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Abstract

In epidemiology, the effective reproduction number R, is used to characterize the
growth rate of an epidemic outbreak. If R, > 1, the epidemic worsens, and if R, < 1,
then it subsides and eventually dies out. In this paper, we investigate properties of R,
for a modified SEIR model of COVID-19 in the city of Houston, TX USA, in which the
population is divided into low-risk and high-risk subpopulations. The response of R,
to two types of control measures (testing and distancing) applied to the two different
subpopulations is characterized. A nonlinear cost model is used for control measures,
to include the effects of diminishing returns. Lowest-cost control combinations for
reducing instantaneous R, to a given value are computed. We propose three types of
heuristic strategies for mitigating COVID-19 that are targeted at reducing R, and we
exhibit the tradeoffs between strategy implementation costs and number of deaths.
We also consider two variants of each type of strategy: basic strategies, which
consider only the effects of controls on R, without regard to subpopulation; and
high-risk prioritizing strategies, which maximize control of the high-risk
subpopulation. Results showed that of the three heuristic strategy types, the most
cost-effective involved setting a target value for R, and applying sufficient controls to
attain that target value. This heuristic led to strategies that begin with strict distancing
of the entire population, later followed by increased testing. Strategies that maximize
control on high-risk individuals were less cost-effective than basic strategies that
emphasize reduction of the rate of spreading of the disease. The model shows that
delaying the start of control measures past a certain point greatly worsens strategy
outcomes. We conclude that the effective reproduction can be a valuable real-time
indicator in determining cost-effective control strategies.

Keywords: Coronavirus 2019; Control strategies; Testing; Distancing; Effective
reproduction number; Reproduction number; Spectral radius; At-risk subpopulation

1 Introduction

One of the major concerns of the World Health Organization(WHO) is the prevention of
large epidemics or pandemics. Various techniques and different human, economic, and
material resources are deployed in order to eradicate epidemics as soon as possible. For
example, Smallpox destabilized the world for centuries [1], but was completely eliminated
worldwide by 1977 thanks to efforts by WHO and other organizations [2, 3]. However, in
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spite of man’s best efforts, some diseases have evaded control, and continue to threaten en-
tire populations both locally and internationally. A recent example of this is Coronavirus-
19, which was discovered in Wuhan City, China, in December 2019 [4, 5], spread through-
out the world within a few weeks, and was declared a pandemic by WHO [6] on 30th
January 2020.

COVID-19 poses special difficulties in that a significant proportion of infectious cases
are asymptomatic. Infectious asymptomatic cases may spread the infection without being
detected. Also, asymptomatic cases may persist even after all known cases of the disease
have been eradicated. Asymptomatic cases of COVID-19 may constitute a large propor-
tion of the infected individuals. There is a wide range of estimates of the proportion of
cases that are asymptomatic. Early reports from China from testing of residents and over-
seas arrivals suggested that 40%—-80% of infections showed no symptoms [7, 8]. Compre-
hensive testing was performed in the city of Vo’ before and after lockdown showed that
about 43% of infections detected were asymptomatic [9]. The authors of [10] reviewed
of 41 studies with a total of 50,155 confirmed COVID-19 cases, and found the pooled
percentage of asymptomatic infection was 15.6%(95%CI : 10.1% — 23.0%). In [11], infec-
tion rates due to contact with asymptomic carriers was estimated at 4.11% (6 infections
from 146 contacts) compared to 6.30% for symptomatic cases (126 infections from 2001
contacts). Besides asymptomatic cases, a presymptomatic infectious phase of 1-4 days
is estimated in [12], while the estimated asymptomatic infectious period was 4-9.5 days.
Since the discovery of COVID-19, numerous measures and resources were deployed for
its eradication. Vaccines and curative medicines were lacking, but some measures such
as social distancing and testing were effective in slowing its spread. Health specialists rec-
ommend using both strategies. The effectiveness and costs associated with both strategies
are discussed below.

There exist many various types of social distancing, but the most basic involves main-
taining distance in public spaces, mask-wearing, and quarantine for symptomatic indi-
viduals and their contacts. More severe measures include banning public gatherings, re-
stricting population movement, closing businesses, and stay-at-home orders. The effec-
tiveness of distancing measures has been investigated by researchers using simulations
based on mathematical models. In [13] an SIR model that includes lockdown policies was
studied analytically. The authors concluded that the optimal policy depends only on the
shadow price difference between infected and susceptible individuals. They furthermore
concluded that more extreme measures applied over a short time horizon are more effec-
tive than less extreme measures over a longer horizon. In [14], an age-structured mathe-
matical model was developed for investigating the effectiveness of social distancing inter-
ventions to stop the spread of COVID-19 using 4 scenarios. It was found that the number
of the new infections, hospitalisations and deaths were all decreased by distancing mea-
sures. Using data from Wuhan city, reference [15] performs a modeling study that shows
that the epidemic peak was delayed and new cases of coronavirus disease 2019 were de-
creased when contact patterns were changed as a result of distancing. Other research
works that have explored the importance of using the social distance strategy against
COVID-19 are [16-20]. Although social distancing measures have saved many lives, they
also have incurred significant costs for society. Economic activity has decreased, produc-
ing widespread hardship and unemployment. Several researchers have investigated these
costs in order to better understand economic consequences of the COVID-19 epidemic,
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especially the costs associated with distancing and testing measures. Study [21] uses a
SIR model to simulate transmission rates for various countries under various social dis-
tancing strategies, and estimates the associated prices during an epidemic period. Ref-
erence [22] estimates the economic costs caused by social distancing strategy in fighting
against COVID-19, where five main social-distancing policies have been considered. Re-
sults show a decline in average income in the range of 4.6—18.6%, depending on level of
distancing. As an alternative and supplement to distancing, testing and tracing is another
viable and complementary approach. The effectiveness of tests to detect the presence
of SARS-CoV-2 virus and antibodies to SARS-CoV-2 has also been studied by a num-
ber of researchers [23-25]. Reference [26] established a mathematical model of SARS-
CoV-2 that includes PCR(Polymerase Chain Reaction) testing, and estimates the reduc-
tion in the effective reproduction number achieved by testing and isolating symptomatic
individuals, regular screening of high-risk groups irrespective of symptoms, and quaran-
tine of contacts of laboratory-confirmed cases identified through test-and-trace proto-
cols.

Although testing avoids the economic slowdown and social costs associated with dis-
tancing, it is still not without costs. In [27], it is estimated the cost of $51 or $100 per
diagnostic test depending on the type of test, while [28] gives an approximate cost of
$100 paid by medicare for each laboratory tests for detecting SARS-CoV-2, and [29]
quotes a price of $5 per test, but without mentioning the false positive and false nega-

tive rates.

1.1 Basic reproduction number and effective reproduction number

In theoretical epidemiology, the basic parameter used to characterize the rate of spread
of a disease is called the reproduction number. The basic reproduction number Ry is de-
fined as the average number of secondary infections which one typical infected individual
would generate if the population were completely susceptible [30]. In multicompartment
models of disease dynamics, R is computed as the dominant eigenvalue (i.e. spectral ra-
dius) of the so-called next generation matrix, which is a positive linear operator computed
from the model coefficients. The concept of basic reproduction number (Ry) was first in-
troduced in 1886 [31] and has been used in multitudes of studies of infectious diseases.
Some recent examples include [32-38]. For the recent pandemic COVID-19, many re-
searchers have estimated R, using different approaches for various countries and regions
[39-45].

In addition to Ry, the effective reproduction number (denoted by R,) is also of interest.
R, is defined as the number of secondary infections produced by a single infectious indi-
vidual when the population has both susceptible and non-susceptible individuals (non-
susceptible may include infectious, immune, vaccinated, etc.) and/or control methods
have been implemented. Several previous studies have estimated R, for various scenar-
ios. The effective reproduction number for COVID-19 of India and its states has been
determinated in [46] using Real-Time Bayesian Method. [47] determines the effective re-
production number for COVID-19 at the first 10 days of Latin American countries where
the highest was in Ecuador (R, = 3.95) and the smallest in Peru (R, = 2.36) and make a
comparison with one of Spain (R, = 2.9) and Italy (R, = 2.83). The effective reproduction
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number is evaluated in [48] by using a probabilistic methodology that considers only the
daily death statistics of a given country.

In our work, we will focus on the effects of different levels of testing and distancing mea-
sures on the effective reproduction number of COVID-19, as well as these measures’ eco-
nomic costs. The organization of the paper is as follows. Section 2 describes the COVID-
19 model with and without controls, computes basic and effective reproduction numbers,
and estimates model parameters from available data. Section 3 gives simulations and inter-
pretations of daily and long-term scenarios, including sensitivity analysis and comparison
of different control strategies. Finally, Sect. 4 summarizes our findings and gives conclud-

ing remarks.

2 COVID-19 epidemic model formulation and mathematical properties
In this section, we present the multicompartment models of COVID-19 and, identify the
parameters and estimated control costs used in simulation. In addition, using the next

generation matrix, we calculate the basic and effective reproduction number.

2.1 Multicompartment model

In this section, we describe the deterministic compartmental model that was used to
model the transmission dynamics of COVID-19. The model is based on [49], and par-
titions the entire population into subpopulations according to age and risk group and,
where each subpopulation is further subdivided into the following compartments: sus-
ceptible (S), exposed (E), pre-symptomatic infectious (PY), pre-asymptomatic infec-
tious (P*), symptomatic infectious (I¥), asymptomatic infectious (I4), symptomatic in-
fectious that are hospitalized (I'?), recovered (R), and deceased (D). In this classifica-
tion, pre-symptomatic infectious refers to infected individuals who have not yet devel-
oped symptoms, but are still infectious with a lower transmission rate; and similarly pre-
asymptomatic infectious are infected individuals who never develop symptoms, but are
still in the early stage and are not yet as infectious as asymptomatic infectious individu-
als. In our model, two subpopulations are identified, namely low risk and high risk. It is
assumed that the survivors have permanent immunity, and that dead individuals are not

infectious. The subpopulation model is diagrammed in Fig. 1, and the explicit equations

Figure 1 COVID-19 transmission schema [49]
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are as follows:
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where j is the subpopulation index (0 = low risk, 1 = high risk), and

Ni=S+E+P'+Pf + A+ + 17 + R, (2)

The initial conditions require all compartment populations to be nonnegative. The inter-
pretation and numerical values of the parameters in (1) are listed in Table 1. The model (1)
has non-negative solutions contained in the feasible region I" = {SJ,Ej,Pf‘,PIY,IlA, ij ,I]-H ,R;,
D;} e R,

The contact matrix ® = [¢;], (i,/) € {0, 1} is defined by

- <¢OO ¢01) _ (10.52 2.77) ’ -
b0 b1 94 263

where ¢;; represents the mean number of contacts per day experienced by individuals in
group j from individuals of group i. The matrix values in (3) were obtained by averaging the
contacts between low and high risk individuals over all age groups, using Tables A.4.1-4
and Figure A3 in [49] for contact rates and age-specific high risk proportions, respectively.
There are a few differences between our model and the model in [49]. In our model
the definition of N; in (2) does not include D;, since the individuals who have died are no
longer in the active population. In addition, the last two equations in our model include
additional terms that reflect the additional mortality that occurs when the ventilator ca-
pacity (represented by the parameter 0) is exceeded. Note that this change does not affect
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Table 1 Baseline parameters used in the model (based on [49])

(2021) 11:11

Parameters  Interpretation Values
B baseline transmission rate 0.0640
pA recovery rate on asymptomatic compartment Equalto "
y’ recovery rate on symptomatic non-treated LY =40
compartment 4
T symptomatic proportion 0.55
o exposed compartment exit rate ol ~29
ra pre-asymptomatic compartment exit rate Equalto p”
o’ pre-symptomatic compartment exit rate ;7 =23
P proportion of pre-symptomatic transmission 044
o’ relative infectiousness of symptomatic individuals 1.0
158 relative infectiousness of infectious individuals in 0.66
compartment /*
o4 relative infectiousness of pre-symptomatic individuals " = -2 m’y[YHi/ZJ;(/;YYfS)Z‘;Q;%Z)M/VA
IFR infected fatality ratio, age specific (%) [0.6440,6.440]
YFR symptomatic fatality ratio, age specific (%) [1.130,11.30]
yH recovery rate in hospitalized compartment ))_H ~10.7
YHR Symptomatic case hospitalization rate % [4.879,48.79]
I1 rate of symptomatic individuals go to hospital, = M
. n+y " -n)YHR
age-specific
n rate from symptom onset to hospitalized 0.1695
" rate at which terminal patients die ;7 =81
HFR hospitalized fatality ratio, age specific (%) [4,23.158]
v death rate on hospitalized individuals, age specific = %
pAy T =p)HFR
(% total ventilator capacity in all hospitals 3000 [50]
1/r number of deaths from people who are put on 1/3

respirators

the reproduction number of the system. The modifications are derived based on the fol-

lowing assumptions:

+ All patients that are at risk of dying are put on respirators, if respirators are available;

« A fixed fraction of patients that need respiration and are put on respirators

nonetheless die. According to the literature, this fraction is about 1/3. In the model we

introduce the parameter r, which is the inverse of this fraction, thus r = 3;

« All patients that need respiration but are not put on respirators will die;

+ Respirators are allocated proportionately to the low and high risk patients who need

them.

Let IY/, I be the number of each group that is hospitalized. We already have that vy,
v; are the death rates for hospitalized low and high risk, respectively. It follows that there
are rvpl{! and rv1 11 low and high risk patients respectively that need respirators. Letting
no, 11 be the number of patients in each group who are on respirators, it follows that the
number of terminal patients that die without respiration is (rvols + rv, I — ng — ny).

It remains to solve for ny and #;. The constraint on total respirators gives ny + n; < 6.
According to our assumption of proportionate respirator allocation, no/ny = volf /vy 11,
We may distinguish two cases. First, if r(voly + v1137) < 6, then we have n; = rv/IjH for

j=0,1. Otherwise, ny + n; = 6 which implies

Al =0,1 @
n=—--—7' _ j=0,1.
T (ol + vy i) J

Page 6 of 30
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We may combine these two cases into the single equation:

ol 1=0,1 (5)
nj = ) =4y,
/ max(rvolgl +rv I, 0) /

so that the number of terminal patients in group j that are denied respirators is w;, where

H
ro v/Ij

max(rvold! + rvi1i1,0)

(6)

w,-rv,lj

Low- and high-risk patients that not denied respirators are terminal at rates vy and vy,
respectively. Therefore we have:

daD; 0
— 7 = wli + pa(1 - v) = uyIf! (1 + r<1 - " )) 7)

dt max(vold! + viI¥,0/r)
. .. . . dpD; . . dR; ..
which is identical to the equation for —/ in (1). The equation for — must be similarly

adjusted by an amount —uw;(1 - ;) to offset the increased number of deaths due to insuf-
ficient respirators.

2.2 COVID-19 epidemic model formulation under controls

The use of the control measures has an important effect at a certain level on the spread
of the COVID-19 epidemic. In order to study disease mitigation, we introduce the effects
of two controls: social distancing and COVID testing. Social distancing (denoted by v;)
will reduce the overall infectivity, while COVID testing (denoted by #;) will reduce the
infectivity of the asymptomatic and presymptomatic infectious compartments by alerting
infectious asymptomatic individuals that they should isolate themselves so that they will
not transmit their infection to others. The model with controls is identical to (1), except
the first two equations are modified as follows:

ds;, 1

d_t] = - ; ﬁl (IiYa)Y + (1 - I/li)[lflwA + wP(PiYwY + P:qa)A)])(l - Vj),B(,b/‘iS]’,
i (8)
ak; = 21: l(IVYa)Y + (- u)[ Il + " (Pf 0" + Pro™)])(1 - v)B;iS) — o E;.
dt — NL’ i 124 i i ] T U

We shall use X to denote the vector X = [Xy, X;] of all infected classes, where we de-
fine X; = [Ej,Pf,l)]Y,IIA,IjY,I/H] and X’ = [X{, X}] the vector of all uninfected classes with
le = [S;, R;] where j = 0,1 corresponds to low and high risk subpopulations respectively,
with susceptible (S;), exposed (E;), pre-symptomatic infectious (P}/), pre-asymptomatic
infectious (P]‘.“), symptomatic infectious (IjY), asymptomatic infectious (I/A), symptomatic
infectious that are hospitalized (I]H ), recovered (R)), and deceased (D).

In order to take into account the cost associated to the model (8), we define

iy 10 if 1 = 0,
Olj(uj’ j ) - ] ) NA ) ) NA 32 if0 < (max)
ajo + apN; uj + apN; ()* ifO0<uy; < u 9

~

/3]'(1/]') = ble[jVj + bjz]\[j(Vj)n if0< Vi < V;max)’
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where N]A =S, +E+ P}A + P/Y + IIA is the number of asymptomatic individuals in subpop-
ulation. The functions «; and f; are intended to model the costs associated with COVID
testing and social distancing respectively for subpopulations j = 0, 1. The coefficient a;
represents the fixed cost when the testing program is implemented; a;; is the testing cost
per person, #; is the fraction of asymptomatic individuals in population j that are sub-
ject to testing, and a;, represents the increasing marginal cost per person incurred as the
testing program becomes more intensive (reflecting the law of diminishing returns). The
cost function g; in (9) reflects the economic cost of social distancing measures, and b;;, bj
reflect per-capita costs. f; is modeled as a nonlinear function, since marginal costs will in-
crease as the severity of distancing measures increases (for example, low-level distancing
measures such as wearing masks incurs much less expense than serious measures such
as closing stores and stay-at-home orders). The exponent # > 1 is chosen to reflect these
nonlinear effects. The parameter v; expresses the proportionate reduction in contacts that
result from the implemented measures. Finally, the parameters u](max) <1 and v;max) <1
are introduced as upper bounds for testing and distancing respectively to reflect the fact
that in practice it is impossible to implement 100% control due to non-cooperating indi-
viduals and other logistical problems.

Note that the two costs included in this model have rather different economic effects.
Distancing reduces economic activity, leading to lost income and unemployment; while
testing requires government expenditure but increases employment and income of the
personnel involved in the testing effort. These differences are not explored further in our
current investigation, which is more focused on the response of R, to control efforts. Our

methods are robust, and can also be applied if different cost functions are postulated.

2.3 Estimation of basic and effective reproduction numbers

In this section, we will present the calculation of basic and effective reproduction numbers
(Ro and R,, respectively) using the next generation matrix technique of Van Den Driessche
(137, 51]).

2.3.1 Computation of basic reproduction number

The basic reproduction number (Ry) is the average number of secondary infections pro-
duced by a typical case of an infection in a population where everyone is susceptible. It
is affected by the following factors: the rate of contacts in the host population, the proba-
bility of infection being transmitted during contact, the duration of infectiousness. Using
the next generation matrix, the basic reproduction number (Ry) for the System (1) is com-
puted as the spectral radius [52] of the matrix FV~! where F and V may be evaluated as

(note in the disease-free case, S; = N)):
Ry =p(FV7), (10)

where

Foo F
pofoo for) (11)
Fio Fu
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with
0 P’ pofole; pule; Bo’e;
1-7)o 0 0 0 0
Ej=| 1o 0 0 0 o |, (12)
0 o4 0 0 0
0 0 oY 0 0
Bl wNj_ BoPw¥ Ni_ BN, _ BwY Nj_
0 N; : /¢1—11 N; : 1‘751—11 le /‘751—11 N; : ,(DI—/‘,/
0 0 0 0 0
Fiji=1o 0 0 0 0 ) (13)
0 0 0 0 0
0 0 0 0 0
and
Voo Vi
V= 00 01 , (14)
VlO Vll
with
o 0 0 0 0
0 o4 0 0 0
Vi=l0o 0 p¥ o0 0 ; Vijj = O5x5. (15)
0 0 0 yp4 0
0 0 0 0 (A-T)yY+My

2.3.2 Effective reproduction number

As an epidemic progresses, there will be an increasing proportion of the population which
has recovered from the disease and hence has some degree of immunity. When this hap-
pens, the basic reproduction does not accurately reflect the number of secondary cases
produced by an infection. Our calculation of R, also does not include the introduction
of controls. In order to obtain an estimate of the effective reproduction number R,, we
modify (12)—(13) based on (8) as follows:

0 (1-u,)<1-;,12/;l,/’ms,- o; (l—uf)(l—z:ﬁa)Pu)YSj ®, (1_,4,-)(1]-\[‘;,)/;”#% o, (1_V,.I)\,Zst, o,
(1-1) 0 0 0 0
Fi=| < 0 0 0 0 , (16)
0 ot 0 0 0
0 0 oY 0 0
F (1 -v1)BS1
s TN
]
0 (1-u)ofo (1-u)ofo¥ (1-u)o? o
0 0 0 0 0
X (Dl_/;j 0 0 0 0 0 (17)
0 0 0 0 0
0 0 0 0 0
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The effective reproduction number R, is computed as the spectral radius of the matrix
FV~!, where F and V are specified using (11) and (14), where Fj; and F;_;; are given by
Egs. (16) and (17), respectively.

2.4 Control cost estimates

In order to optimize control costs according to the model described above, it is necessary
to find realistic estimates of the coefficients a; and by in (9). In this section, we present
results from the literature on which our coefficient estimates are based. Some studies, for
example reference [53] uses enumerative numerical technique to study an SIS model under
vaccination and treatment by taking into account the hypothetical cost contraints; others
studies consider data from public or private specialized institutions. In [54], the reduction
in U.S. Gross Domestic Product (GDP) due to distancing was estimated as $7.2 trillion
over a 30-year period, assuming a 3% discount rate. This corresponds to a $3 per day cost
per person and the distancing was assumed to reduce contact rate by 40%. The article
also presents an estimate by Goldman-Sachs of 6% reduction in U.S. GDP due to mortal-
ity, morbidity, and productivity losses due to distancing measures. Since the mean yearly
income in Houston is $31,576 per person [55], this would translate to a cost of roughly
$5/day/person which includes mortality and morbidity impacts in addition to distancing.
Reference [22] estimates between 4.6—18.6% decline in income in Texas for distancing
measures, depending on severity of measures. If we suppose that these declines corre-
spond to contact rate reductions of 40% and 80% respectively, this would indicate that
doubling the severity of distancing measures roughly quadruples the cost. This would cor-
respond to a purely quadratic cost function g; in (9), which implies b;; = 0 and # = 2. This
quadratic cost function reflects the economic principle of diminishing returns: increas-
ingly strict methods incur disproportionately higher costs.

Economic cost is only part of the total cost incurred by distancing measures. There are
social and political costs as well. People feel oppressed by distancing measures, and many
people view such measures as infringements on their freedom [56]. Supportive connec-
tions with family and friends are disrupted [57]. In the U.S., many anti-distancing demon-
strations have taken place [58] as people are not convinced that such severe measures
are necessary. The costs of distancing are also not distributed evenly among the popula-
tion, and low-income individuals are often the hardest hit when retail sales diminish and
restaurants and shops are closed down as part of distancing measures.

Testing does not have the same social costs as distancing, but has its own problems.
The gold standard test for COVID is the molecular Polymerase Chain Reaction (PCR)
test, which requires lab analysis. Results of the test are not immediately available, and
often take up to five days to obtain. The lag means that any infection acquired between
the test administration and the results will go undetected. Therefore, testing also involves
some quarantining, which has its own costs. Additionally, a testing program is most effec-
tive if it is coupled with contact tracing, so that others exposed to possible infection are
identified and tested as well. Some contacts may missed, which diminishes the effective-
ness of the control strategy. In addition, PCR tests can yield both false negative and false
positive results: estimates of error rates range from 2-33% and 0.8—4% for false negative
and false positive rates per test, respectively [59]. PCR tests are also relatively expensive, at

about $50 per test. A cheaper test with 15-minute turnaround is available (the BinaxNOW
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Table 2 Testing and social distancing control cost and level parameters

Parameters Interpretation Values

doo, dio minimum testing cost per person S0

dor, dn linear testing cost coefficient $2.3/person/day
doz, di2 quadratic rate of increase of per capita testing cost $27/person/day?
bo1, b1 constant per capita social distancing costs S0

bo2, b12 quadratic rate of increase of per capita social distancing cost $40/person/day?
ug'™, ufe maximum testing control level 0.66

Vg, Ve maximum social distancing control level 038

Covid-19 Ag Card, produced by Abbott Laboratories), but has relatively high false nega-
tive and false positive rates of 2.9% and 1.5% respectively [60], and is thus most useful in
locations where prevalence is high [61].

From a study by Campbell et al [62] on testing costs in Canada, we may infer a per-
test total cost estimate (including test + personnel) of $57 for testing only, and $69 for
testing plus tracing. The article also mentions the possibility of reducing costs by 40%
through introduction of pooled sampling and other efficiency measures. One must also
take into consideration that the economic cost of testing is of a somewhat different nature
from the economic costs of distancing. Distancing costs correspond to lost productivity
and reduced consumption, while testing costs are paid to companies which will produce
higher wages and profits, thus returning benefits to the economy.

Two questions remain vis-a-vis testing, namely the frequency of testing and the effec-
tiveness. A study by Jiang et al. [63] recommends performing three PCR tests before dis-
charging patients into the general population (their conclusion is based on presumed false
negative rate of 29%, which is high compared to other studies). Many studies appear to
recommend weekly or monthly testing of key subpopulations ([62, 64]). In [64], the most
intensive testing regimen was estimated to produce a 63% reduction in infections, but at
a cost that is 4 times as high as a less strict regimen. The cost of the most intensive regi-
men was between 2—2.5 billion dollars per million people per 180 days, which comes out
to between $11-$14 per day per person. Reference [22] estimates a decline in income of
4.6-18.6% due to distancing measures, depending on severity. Using a figure of $31,576
for mean income per person in Houston registers, this gives a daily cost $4—$16. Based
on those simple cost examples, we arrived at baseline cost coefficients for testing and dis-

tancing controls as specified in Table 2 that will be used on the rest of the work.

3 Simulations results and discussion

A number of simulations were performed to analyze the relations R,, control levels, and
control costs, and to explore the use of R, in determining cost-effective strategies. All
simulations used the model described in Sect. 2, with the parameters given in Tables 1
and 2. The simulations performed can be classified into three groups. In the first group
of simulations, we first characterize the response of R, and control cost to individual con-
trol levels. In the second group we investigate the sensitivity of these relationships to im-
portant parameters. In the third groups, we simulate long-term strategies for epidemic
mitigation that are based on the findings from previous simulations, and determine their

cost-effectiveness.
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Figure 2 Dependence of R, on control level for six control strategies at 0% and 66.6% immunity

3.1 Dependence of effective reproduction number on control level and control
cost for individual control

In this subsection we investigate the behavior of R, depending on the level of testing

and distancing controls applied to low and high risk population groups. Our computa-

tions were based on (11)—(17), with high-risk and low-risk populations of 1.34 million

and 423,000 corresponding to demographics of the city of Houston, TX.

Figure 2 shows R, as a function of control level for six different control strategies, at two
different population immunity levels. The first four strategies employ a single nonzero
control (either testing or distancing) on a single group (either low- or high-risk). In the
last two strategies, both population groups are subject to the same control (testing and
distancing, respectively). Solid curves correspond to these six strategies when the entire
population has 0% immunity (i.e. 100% of the population is susceptible), and the dot-
ted curves are for a population with 67% immunity respectively (33% susceptible). The
curves show that when no herd immunity is present, none of the six strategies is sufficient
to bring R, below 1. When herd immunity reaches 67% of the population, only high lev-
els of distancing for either the low-risk population or the entire population can bring R,
below 1. The figure shows that controls that are applied only to the high-risk group do
not significantly reduce R,. Note however that these graphs do not take into account the
reduced deaths in the high-risk population, because they only show the effect on overall
R, and not the number of deaths incurred by infection. It is also clear that applying the
same strategy to the entire population rather than just the low-risk group greatly increases
the effectiveness of the strategy.

Figures 3(a) and (b) show the daily cost associated with each level of the six control
strategies defined above, applied at 0% and 66.6% immunity respectively. We notice that
costs for distancing are consistently higher than corresponding costs for testing: for ex-
ample, distancing costs for the entire population (which is the most expensive strategy, for
a given control level) is higher than the cost for testing the entire population at the same

level of control. Comparing Figs. 3(a) and (b), we see that distancing costs do not depend
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on immunity level, but testing costs are reduced by more than 50% when immunity is
increased from 0% to 66.6%.

In Fig. 4, R, is plotted as function of daily implementation cost for the different control
strategies, where the control costs depend on the control levels through the relations (1)—
(8). At 0% immunity, the most cost-effective strategy is distancing applied to the entire
population: this is true regardless of expenditure level. However, the situation changes at
67% immunity: in this case, testing of the entire population is most cost-effective. How-
ever, the effects of universal testing are limited, and cannot reduce R, below 1 even at the
highest possible testing level. As with Fig. 2, these results do not account for the greater
percentage of deaths among the high risk population, because they only include imple-
mentation costs and not the costs associated with hospitalization, disability, or deaths.

Figures 2—4 above show that strategies applied to the entire population have a much
greater effect and are more cost-effective than strategies applied to a single population
group. Therefore, in the following analysis, we consider only testing and distancing strate-
gies that are applied to the entire population, and not to individual subpopulations.

Figures 5(a), (b) show the dependence of R, and daily implementation cost on social
distance and testing control levels, for two different levels of population immunity. The
white contour lines represent different values of R, which are achieved by the different
distancing and testing control levels indicated on the x and y axes respectively. The color
scale indicates the cost for that combination. As control levels increase, R, decreases but
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Figure 5 R. and cost dependence on testing and social distancing control levels at two different population
immunity levels: Stars locate points on R. contours corresponding to minimum cost for the given value of R,

daily costs increase. The shapes of the constant-R, contours in Fig. 5(a) (0% immunity)
resemble those in Fig. 5(b) (67% immunity), but the R, values for corresponding contours
differ by a ratio of roughly 2/3. Similarly, cost contours in the two figures resemble each
other, but the cost values differ by a similar factor. According to Fig. 5(a), a daily control
cost of over 60 million dollars is required to reduce R, below 1, while Fig. 5 (b) shows
that only about 10 million dollars per day is required to achieve the same R, level at 67%
immunity. The black stars on each R, contour line mark the (distancing, testing) control
combinations that achieve minimum cost for the corresponding R, value. Note that these
optimum points may be visually identified as the points on the contour lines where the
contour lines are parallel to the nearest constant-cost contour, which is represented as a
boundary between two colors.

3.2 Sensitivity of effective reproduction number and control costs to model
parameters

In this section we analyse the sensitivity of the effective reproduction number R, and con-
trol costs to important parameters and cost coefficients. Three key parameters that we
will analyze are the infectivity 8; symptomatic proportion 7; and relative infectiousness
of asymptomatic individuals w”. These parameters are difficult to estimate exactly, so it is
important to determine their effect on model outcomes. In the following analysis, pertur-
bations of +25% are applied to each parameter, under two different levels of herd immu-
nity.

Figure 6 shows the sensitivity of R, at 0% immunity under different values of 8, T and .
The six colored curves represent the control levels that produce an effective R, = 1.5 when
the three parameters are individually varied by +25%. The two curves for 8 = 1+.25 times
the baseline value are widely separated, showing that the predicted effect of controls on
costs depends strongly on the value of 8 used in the model. Indeed, 25% shifts in the value
of B produce changes in control levels that exceed 25%. In contrast, the model parameter
w? has little effect on control level estimates, while 7 only has a large effect when the
testing control level is high. These same observations apply to Fig. 7, which shows the
effect of B8, T and w® on the R, = 1 curve in a population with 67% immunity.

From the positions of the blue arrows in Figs. 6 and 7, we may conclude that the values of
B and 7 used in the model have a much greater effect on the optimum distancing controls
than on testing. For example, at 0% immunity a variation of £25% in B gives an optimal
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distancing control range of 0.34 1+ 40%, and a variation in optimal testing control of 0.25 £
30%. These results indicate that it may be difficult in practice to accurately determine
optimal control levels that can produce a given R, value for the system.

Figures 8—9 represent the sensitivity of costs to changes in the quadratic cost coefficients
for testing and distancing (a;, and bj, respectively). The horizontal and vertical axis scales
represent control costs for social distancing and testing respectively (as in the previous
figures, both distancing controls have the same values, as do both testing controls). Each
figure shows two white contours showing constant values of R, with the baseline cost pa-
rameter values. Both a;; and by, are varied by £25%, corresponding to the red and blue
contours respectively. The shades of color indicate total cost for each mix of testing and
distancing strategies: in this case, the lines of constant cost are straight lines. Optimum
(cost-minimizing) operating points for the different values of R, are indicated by arrows,
as in previous figures. Regardless of immunity level, the shifts in costs and optimum strat-
egy point are much greater when bj, is varied than when aj,, indicating a greater sensitivity
of the system to distancing quadratic costs than testing quadratic costs. For example, for
R, = 1.2 in Fig. 8, with baseline parameters the control costs along the contour vary from
35-40 million dollars per day. When the quadratic testing cost aj, is increased by 25%,
then control costs still lie in the same range. However, when the quadratic distancing cost
bj, is increased by the same percentage, the cost range shifts upwards to 40—45 million
dollars per day. The two figures closely resemble each other: however, it should be noted
that Fig. 9 which portrays 67% immunity is showing R, values that are only about 67% as
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big as the R, values shown in Fig. 8 which shows 0% immunity. Also, the testing cost scale
for Fig. 9 has been reduced by roughly 67%, although the distancing cost scale remains
the same.

3.3 Instantaneous minimum-cost strategies for different effective reproduction
number values

Equations (11)—(17) can be used to find the lowest-cost combination of controls that result
in a given value of R,. This minimization was implemented in Python using theminimize
function from the scipy.optimize package in Python for constrained minimization.
Figures 10(a) and 11(a) show the optimal levels of four controls (low and high risk testing,
low and high risk distancing) associated with different instantaneous R, values for 0% and
67% population immunity, respectively. In the figures, solid lines indicate optimal control
levels when all four controls are allowed to vary independently; while dashed and dotted
lines show control levels when the controls on low and high risk groups are constrained
to be the same. The costs associated with these optimal control strategies (both strategies
where all four controls vary independently and those for which high and low risk con-
trols are the same) as a function of R, are shown in Figs. 10(b) and 11(b) for 0% and 67%
immunity, respectively. As expected, lower values of R, require higher levels of control,
and incur greater costs. At all levels, distancing controls are applied at a higher level than
testing, especially for values of R, near 0.7 where the optimal testing levels show a dip.
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When four controls are allowed to vary independently, social distancing for the low-risk
subpopulation is applied at a higher level than for the high-risk subpopulation. This is due
to the fact that according to (3) low-risk individuals have greater contact rates, and thus
are more influential in spreading the disease. However, when the same level of control is
applied to both low and high risk subpopulations, the costs are nearly the same as shown
in Figs. 10(b) and 11(b). This indicates that costs are not highly sensitive to the specific

strategies used.

3.4 Optimizing long-term strategies that target effective reproduction number

We may define three different classes of long-term strategies that target R, reduction. For
all strategies, control measures are begun at a certain time, and continue until the total
infective population is reduced below a given level, to prevent resurgence of the disease.
All strategies set control measure levels on a daily basis, so that the intensity of measures

reduction

varies from day to day.
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In the first class of control strategies, a maximum daily budget is fixed to spend on con-
trol measures. Daily expenditure is constant, except in cases where the maximum possible
controls cost is less than the allocated budget. The strategy for each day is determined as
the set of control measures that does not exceed the budget, but which reduces R, as much
as possible. The user-defined parameters for these strategies are the daily maximum bud-
get and the date at which control starts.

In the second class of control strategies, during the active control period a combination
of distancing and testing measures are used to reduce the R, level to a constant fraction of
the level that would be achieved without control. For example if at day 40 the computed
R, value without control is 1.4 and the target fraction is 0.8, then sufficient testing and
distancing controls are applied to reduce R, to a value of 1.4.- 0.8 = 1.12. The combination
of testing and distancing controls used to achieve this value is computed using the same
algorithm as was used to compute Figs. 5. The user-defined parameters for these strategies
are the R, ratio and the date at which control starts.

The third class of strategy resembles the second, except that instead of targeting a given
fraction of R,, the daily control measures are chosen so as to achieve a fixed R, value be-
tween 0 and 1. If it is not possible to achieve the target R, even with the maximum control
limits, then maximum controls are applied. The user-defined parameters for these strate-
gies are the R, target value and the date at which control starts.

In order to compare the effectiveness of these three types of strategies, we must define a
measure of effectiveness. Increased deaths are the most detrimental result of the epidemic,
so the main goal of control strategies is to reduce the number of deaths. There are other
economic costs, including increased hospitalization, lost work time, permanent disability
and so on, but these are relatively minor compared with the death cost. We therefore mea-
sure strategies’ effectiveness in terms of the number of deaths resulting from the strategy.
If other economic costs are considered significant, these additional costs will be strongly
associated with the number of deaths, so the number of deaths can be taken as a proxy
value to indicate the magnitude of these costs.

We used simulations to evaluate and compare the effectiveness of these three classes of
strategies. Simulations used the parameters in Table 1. In addition, the simulation assumed
an exposed population of 150 low-risk and 50 high-risk individuals at time ¢ = 0, out of a
total population of 1.34 million low-risk and 423,000 high-risk individuals. Treatment is
continued until the number of exposed and infectious individuals reaches 10, at which
point it is assumed that the disease can be contained by targeted measures without the
need for population-wide control. The simulation was continued for 180 days. Control
strategies were updated on a daily basis.

We also simulated three parallel strategies in which high-risk individuals were given
maximum protection. In these strategies, applying controls to the high-risk population
was prioritized. Specifically, controls were only applied to the low-risk population if the
target budget or R, value could not be met through control measures applied to the high-
risk population. For example, suppose that we use the third strategy and the target R,
value on day 20 is 0.9. In a case where distancing and testing applied only to the high-risk
population is sufficient to achieve the target, then on day 20 no controls are applied to the
low-risk population. On the other hand, in a case where maximum distancing and testing

on the high-risk population still fails to reach R, = 0.9, then on day 20 maximum control
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would be applied to the high-risk population, and additional controls would also be placed

on the low-risk population so that R, = 0.9 can be achieved.

Figures 12—14 show the cost and timing characteristics of the two variants of the three
types of strategies considered. Each plot shows the costs (color level) and deaths (white
contour lines) for each combination of policy start day (x axis) and policy severity level
(y axis). For each figure, Subfigure (a) shows the regular case where controls are chosen
to reduce R, at the lowest cost; while Subfigure (b) shows the results of policies that first

prioritize controls on high-risk individuals.
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Figure 12 shows results for daily budget-based strategies. The black stars on each white
contour indicate the control policy start date and daily budget that minimize the total
control cost for the number of deaths specified by the contour. From Fig. 12(a) we see
that regular strategies give a death range of 1000—80,000 and a cost range of about 7.5-0.6
billion USD. Optimum start dates range from day 0 for 1000 deaths to day 19 for 60,000
deaths. For the high-risk prioritizing strategies showed in Fig. 12(b), costs are about 0.5
billion USD higher, while the optimum policy start dates are slightly later, ranging up to
day 23 for 80,000 deaths. However, regardless of start date and death level the regular
strategy will cost less than a high-risk prioritizing strategy with the same start date and
deaths. Both figures show the critical role of start date. For example, if a regular strategy
with a daily budget $30 million is started at day 15, then deaths are limited to 40,000 and
the total cost is $5.5 billion. However, if control is delayed for one week, then to acheive the
same number of deaths the daily budget must be raised to $35 million, and the total cost
is about $6.5 billion. If the start date is after day 30, it is not possible to achieve less than
80,000 deaths if the daily budget is limited to $50 million. On the other hand, if the control
policy is started too early then the total cost is also increased: a control policy starting at
day O that obtains 40,000 deaths has a daily budget limit of $30 million, and total cost of
about $5.5 billion which is $0.5 more than the policy starting on day 20. In general, a lower
death target will require an earlier start date for the cost-minimizing strategy.

Figure 13 shows results for strategies that produce a constant proportional reduction
in R, on a daily basis. Most of the observations for budget-based strategies also apply to
these strategies as well. From 13(a), we see that an early intervention is critical in reducing
the number of deaths for aggressive strategies that produce large decreases in R,; for ex-
ample, if control starts after day 18 it is not possible to obtain less than 5000 deaths. Start
date is much less important for milder strategies: for basic strategies that attain 60,000 or
more deaths, day 18 is optimal. High-risk prioritizing strategies are expensive: reducing
to 5000 deaths requires at least $7.5 billion USD, regardless of start date. Compared to
basic strategies, optimal start dates are delayed: for 60,000 deaths, the optimal start date
for the basic strategy is day 18, with total cost about $4 billion, while the optimal high-risk
prioritizing strategy for 60,000 deaths starts on day 23, with total cost about $4.5 billion.
For high-risk prioritizing strategies, between start dates 20 and 33 the number of deaths
increases rapidly, while the cost decreases rapidly. In this start date range, both deaths and
costs are nearly independent of the target R, fraction.

Figures 14(a) and (b) show costs and deaths for control strategies that target fixed R,
values, for basic control strategies and strategies that prioritize the high risk group re-
spectively. These figures resemble each other, showing that strategies targeting high-risk
give nearly the same results as basic strategies. The cost and start date for optimal strate-
gies at each death level is not strongly dependent on the target value of R,, although for
most death levels setting the target R, = 1 gives the lowest cost control. Optimal strate-
gies producing lower deaths must be initiated earlier (e.g. to attain 1000 deaths, it is best
to start on day 10 using target R, = 1, while the optimal strategy corresponding to 80,000
deaths begins around day 30, with R, ~ 0.9.

Figures 15(a) and (b) show the impact of starting control day on the deaths and costs
that can be obtained from the different types of optimal strategies. In each figure, the
three strategy types (constant budget, constant R, fraction, and constant R, target) are
compared at 3 different levels of total control cost: $2, $4 and $6 billion USD. The vertical



Thron et al. Journal of Mathematics in Industry (2021) 11:11 Page 21 of 30

Effect of control start date on total deaths
o0
L ® o
80000 &
o
.,.y
70000 7 o ""*=t~t:*;‘:§:i'* --®- Daily budget w/ $2bn tot. cost
" (, ==+ Re fraction w/ $2bn tot. cost
5 60000 ¥ i Target R. w/ $2bn tot. cost
g "“t Y A f
< : .*;*:*:;‘_‘ .*;:‘::‘- * --@- Daily budget w/ $4bn tot. cost
‘S 50000 A £ E 4+ Re fraction w/ $4bn tot. cost
2 .ﬁ' --%- Target R, w/ $4bn tot. cost
5 40000 4 @+ Daily budget w/ $6bn tot. cost
= -4 R, fraction w/ $6bn tot. cost
30000 4 s Target Re w/ $6bn tot. cost
.. =
A4l T @
20000 b6y
0 5 10 15 20
Control policy start day
(a) Strategies that minimize R,
Effect of control start date on total deaths
o-®
e
80000 - @
@
70000 4 --®- Daily budget w/ $2bn tot. cost
” -+ Re fraction w/ $2bn tot. cost
£ 60000 A Target R W/ $2bn tot. cost
3 @+ Daily budget w/ $4bn tot. cost
S 50000 4 ==+ R, fraction w/ $4bn tot. cost
2 --%- Target Re w/ $4bn tot. cost
g --@- Daily budget w/ $6bn tot. cost
2 40000 -+ Re fraction w/ $6bn tot. cost
Target Re w/ $6bn tot. cost
30000 4
20000 1
0 5 10 15 20
Control policy start day
(b) Strategies that prioritize high-risk
Figure 15 Number of the deaths obtained from different control strategy types depending on the control
start day, for different budget levels

axis shows deaths resulting from each of the strategies at the given control start date with
the given total control cost. As before, Subfigures (a) and (b) correspond to basic and high-
risk prioritizing strategies, respectively.

Figure 15(a) shows that for all three cost levels, the basic R, target strategy achieves
the lowest number of deaths at the latest optimal start date, indicating the superior per-
formance of this type of strategy. However, if the R, target strategy is delayed past the
optimal start date, the effectiveness is drastically reduced. For example, a target R, strat-
egy with total cost $4 billion starting at day 10 can reach 33,000 deaths, but if the start
date is delayed by 4 additional days the numbers of deaths rises to almost 60,000. Apart
from R, target strategies, the other two strategies produce similar deaths for the same cost
and start date. For all strategies, earlier optimal start times are associated with higher-cost
strategies that attain fewer deaths.

Figure 15(b) compares strategies that apply maximum control to high-risk individuals.
Similar relations between strategies hold as were noted for Fig. 15(a). A comparison be-
tween Figures (a) and (b) shows that high-risk prioritizing strategies yield higher deaths

for similar costs, and are thus less effective: for high-risk prioritizing strategies at the $2,
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Figure 16 Number of the deaths associated to control cost depending on the starting control date for the
three different strategies

$4, and $6 billion USD level respectively, optimal deaths for R, target strategies are 57,000,
33,000, and 17,000 compared to 53,000, 30,000, and 15,000 which may be obtained by ba-
sic R, target strategies at the same cost levels. Once again, the constant budget and R,
fraction strategies yield similar outcomes.

Figures 16 shows Pareto fronts for the 3 strategy types, where deaths and control costs
are the two competing factors. For each strategy type, two Pareto fronts are shown: one
front is based on overall optimal strategies, while the other front restricts strategies to
those which begin after 21 days. The x axis representes the control cost while the vertical
y axis shows the number of deaths depending on the current cost. As above, Subfigures
(a) and (b) give results for basic and high risk-prioritizing strategies, respectively.

Figure 16(a) In most cases, target R, is best except for very high control costs and low
deaths. The advantage of target R, is especially large for mid-range strategies that produce
about 30,000 deaths at a cost of $4 billion USD. In contrast, to obtain the same number
of deaths with the other two strategy types costs $5.5 billion. Alternatively, using the $4
billion for constant-budget or target R, fraction will produce an additional 20,000 deaths
compared to a strategy with target R, value. Delaying the control start date has large costs:
compared to the above-mentioned target R, strategy which reaches 30,000 deaths and
costs $4 billion, a 21-day delayed target R, strategy will either cost an additional $1.5 billion
at the same death level, or will result in an additional 9000 deaths for the same cost. The
observations for Figure 16(a) are still valid for Figure 16(b) except that the cost-to-death
tradeoffs are slightly more unfavorable.

Figure 17 indicates the application of the four different controls (low and high risk test-
ing and distancing) for the basic versions of the three different strategy types, for optimal
controls associated with different death outcomes. On each figure, the vertical axis indi-
cates the number of deaths acheived by the strategy; the horizontal axis gives the date and
the color indicates the level of each control, according to the colorbar accompanying each
figure. For example, for the optimal R, fraction strategy that achieves 80,000 deaths, the
time progression of low risk social distancing may be obtained from the third plot in the
second row by looking across the plot at the 80,000 level on the vertical axis. The R, target
strategies (last row of plots) begin with high levels of low-risk (third plot in the row) and
high-risk distancing (fourth plot), and then transition towards testing in the later stages
(first two plots). In contrast, the other two strategy types prioritize distancing (especially
distancing of the low-risk group) over testing throughout the period of control. In budget-
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based strategies, typically each control is applied at a nearly constant level throughout the
period of control as evidenced by the horizontal color patterns in the first row of plots. For
between 20,000—120,000 deaths, the optimal start dates for all three strategy types are very
close to day 20. The figures show that for deaths below about 50,000, the control continues
up the end of the period, indicating that the disease is still extant and herd immunity has
not yet been reached.

Figure 18 is analogous to Fig. 17, and represents the control history for the four controls
for optimal high-risk prioritizing controls at different death levels. As reflected in the fig-
ures, testing and distancing for the high risk group is at maximum level throughout the
control period, while testing and distancing for the low risk group resembles Fig. 17 but
at somewhat lower levels.

Figure 19 shows the progression over time of current infected, current hospitalized,
cumulative recovered, and cumulative deaths corresponding to the three basic strategies
shown in Fig. 17. Both deaths and recovered increase with decreasing intensity of control.
All three strategies show a peak of infected around 30 days, and a hospitalized peak around
40 days: both peaks are flatter with the R, target strategy compared to the constant budget
and R, fraction strategies. For strategies with high levels of control, infections and hospi-
talizations persist up to the end of the 180-period. For example, for constant R, strategies
that reduce deaths below 60,000, even at 180 days, current infection and hospitalizations
up to about 50,000 and 5000 respectively may be experienced. Figure 20 is analogous to
Fig. 19, except that current infected, current hospitalized, cumulative recovered, and cu-
mulative deaths are shown for the three strategy types where high risk individuals are
subjected to maximum control. The above observations made for Fig. 19 also apply to
Fig. 20.

4 Conclusion
In this paper, an SEIR epidemic model of COVID-19 in the city of Houston, TX USA is
presented under testing and social distancing controls with low and high risk population
groups. The basic and effective reproduction numbers for the model have been calculated,
and the effective reproduction number has been explored as a key parameter in under-
standing the dynamics of disease and its relationship with different control measures and
strategies. Comprehensive graphical representations of the dependence of effective repro-
duction number R, and control cost on control levels have been presented under different
levels of population immunity (Figs. 2—5). Restricted strategies that used only one control
(either distancing or testing) and/or targeted only part of the population (either high or
low risk) were incapable of reducing R, below 1, implying that such strategies are not suf-
ficient to prevent disease spreading except in cases of high levels of population immunity.
A sensitivity analysis was performed, which showed that both costs and R, as well as
optimal distancing levels are highly sensitive to the baseline transmission rate, and less
sensitive to symptomatic proportion and the relative infectiousness of asymptomatic in-
dividuals (Figs. 6-7). Hence given the difficulty in obtaining exact values for baseline trans-
mission rate, it may be difficult to determine precisely the best distancing policy for given
conditions. Overall costs were also found to be highly sensitive to model cost parameters,
particularly the increasing costs associated with diminishing returns from social distanc-

ing (Figs. 8-9).
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Optimal instantaneous strategies which combined distancing and testing were com-
puted (Figs. 10-11). The results showed that optimal strategies utilized distancing primar-
ily (especially at high control levels), and were applied nearly equally to both population
groups. Three different types of long-term control strategies based on R, were simulated.
The simulations confirm that the starting date of the control has an enormous effect on the
effectiveness of the strategies in preventing deaths, and the minimum number of deaths
increases rapidly if controls are delayed past a certain point (Figs. 12—14). However, the
results showed that it is not most cost-effective to begin serious controls too soon: for ex-
ample, it was found that the best R, targeting strategy that can reduce deaths to 30,000 was
begun on day 9 (Fig. 15). Although the more intensive (and more costly) strategies reduced
the number of deaths, they also do not entirely eliminate the infection, and it was found
that all strategies which reduced deaths below 60,000 required continuing control past
the 180 day period of the simulation (Figs. 17-20). Strategies that set a target value for R,
were found to be most cost-effective, even when started later than other strategies (Fig. 15).
These strategies are characterized by an initial very high level of distancing, which is later
reduced and replaced by higher levels of testing (17—18). Strategies that focused primarily
on applying controls to the high-risk population were found to be less cost-effective than
strategies that were applied evenly across the entire population (Fig. 15).

The situation with the COVID epidemic, as with previous epidemics, is continuously
changing. The development of vaccines introduces new possibilities for control. The base-
line model we have developed in this research can readily be modified to accommodate
such changes.
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