whitham…Richards model (4) for di�erent initial functions g(x). Based
on the model a couple of initial conditions are possible apart from Example2.2 with
g(x) = 1 …x and g(x) = 1 …x2. The opposite to the above case isg(x) = x, i.e. the road at
position x = 0 has empty density but atx = 1 there is e.g. a tailback or a red light, hence the
initial density is maximal. We also want to consider a quadratic form byg(x) = x…x2, which
coincide with the behaviour of the drift part. Analogous calculations yield the following
solutions (see Table1).

Appendix B: Collection of examples in the stochastic case
Analogously to the observation in AppendixA we specify the solutions to the perturbed
Lighthill…Whitham…Richards model for di�erent choices of the initial functiong(x) as
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Table 1 Solution for the Lighthill-Whitham-Richards model for di�erentg

For Solution to
{ du = …(1 … 2u) · ux dt,
u(x, 0) =g(x), x � [0, 1].

g(x) = x u(x,t) = x…t
1…2t , t �= 1

2

g(x) = x …x2 u(x,t) =
�

…4t2+t(8x…4)+1+2t…1
4t …(

�
…4t2+t(8x…4)+1+2t…1)2

16t2
, t �= 0

well as for di�erent di�usion terms H(u). Taking into account that these might not model

the original tra�c ”ow problem perfectly, the approach of the method of stochastic char-

acteristics will give explicit solutions. Firstly we perturb the equation by standard Brown-

ian motion.

• The solution to the equation

⎧
⎨

⎩

du = …(1 … 2u) · ux dt + ux � dWt ,

u(x, 0) = 1 …x2,
(20)

is given for almost all ω and all (x,t) up to a certain stopping time by

u(x,t) = 1 …
(
�

8t(Wt + t + x) + 1 … 1)2

16t2
.

• The solution to the equation

⎧
⎨

⎩

du = …(1 … 2u) · ux dt + u � dWt ,

u(x, 0) =x,
(21)

is given for almost all ω and all (x,t) up to a certain stopping time by

u(x,t) =
t …x

2
∫ t

0 exp(Ws)ds… 1
.

• The solution to the equation

⎧
⎨

⎩

du = …(1 … 2u) · ux dt +
�

u …u2 · ux � dWt ,

u(x, 0) =x,
(22)

is given for almost all ω and all (x,t) up to a certain stopping time by

u(x,t) =
Wt

√
W 2

t + 4t2 … 4t … 4x2 + 4x + W 2
t + 4t2 … 4xt … 2t + 2x

2(1 … 4t + 4t2 + W 2
t )

.

Replacing the standard Brownian motion by the geometric Brownian motion without drift

we are able to determine also explicit solutions to di�erent SPDEs.

• The solution to the equation

⎧
⎨

⎩

du = …(1 … 2u) · ux dt + ux � d[exp(…t/2 + Wt)],

u(x, 0) =x.
(23)
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is given for almost all ω and all (x,t) up to a certain stopping time by

u(x,t) =
1 …x + t …exp(…t/2 + Wt)

2t … 1
.

• The solution to the equation

⎧
⎨

⎩

du = …(1 … 2u) · ux dt + u � d[exp(…t/2 + Wt)],

u(x, 0) =x,
(24)

is given for almost all ω and all (x,t) up to a certain stopping time by

u(x,t) =
e(x …t)

e …2
∫ t

0 exp(exp(…s/2 + Ws))ds
.

• The solution to the equation

⎧
⎨

⎩

du = …(1 … 2u) · ux dt +
�

u …u2 · ux � d[exp(…t/2 + Wt)],

u(x, 0) =x,
(25)

is given for almost all ω and all (x,t) up to a certain stopping time by

u(x,t) =
(
exp(…t/2 + Wt) … 1

)

·
(√

4t2 … 4t … 4x2 + 4x + exp(…t + 2Wt) … 2exp(…t/2 + Wt) + 1

+ 4t2 … 4xt … 2t + 2x + exp(…t + 2Wt) … 2exp(…t/2 + Wt) + 1
)

·
(
2
(
4t2 … 4t + exp(…t + 2Wt) … 2exp(…t/2 + Wt) + 2

))…1

Formally all given solutions need a veri“cation, similarly to the proofs in AppendixC.
But this should not be part of this manuscript.

Appendix C: Calculation and proofs
Claim (17) solves the stochastic partial di�erential equation(15).

Proof In a “rst step we determine the partial derivativesut andux by using � dWt
dt = �Wt . We

obtain

du
dt

=
d
dt

[
1 …x + t + Wt

1 + 2t + 2Wt

]

=
(1 + 2t + 2Wt)(1 + �Wt) … (1 …x + t + Wt)(2 + 2 �Wt)

(1 + 2t + 2Wt)2

and

du
dx

=
d
dx

[
1 …x + t + Wt

1 + 2t + 2Wt

]

= …
1

(1 + 2t + 2Wt)
.
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Finally we have to verify thatut + (1 … 2u)ux + (1 … 2u)ux �Wt = 0.

ut + (1 … 2u)ux + (1 … 2u)ux �Wt

=
(1 + 2t + 2Wt)(1 + �Wt) … (1 …x + t + Wt)(2 + 2 �Wt)

(1 + 2t + 2Wt)2

+
(1 … 2x)

(1 + 2t + 2Wt)2
+

(1 … 2x) �Wt

(1 + 2t + 2Wt)2

=
1 + �Wt + 2t + 2t �Wt + 2Wt + 2Wt �Wt … (2 + 2�Wt … 2x … 2x �Wt + 2t + 2t �Wt + 2Wt + 2Wt �Wt )

(1 + 2t + 2Wt)2

+
1 … 2x + �Wt … 2x �Wt

(1 + 2t + 2Wt)2

=
1 + �Wt + 2t + 2t �Wt + 2Wt + 2Wt �Wt … 2 … 2�Wt + 2x + 2x �Wt … 2t … 2t �Wt … 2Wt … 2Wt �Wt

(1 + 2t + 2Wt)2

+
1 … 2x + �Wt … 2x �Wt

(1 + 2t + 2Wt)2

=
�Wt … 2�Wt + 2x … 2x + �Wt

(1 + 2t + 2Wt)2

= 0 �
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