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Abstract
In this paper we apply the method of stochastic characteristics to a
Lighthill–Whitham–Richards model. The stochastic perturbation can be seen as errors
in measurement of the traffic density. For concrete examples we solve the equation
perturbed by a standard Brownian motion and the geometric Brownian motion
without drift.

Keywords: Method of stochastic characteristics; Lighthill–Whitham–Richards model;
Explicit solutions

1 Introduction
Many traffic flow models go back to scalar conservation laws of generally non-linear type,
i.e.

ut + f (u)x = 0, (1)

see e.g. [4]. There are many different results, making the area of scalar conservation laws
to an area of very active research in mathematics, see e.g. [3, 5, 15, 16, 21, 23], to name just
a few of those.

The function u in (1) describes the density of vehicles on a road and thus has values on
the compact set [0, 1]. A conservation law is derived under the assumption, that the time
propagation of a mass on a certain interval is only affected by the flux at the boundary of
the interval. Hence one often chooses f (u) = u · v(u), where v is the Eulerian velocity of the
traffic. There are many different models for traffic flow discussed in the literature where
the most famous ones are Aw–Rascle–Zhang model [1, 2, 24] and Lighthill–Whitham–
Richards model, which uses f (u) = u · (1 – u), i.e. a velocity depending linearly on the
density. The scalar conservation law (1) now reads

ut + (1 – 2u) · ux = 0. (2)

The flux function in the Lighthill–Whitham–Richards model is in a relatively good agree-
ment with traffic measurements, see [19]. The main problem is that measurements show
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that data points are quite accurate for low and high densities but are noisy around the
maximum point. The flux function is hence rather given by

f (u) = u · (1 – u) + H(u) ◦ dMt

dt
,

where H is a function vanishing at u = 0 and u = 1 and Mt is a suitable nice enough stochas-
tic process. Plugging this in the above conservation law (1) yields

ut + f (u)x = ut + (1 – 2u) · ux + H(u)x ◦ dMt

dt
= 0. (3)

The random perturbation is chosen in such a way that H(u)x controls the dependence of
the noise with respect to the density in space. The stochastic process itself give a temporal
noise, in order to represent fluctuation in time. Of course with the use of a random field the
model may be more general. However, the method of characteristics can not be applied in
the same way as in this article.

The choice of the Stratonovich integral is due to the existence of the chain rule in the
same form as in the deterministic case. For Itô integral a correction term is needed, which
leads in some cases to non-existing solutions.

General results for such stochastic conservation laws can be found in e.g. [3, 6–8, 10–14,
20]. The results base on Itô- and Stratonovich type noise in finite and infinite dimensional
spaced as well as rough noise and going much further than the model studied in this short
article. We hence can of course not give a comprehensive list and refer to the above works
and their references.

Industrial application and especially the study of traffic flows are nowadays interested
in shocks and nonlinearities. Such shocks occure if the corresponding characteristic in-
tersect, see [4]. In the method of stochastic characteristics, which we treat in this article,
this is exactly the same. Our focus in this paper, however, is to show how stochastically
perturbed conservation laws behave until the time of shocks. The investigation of shocks
would be an interesting study for the future.

In this manuscript, we use the method of stochastic characteristics to solve such equa-
tions for the stochastically perturbed Lighthill–Whitham–Richards model explicitly for
different cases, where the driving process is given by a Brownian motion or a geometri-
cal Brownian motion. This work can be seen as the starting point to the investigation of
different stochastically perturbed hyperbolic equations in direct applications.

The main advantage of the applied method is that the solutions are given in an explicit
expression. This makes tedious and highly involved numerical simulation unnecessary.
The motivation of the method is given by traffic flow equations, however, it can be applied
to other stochastically perturbed conservation laws.

2 Prelimiaries
We look at some examples for the Lighthill–Whitham–Richards model for different initial
conditions. Due to the underlying model the initial condition describes the density of our
traffic problem at time t = 0 and at position x ∈ [0, 1].
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Lemma 2.1 Consider the following partial differential equation on [0, 1]
⎧
⎨

⎩

du = –(1 – 2u) · ux dt,

u(x, 0) = g(x),
(4)

where g(x) is a smooth function. Let (ξt ,ηt) be the solutions to the so called characteristic
equations given by

⎧
⎨

⎩

dξt = (1 – 2ηt) dt,

ξ0(x) = x,
and

⎧
⎨

⎩

dηt = 0 dt,

η0(x) = g(x).

Hence we obtain

ηt(x) = g(x), ξt(x) = x +
∫ t

0
1 – 2g(x) ds = x + t – 2g(x)t. (5)

Then the solution to (4) is given by u(x, t) = g(ξ–1
t (x)), where ξ–1

t denotes the inverse function
of ξt .

Proof The proof is an direct consequence of Chap. 3 in [9], in particular [9, § 3.2, The-
orem 2] with an application of the inverse mapping theorem [18, Chapter XIV, Theo-
rem 1.2]. �

Example 2.2 Consider the following partial differential equation (PDE) for the Lighthill–
Whitham–Richards model on [0, 1]

du = –(1 – 2u) · ux dt, u(x, 0) = g(x). (6)

Due to Lemma 2.1 we obtain with the initial condition g(x) = 1 – x:

ξt(x) = x – t + 2xt,

ηt(x) = 1 – x,
hence ξ–1

t (x) =
x + t

1 + 2t
. (7)

Thus the solution of the above PDE (6) is given by

u(x, t) =
1 – x + t

1 + 2t
. (8)

If we change the initial condition to be g(x) = 1 – x2, we obtain

ξt(x) = x – t + 2x2t,

ηt(x) = 1 – x2,
and hence ξ–1

t (x) =
√

1 + 8t2 + 8tx – 1
4t

. (9)

Thus the corresponding solution is equal to

u(x, t) =

⎧
⎨

⎩

1 – (
√

1+8t2+8tx–1)2

16t2 , for t �= 0,

1 – x2, for t = 0.
(10)

One can easily verify that (10) solves indeed the PDE (6).
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The main advantage of this method is the precise expression of a solution to a PDE –
provided that the corresponding initial condition g(x) and coefficient functions are ex-
plicitly given. Due to this fact and for a better comparison between the deterministic and
stochastic case we present a collection of solutions in Appendix A.

Along the characteristics the solution remains constant. In the case of the traffic prob-
lem and under the considered initial conditions the characteristics never cross each other
which means that no shocks appear and hence the solutions are global. As written in the
introduction we will study the perturbed case (3) for H(u) �= 0 and for Mt to be the stan-
dard Brownian motion (Bm) as well as the so called geometric Brownian motion defined
in the following way.

Definition 2.3 A stochastic process St , t ≥ 0, is said to be a geometric Brownian motion
(gBm), if it satisfies

dSt = μSt dt + σSt dWt = St dWt , (11)

where Wt is a Brownian motion. Hence the geometric Brownian motion without drift is
given by

St := exp

(

–
t
2

+ Wt

)

.

Definition 2.4 Let Wt be a standard one-dimensional Brownian motion on a complete
separable probability space (�,F , P,Ft), with right-continuous filtration (Ft)t>0. Then we
define for any smooth function H(x, u, p, t), x, u ∈ [0, 1], p bounded, t ∈ [0, T], for 0 < T <
∞ the following integral expression

∫ t

0
F(x, u, p,◦ ds) :=

⎧
⎨

⎩

∫ t
0 –(1 – 2u)p ds +

∫ t
0 H(x, u, p, s) ◦ dWs, for Bm,

∫ t
0 –(1 – 2u)p ds +

∫ t
0 H(x, u, p, s) ◦ dSs, for gBm.

The integrals are given in the sense of Stratonovich.

Based on these definitions we are able to apply the so called method of stochastic char-
acteristics to the PDEs as (4) but perturbed by Brownian motion respectively geometric
Brownian motion. Since we consider partial differential equations with perturbations by
(geometric) Brownian motions we get an ω - dependence in the solutions. The idea of the
method is nearly the same as before: now we fix ω ∈ � and transform a stochastic par-
tial differential equation (SPDE) into a system of stochastic differential equations (SDEs),
solve it and determine the solution to the original SPDE by using stopping times. Hence
the precisely determined solutions are given for almost all ω and all space and time vari-
ables (x, t) up to a certain stopping time denoted by σ (x). In contrast to the deterministic
case we will introduce in the following the method of stochastic characteristics in a more
detailed way. Based on Definition 2.4 a perturbed Lighthill–Whitham–Richards model (3)
is equivalent to the Cauchy problem

⎧
⎨

⎩

du = F(x, u, ux,◦ dt),

u = g on � := {x ∈ [0, 1] × [0, T]|x = (x1, t), t = 0}.
(12)
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Therefore the solution to equation (12) is denoted by u(x, t,ω), but for short notation
we only write u(x, t). Suppose u is a solution to (12) and at least one-times continuously
differentiable with respect to space and time for fixed ω ∈ �. Furthermore, we assume
that there exists a curve ξs(r) which maps the point r ∈ � to a point of a neighborhood
in � at time s. Additionally, we assume ξ0(x) = x for all x ∈ [0, 1] as the initial condition.
Due to these assumptions we consider and define the following functions, now for fixed
ω, r ∈ [0, 1] and s ∈ [0, T]:

(
ξs(r,ω), s

)
,

ηs(r,ω) := u
(
ξs(r,ω), s

)
,

χs(r,ω) := uξs

(
ξs(r,ω), s

)
.

(13)

In the next step we combine (12) with equations (13) and obtain

d
dt

[

u
(
ξt(r), t

)
– u

(
ξ0(r), 0

)
–

∫ t

0
F
(
ξs(r),ηs(r),χs(r),◦ ds

)
]

= 0.

By similar calculations as in [9, § 3.2.1, equation (11)] we get

⎧
⎪⎪⎨

⎪⎪⎩

dξt = –Fχt (ξt ,ηt ,χt ,◦ dt),

dηt = F(ξt ,ηt ,χt ,◦ dt) – χt · Fχt (ξt ,ηt ,χt ,◦ dt),

dχt = Fξt (ξt ,ηt ,χt ,◦ dt) + Fηt (ξt ,ηt ,χt ,◦ dt)χt .

(SCE)

The above stochastic differential equations (SCE) are called stochastic characteristic
equations, for a more detailed description and proofs, see also [17]. Given a point x ∈ [0, 1]
and assuming that there exist unique solutions to (SCE) starting from x at time t = 0, these
solutions solve the corresponding integral equation with initial function g :

ξt(x) = x –
∫ t

0
Fχs

(
ξs(x),ηs(x),χs(x),◦ ds

)
,

ηt(x) = g(x) –
∫ t

0
χs · Fχs

(
ξs(x),ηs(x),χs(x),◦ ds

)
+

∫ t

0
F
(
ξs(x),ηs(x),χs(x),◦ ds

)
,

χt(x) = gx(x) +
∫ t

0
Fξs

(
ξs(x),ηs(x),χs(x),◦ ds

)
+

∫ t

0
Fηs

(
ξs(x),ηs(x),χs(x),◦ ds

)
χs.

Let us assume that the solutions (ξt(x),ηt(x),χt(x)) exist up to a stopping time T(x). As
mentioned above we have to work on different stopping times based on the following def-
inition of an explosion time.

Definition 2.5 Let Xt , t ∈ [0, τ ), be a local process. The stopping time τ is called terminal
time of the local process Xt . If

lim
t↗τ

|Xt| = ∞,

then τ is called explosion time.
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In the case of our solutions (ξt ,ηt ,χt) this yields to the following definitions of stopping
times.

Definition 2.6 Let T(x) be the infimum of all explosion times of the solutions (ξt ,ηt ,χt).
Then we define for all x, y ∈ [0, 1] the stopping times

τinv(x) := inf
{

t > 0|det Dξt(x) = 0
}

,

τ (x) := τinv(x) ∧ T(x),

σ (y) := inf
{

t > 0|y /∈ ξt
({

x ∈ [0, 1]|τ (x) > t
})}

,

where Dξt denotes the Jacobian matrix.

Now let the inverse process ξ–1
t of ξt exist up to some stopping time σ (x). Then we define

for almost all ω and for all (x, t) with t < σ (x,ω) the solution

u(x, t) := ηt
(
ξ–1

t (x)
)
. (14)

Detailed derivations and introductions can be found in [22, Chap. 3]. Now we are able
to solve different SPDEs concerning the Lighthill–Whitham–Richards model by using the
method of stochastic characteristics.

3 Application & representation
In particular industrial applications the equations are much more involved than in the
examples this played in here. Of course to use our method the characteristics have to
computed explicitly. After that standard ODE or SDE methods can be used, if needed.

Based on the flow rate function H(u) and the continuity equation the most natural
choice of the drift term is H(u) = u – u2. In a first step we perturb the Lighthill–Whitham–
Richards model by a standard Brownian motion. Hence we consider

⎧
⎨

⎩

du = –(1 – 2u) · ux dt – (1 – 2u) · ux ◦ dWt ,

u(x, 0) = g(x).
(15)

By using direct computation one can show that the corresponding stochastic characteris-
tic equations are given for almost all ω and all (x, t) up to a stopping time σ (x) by

⎧
⎨

⎩

dξt = (1 – 2ηt) dt + (1 – 2ηt) ◦ dWt ,

ξ0(x) = x,
and

⎧
⎨

⎩

dηt = 0 dt + 0 ◦ dWt ,

η0(x) = g(x).
(16)

Due to the linearity in the space derivative ux the solution ηt(x) = g(x) is always valid.
Therefore we receive the solution

ξt(x) = x +
(
1 – 2g(x)

)
(t + Wt).

At this point we compare the characteristics in the deterministic case with the correspond-
ing perturbed one, see Fig. 1. As the initial condition we use here g(x) = 1 – x.
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Figure 1 Characteristics for the Lighthill–Whitham–Richards model with and without stochastic perturbation

Figure 2 Sample path of the Lighthill–Whitham–Richards model with initial condition 1 – x perturbed by the
term –(1 – 2u) · ux ◦ dWt . Here we took a sample path without doubling points due to stochasticity

In this case of g(x) = 1 – x there exists obviously a process ξ–1
t , such that the inverse

property is fulfilled for almost all ω and all (x, t) up to stopping time σ (x), i.e.

ξ–1
t (x) =

x + t + Wt

1 + 2t + 2Wt
.

The solution to the considered SPDE (15) is given for almost all ω and all (x, t) up to stop-
ping time σ (x) by

u(x, t) =
1 – x + t + Wt

1 + 2t + 2Wt
, (17)

which looks similar to the deterministic solution (8). Due to the explicit expression of the
solution we are able to visualize a sample path easily, see Fig. 2. As introduced in Defini-
tion 2.6 the stopping time can be determined explicitly in this example by

σ (x) = inf

{

t > 0
∣
∣
∣

x + t + Wt

1 + 2t + 2Wt
/∈ [0, 1]

}

∧ inf{t > 0|1 + 2t + 2Wt = 0}

= inf

{

t > 0
∣
∣
∣

x + t + Wt

1 + 2t + 2Wt
/∈ [0, 1]

}

∧ ∞.
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The perturbation by a geometric Brownian motion as given in Definition 2.3 is in this
case straightforward. According to Definition 2.4 we practically can replace the Brownian
motion Wt by exp(–t/2 + Wt) – 1. Let us consider

⎧
⎨

⎩

du = –(1 – 2u) · ux dt – (1 – 2u) · ux ◦ d[exp(–t/2 + Wt)],

u(x, 0) = 1 – x2.
(18)

By an application of the method of stochastic characteristics we finally get the precise
solution for almost all ω and (x, t) up to a stopping time σ (x) by

u(x, t) =

⎧
⎨

⎩

1 – (
√

8(t+e(–t/2+Wt )–1)(t+x+e(–t/2+Wt )–1)+1–1)2

16(e(–t/2+Wt )+t–1)2 , if t �= 0,

1 – x2, if t = 0,
(19)

where we can use the classical l’Hospital argument. The corresponding stopping time is
equal to

σ (x) = inf

{

t > 0
∣
∣
∣

√
8(e(–t/2+Wt ) + t – 1)(t + x + e(–t/2+Wt ) – 1) + 1 – 1

4(e(–t/2+Wt ) + t – 1)
/∈ [0, 1]

}

∧ inf

{

t > 0
∣
∣
∣

1
√

8(t + e(–t/2+Wt ) – 1)(t + x + e(–t/2+Wt ) – 1) + 1
= 0

}

= inf

{

t > 0
∣
∣
∣

√
8(e(–t/2+Wt ) + t – 1)(t + x + e(–t/2+Wt ) – 1) + 1 – 1

4(e(–t/2+Wt ) + t – 1)
/∈ [0, 1]

}

∧ ∞.

In Fig. 3 we display one sample path with initial condition 1 – x2 perturbed by the term
–(1 – 2u) · ux ◦ d[exp(–t/2 + Wt)].

Due to this approach we have to verify that the equations (17) as well as (19) really solve
the underlying problems. For the sake of simplicity these necessary but lengthy calculation
can be found in the Appendix C for equation (17).

Figure 3 Sample path of the Lighthill–Whitham–Richards model with initial condition 1 – x2 perturbed by
the term –(1 – 2u) · ux ◦ d[exp(–t/2 +Wt )]. Here we took a sample path without doubling points due to
stochasticity
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Figure 4 Sample path of the Lighthill–Whitham–Richards model with initial condition 1 – x perturbed by the
term –(1 – 2u) · ux ◦ dWt . The solution is just defined on a small time interval

For reader’s convenience we add some other examples in Appendix B with precise ex-
pressions of solutions and different choices of H(u), but which may not rigorously fit the
Lighthill–Whitham–Richards model.

4 Conclusions and discussion
The method of stochastic characteristics can be used effectively to solve a stochastically
perturbed Lighthill–Whitham–Richards model. The solutions are explicitly given up to
a stopping time in closed form. Numerical simulations based on these models can hence
been implemented straightforward. However one has to be careful, that the intersection of
characteristics due to stochastic perturbation can lead to solutions which are only defined
on a smaller time interval than the non-perturbed ones. On the other hand, it may be also
possible, that the stochastic perturbations increase the time interval where solutions are
defined. An example for a solution which is ill-defined due to intersecting characteristics
can be seen in Fig. 4.

A collection for different examples of stochastic perturbations can be found in Ap-
pendix B. Note that with the considered perturbations measurement errors can be mod-
elled effectively. This could be of high interest for more complicated traffic flow models.

Appendix A: Collection of examples in the deterministic case
For reader’s convenience the authors itemize the corresponding solutions to the deter-
ministic Lighthill–Whitham–Richards model (4) for different initial functions g(x). Based
on the model a couple of initial conditions are possible apart from Example 2.2 with
g(x) = 1 – x and g(x) = 1 – x2. The opposite to the above case is g(x) = x, i.e. the road at
position x = 0 has empty density but at x = 1 there is e.g. a tailback or a red light, hence the
initial density is maximal. We also want to consider a quadratic form by g(x) = x–x2, which
coincide with the behaviour of the drift part. Analogous calculations yield the following
solutions (see Table 1).

Appendix B: Collection of examples in the stochastic case
Analogously to the observation in Appendix A we specify the solutions to the perturbed
Lighthill–Whitham–Richards model for different choices of the initial function g(x) as
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Table 1 Solution for the Lighthill-Whitham-Richards model for different g

For Solution to
{ du = –(1 – 2u) · ux dt,
u(x, 0) = g(x), x ∈ [0, 1].

g(x) = x u(x, t) = x–t
1–2t , t �= 1

2

g(x) = x – x2 u(x, t) =
√

–4t2+t(8x–4)+1+2t–1
4t – (

√
–4t2+t(8x–4)+1+2t–1)2

16t2
, t �= 0

well as for different diffusion terms H(u). Taking into account that these might not model
the original traffic flow problem perfectly, the approach of the method of stochastic char-
acteristics will give explicit solutions. Firstly we perturb the equation by standard Brown-
ian motion.

• The solution to the equation

⎧
⎨

⎩

du = –(1 – 2u) · ux dt + ux ◦ dWt ,

u(x, 0) = 1 – x2,
(20)

is given for almost all ω and all (x, t) up to a certain stopping time by

u(x, t) = 1 –
(
√

8t(Wt + t + x) + 1 – 1)2

16t2 .

• The solution to the equation

⎧
⎨

⎩

du = –(1 – 2u) · ux dt + u ◦ dWt ,

u(x, 0) = x,
(21)

is given for almost all ω and all (x, t) up to a certain stopping time by

u(x, t) =
t – x

2
∫ t

0 exp(Ws) ds – 1
.

• The solution to the equation

⎧
⎨

⎩

du = –(1 – 2u) · ux dt +
√

u – u2 · ux ◦ dWt ,

u(x, 0) = x,
(22)

is given for almost all ω and all (x, t) up to a certain stopping time by

u(x, t) =
Wt

√
W 2

t + 4t2 – 4t – 4x2 + 4x + W 2
t + 4t2 – 4xt – 2t + 2x

2(1 – 4t + 4t2 + W 2
t )

.

Replacing the standard Brownian motion by the geometric Brownian motion without drift
we are able to determine also explicit solutions to different SPDEs.

• The solution to the equation

⎧
⎨

⎩

du = –(1 – 2u) · ux dt + ux ◦ d[exp(–t/2 + Wt)],

u(x, 0) = x.
(23)
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is given for almost all ω and all (x, t) up to a certain stopping time by

u(x, t) =
1 – x + t – exp(–t/2 + Wt)

2t – 1
.

• The solution to the equation

⎧
⎨

⎩

du = –(1 – 2u) · ux dt + u ◦ d[exp(–t/2 + Wt)],

u(x, 0) = x,
(24)

is given for almost all ω and all (x, t) up to a certain stopping time by

u(x, t) =
e(x – t)

e –2
∫ t

0 exp(exp(–s/2 + Ws)) ds
.

• The solution to the equation

⎧
⎨

⎩

du = –(1 – 2u) · ux dt +
√

u – u2 · ux ◦ d[exp(–t/2 + Wt)],

u(x, 0) = x,
(25)

is given for almost all ω and all (x, t) up to a certain stopping time by

u(x, t) =
(
exp(–t/2 + Wt) – 1

)

· (√4t2 – 4t – 4x2 + 4x + exp(–t + 2Wt) – 2 exp(–t/2 + Wt) + 1

+ 4t2 – 4xt – 2t + 2x + exp(–t + 2Wt) – 2 exp(–t/2 + Wt) + 1
)

· (2
(
4t2 – 4t + exp(–t + 2Wt) – 2 exp(–t/2 + Wt) + 2

))–1

Formally all given solutions need a verification, similarly to the proofs in Appendix C.
But this should not be part of this manuscript.

Appendix C: Calculation and proofs
Claim (17) solves the stochastic partial differential equation (15).

Proof In a first step we determine the partial derivatives ut and ux by using ◦dWt
dt = Ẇt . We

obtain

du
dt

=
d
dt

[
1 – x + t + Wt

1 + 2t + 2Wt

]

=
(1 + 2t + 2Wt)(1 + Ẇt) – (1 – x + t + Wt)(2 + 2Ẇt)

(1 + 2t + 2Wt)2

and

du
dx

=
d

dx

[
1 – x + t + Wt

1 + 2t + 2Wt

]

= –
1

(1 + 2t + 2Wt)
.
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Finally we have to verify that ut + (1 – 2u)ux + (1 – 2u)uxẆt = 0.

ut + (1 – 2u)ux + (1 – 2u)uxẆt

=
(1 + 2t + 2Wt)(1 + Ẇt) – (1 – x + t + Wt)(2 + 2Ẇt)

(1 + 2t + 2Wt)2

+
(1 – 2x)

(1 + 2t + 2Wt)2 +
(1 – 2x)Ẇt

(1 + 2t + 2Wt)2

= 1 + Ẇt + 2t + 2tẆt + 2Wt + 2WtẆt – (2 + 2Ẇt – 2x – 2xẆt + 2t + 2tẆt + 2Wt + 2WtẆt)
(1 + 2t + 2Wt)2

+
1 – 2x + Ẇt – 2xẆt

(1 + 2t + 2Wt)2

= 1 + Ẇt + 2t + 2tẆt + 2Wt + 2WtẆt – 2 – 2Ẇt + 2x + 2xẆt – 2t – 2tẆt – 2Wt – 2WtẆt

(1 + 2t + 2Wt)2

+
1 – 2x + Ẇt – 2xẆt

(1 + 2t + 2Wt)2

=
Ẇt – 2Ẇt + 2x – 2x + Ẇt

(1 + 2t + 2Wt)2

= 0 �
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