
Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1
https://doi.org/10.1186/s13362-021-00116-5

R E S E A R C H Open Access

How deep is your model? Network topology
selection from a model validation perspective
Nikolai Nowaczyk1, Jörg Kienitz2,3,4* , Sarp Kaya Acar5 and Qian Liang6

*Correspondence:
jkienitz@uni-wuppertal.de
2Fachbereich Mathematik und
Naturwissenschaften, Bergische
Universität Wuppertal, Wuppertal,
Germany
3The African Institute for Financial
Markets and Risk Management
(AIFMRM), University of Cape Town,
Cape Town, South Africa
Full list of author information is
available at the end of the article

Abstract
Deep learning is a powerful tool, which is becoming increasingly popular in financial
modeling. However, model validation requirements such as SR 11-7 pose a significant
obstacle to the deployment of neural networks in a bank’s production system. Their
typically high number of (hyper-)parameters poses a particular challenge to model
selection, benchmarking and documentation. We present a simple grid based
method together with an open source implementation and show how this
pragmatically satisfies model validation requirements. We illustrate the method by
learning the option pricing formula in the Black–Scholes and the Heston model.

Keywords: Neural networks; Model validation; SR 11-7; Derivatives; Risk
management; Pricing

Recent advances in machine learning have shown how neural networks can learn to

solve classical problems in quantitative finance such as pricing (see [19]), calibration, (see
[3, 12, 16]) and hedging (see [5]). A key advantage of using this technique is that once
the network has been trained, it performs the computations much faster than classical
approaches such as Monte Carlo simulation.
While the machine learning theory and practical advances as well as the quantitative fi-
nance foundations behind this approach are well recognized, these models are not yet
widely used in production. One of the key obstacles to the deployment of any model in a
bank is that it has to pass a thorough model validation first and – depending on its use
case – requires regulatory approval, which is not straightforward to obtain.

A key step in model validation is the model selection process. The model development
function of a bank needs to explain and justify to the model validation function why a
certain model has been selected (“conceptual soundness”). Traditionally, this is often for-
mulated by choosing a champion model and one or various challenger models. However,
those principles and practices have been formulated with models in mind like Heston vs.
Black–Scholes.

For models with parameters, the model selection process includes the choice of these pa-
rameters. Consequently, for artificial neural networks (ANN), which typically have many
parameters and hyperparameters, this question is a bit more complex than for classical
quantitative finance models. First of all, a type of network topology has to be chosen. For

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13362-021-00116-5
https://crossmark.crossref.org/dialog/?doi=10.1186/s13362-021-00116-5&domain=pdf
https://orcid.org/0000-0002-5140-6815
mailto:jkienitz@uni-wuppertal.de

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 2 of 19

example, can the problem be learned best with a multilayer perceptron (MLP) or a long-
term-short-term memory network (LSTM)?1 After a type of topology has been selected,
for example MLP, the precise shape of that topology still needs to be determined and jus-
tified, e.g. the number of layers and neurons needs to be specified as hyperparameters as
well as the activation functions. In a last step, the networks weights have to be chosen. This
last step can be performed automatically by stochastic gradient descent methods such as
Adam, see [18], but those often require hyperparmeters as well, e.g. the learning rate.

ANNs are already widely used in many areas and the problem of choosing the type of
network topology and the number of layers and units occurs everywhere and not just in
quantitative finance.

Typical approaches to this problem are:
1. Arbitrary choice: The model developer simply makes a choice and plays around with

it until the results are satisfactory. Alternative choices are not documented or
systematically evaluated.

2. Automatic Machine Learning: There are attempts to automate the process of finding
supervised machine learning solutions for a given problem and data set using
unsupervised machine learning techniques – those are dubbed AutoML.

3. Functional Analysis: From a mathematical perspective, a neural network is a method
to approximate a non-linear function. All possible choices of network topologies and
weights constitute a space of approximation functions and thus existing theory from
approximation theory can be utilized.

The first method is of course straight-forward and quite often successfully used in prac-
tice. However, it is not always successful and it is certainly not compliant with any model
governance framework. For example, the SR 11-7 guidelines clearly state that “a sound
development process will produce documented evidence in support of all model choices”,
see [2, Sect. V.1]. This method clearly violates that requirement and thus cannot be used
for financial models in production.

While the idea of the second method, i.e. using unsupervised learning to automatically
choose the topology for a supervised learning problem, is very appealing, there are two
problems to consider: First, automatic machine learning is unsurprisingly a much more
difficult problem than just one supervised learning problem and it is not always feasible
to apply it in practice. The second issue is that from a model validation perspective, one
tries to shed light into a blackbox with another blackbox. AutoML, in particular if used in
a proprietary version, can only be used to validate a bank’s machine learning solution to a
specific problem after the AutoML engine that was used has itself successfully completed a
model validation process. That might be possible, but requires a lot of additional resources
– potentially much more than to justify the neural network in question directly. Also, it
remains to be seen if a regulator would ever sign off such a blank check. One should how-
ever remark that open source initiatives such as [17] are currently improving transparency
and efficacy of such automatic machine learning solutions.

The third method, has the advantage that a lot of literature and research already exists
in the area of function approximation, see for example [9, 22, 24]. Specifically for neural
networks, there is the famous universal approximation theorem, see [8, 11, 15]. This lit-
erature is very helpful in providing sound methodological justifications and theoretical

1See Sect. 1 for detailed definitions.

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 3 of 19

background. However, in practice, this will often not be enough to make the determina-
tion of the concrete (hyper-)parameters of the network straightforward for the problem
at hand.

We therefore propose an intermediary solution that improves the first method by some
of the techniques used in the second, in particular the use of grids. We formulate this
approach in a language that takes the more classical perspective of degrees of freedom,
which is very common in model validation. By systematically training neural networks on
a grid of comparable parameters, we obtain a framework that can be used in practice to
simultaneously satisfy multiple model validation requirements.

The rest of this paper is organized as follows: After a review of some popular neural
network topologies in Sect. 1, in particular the MLPs and the LSTMs, we discuss the model
selection problem in Sect. 2 and present a simple grid based method to select a neural
network topology for a quantitative finance problem. We discuss in detail how this method
addresses SR 11-7 model validation requirements in Sect. 3. After quickly discussing the
implementation in Sect. 4, we apply the method in Sect. 5 to pricing in the context of
Black–Scholes model and a Heston model. The conclusions are summarized in Sect. 6.

1 Artificial neural networks (ANN)
In this section, we establish the notation for two of the most common types2 of artifi-
cial neural networks: the multilayer perceptron (MLP) and the long-term-short-term-
memory network (LSTM). It should be highlighted that the notation, the mathematical
formalization and also the implementation slightly varies throughout the literature, see
for example [10, 20, 21]. We have chosen an approach here that is compatible with keras
and tensorflow, see [1, 6], as those frameworks are very common.

1.1 Multilayer perceptron (MLP)
The most common and most basic form of neural networks are multilayer perceptrons.

Definition 1.1 (Multilayer perceptron) A multilayer perceptron MLP is a tuple MLP =
(Al, bl,σl)1≤l≤nL defined by

• a number ni of inputs,
• a number no of outputs,
• a number nL of layers and
• for each layer 1 ≤ l ≤ nL

– a number nl of neurons (or units),
– a matrix Al = (Al;ij) ∈R

nl–1×nl and a vector bl = (bl;i) ∈ R
nl (called bias) of weights

such that n0 = ni, nnL = no and
– an activation function σl : R →R.

For any 1 ≤ l ≤ nL, the tuple (Al, bl,σl) is called a layer. For l = nnL , the layer is called output
layer and for 1 ≤ l < nL, the layer is called hidden layer.

Neural networks can be visualized as in Fig. 1: This shows a network (Al, bl,σl)1≤l≤nL

with a total of nL = 4 layers, i.e. 3 layers are hidden. Notice that the input layer is just a
visualization of the input and is not part of the actual network topology.

Computing the output from the input is codified in the feed forward.

2We illustrate our method on MLPs and LSTMs, but it can in general be applied to other topologies as well like CNNs.

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 4 of 19

Figure 1 Multilayer Perceptron

Definition 1.2 (Feed forward) Let MLP = (Al, bl,σl)1≤l≤nL be a multilayer perceptron.
Then for each 1 ≤ l ≤ nL, we define a function

Fl : Rnl–1 →R
nl , v �→ σl

(
vT Al + bl

)
,

where we employ the convention that σl is applied in every component. The composition

F : Rni →R
no , F := FL ◦ · · · ◦ F2 ◦ F1

is called the feed forward of MLP. Any set of inputs x ∈ R
ni is called an input layer.

The links in Fig. 1 between the nodes visualize the feedforward and the dependence of
each output on each input.

We assume here that the activation functions are chosen as the standard sigmoid, σl(x) :=
(1 + e–x)–1, for all but the last layer,3 where we chose the linear activation σL(x) = x.

The feed forward F = F� depends on all the parameters � = (Al, bl)1≤l≤nL . In general,
the function F� will be unrelated to the problem if the weights � are not chosen carefully.
This is performed by training the neural network with a training set (xi, yi)1≤i≤N . More pre-
cisely, for a given cost function, say least squares, this amounts to solving the optimization
problem

�∗ := argmin
�

N∑

i=1

∥
∥F�(xi) – yi

∥
∥2.

In practice, this optimization is performed by stochastic gradient descent methods such
as Adam, see [18], and a clever computation of the gradient, called backpropagation, see
[23].

3The sigmoid function takes values in [0, 1]. Thus, choosing a sigmoid activation in the output layer can vastly decrease the
accuracy of the network, in particular if the function intended to learn takes unbounded values in R.

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 5 of 19

Figure 2 LSTM Concept

1.2 Long-Term-Short-Term-Memory Network (LSTM)
While MLPs work very well in many situations, there are certain applications for which
that network topology is sometimes not ideal. MLPs are built to make a prediction y given
one input x. But some applications have a canonical time structure and the task is to make
time-dependent predictions yt from time-dependent inputs xt . In principle, this case can
of course be covered by MLPs as well, for example by adding a time grid to the inputs and
the outputs, i.e. to learn (yt1 , . . . , ytn) from (xt1 , . . . , xtn , t1, . . . , tn). This has the advantage
that it is straight-forward to implement, but the disadvantage that the network has to be
potentially quite large. Another option is to train a network separately for each point ti.
That has the disadvantage that there is no flow of information between the networks of
different points in time ti and the prediction of this sequence of networks might suffer
from inconsistencies. A key application that has driven the research in that area is Natural
Language Processing (NLP), where language is seen as a sequence of words.

A known way out of these technical problems are long-term-short-term memory net-
works as suggested in [14]. The idea depicted in Fig. 2 is as follows: Only one neural net-
work, i.e. with one fixed set of weights, is trained, but in addition to the input, the network
also processes the cell state. This additional piece of information is transmitted through
the network and serves as a memory of previous predictions.

Formally, an LSTM can be defined by first defining a single LSTM layer, LSTML, and
the associated feedforward and then stacking multiple of those together to an LSTM.

Definition 1.3 (LSTML) A long-term-short-term-memory neural network layer is a tuple
LSTML = LSTML(W , U , b, τ ,σ) consisting of

• a number m of units and a number k of features,
• a 4-tuple W of matrices Wi, Wf , Wc, Wo ∈R

k×m called input, forget, cell and output
kernels,

• a 4-tuple U of matrices Ui, Uf , Uc, Uo ∈ R
m×m called input, forget, cell and output

recurrent kernels,
• a 4-tuple b of vectors bi, bf , bc, bo ∈R

m called input, forget, cell and output bias,
• two functions σ , τ : R→R called activation and recurrent activation.

This definition needs to be understood in the context of the associated feedforward.
The feedforward of an LSTML is more complex than for MLPs. Because of the time-

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 6 of 19

Figure 3 Long-Term-Short-Term-Memory Network Cell

dependence, it needs to keep track not only of the final output, but of all the outputs at
the various points in time and in addition it needs to keep track of the cell state.

Definition 1.4 (Feedforward) Let LSTML = LSTML(W , U , b, τ ,σ) be as above and let
T ∈ N be a natural number. Any sequence x = (x1, . . . , xT), xt ∈ R

k , is called an input se-
quence. The two sequences ct and yt , t = 1, . . . , T , called cell state and carry state, are re-
cursively defined as follows:4

input: it := τ (xt • Wi + yt–1 • Ui + bi) ∈R
m,

forget: ft := τ (xt • Wf + yt–1 • Uf + bf) ∈R
m,

candidate: c̃t := σ (xt • Wc + yt–1 • Uc + bc) ∈R
m,

cell: ct := ft � ct–1 + it � c̃t ∈ R
m,

output: ot := τ (xt • Wo + yt–1 • Uo + bo) ∈ R
m,

carry: yt := otτ (ct) ∈R
m.

Finally, the function

FT :Rk×T →R
m,

x =(x1, . . . , xT) �→ (y1, . . . , yT)

is called, the feedforward of LSTML of length T .

The interpretation of this is as follows (see Fig. 3): The input value it and forget value ft

represent how much weight is put by the network on the current input xt and how much
weight is put on forgetting the past memory. Then, a candidate cell state c̃t and a candidate
output ot are computed on the basis of only the current input xt and the last prediction
yt–1. Thus, the new cell state ct is computed as a weighted average between the candidate
cell state c̃t and the previous cell state ct–1, where the weights are given by the input weight
it and the forget weight ft . Finally, the carry yt , i.e. the intermediate output at t, is computed
by first computing a candidate output ot , which is also based only on the current input xt

and the last prediction yt , and then yt is computed from ot by weighing ot with the new cell

4Here, we assume that all vectors are row vectors, all sequences are initialized with zero, • denotes the usual matrix-vector
multiplication, � denotes the element-wise multiplication of vectors (Hadamard product) and the application of a function
R →R, e.g. σ and τ , to a vector is performed element-wise.

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 7 of 19

state ct . It should be noted that depending on the application, one might either consider
the value yT as the feedforward of the network or the vector (y1, . . . , yT).

Practical applications rarely comprise of a single LSTML for various reasons. First, as
we can see in Definition 1.4, each step of the computation, i.e. the input, forget, out-
put and candidate cell state are equivalent to a feedforward of an MLP with just a sin-
gle layer. That means that a single LSTML cannot capture arbitrary non-linearities with
these computations. Also, notice that if a network comprises of just an LSTML, then the
number k of features is forced to be k = ni, i.e. the number of inputs and the number m
is forced to be m = no, i.e. the number of outputs. That means that no parameters can be
changed to adapt the network to the problem. The solution to both of these problems is
to chain multiple LSMTLs in sequence, where the number m of units can be chosen at
will, followed by a single MLP layer to ensure that the last output is of the same shape
as no.

Definition 1.5 (LSTM) A long-term-short-term memory network (LSTM) with L layers
is defined by a sequence LSTM = (LSTML1, . . . , LSTMLL–1, MLP) of L – 1 LSTMLs with
number of units ml and number of features kl such that k1 = ni, and a single MLP with
input dimension kL–1 and output dimension no.

2 Network topology selection
In this section we introduce a method to select a network topology that is consistent with
established model validation practices.

Assume we want to train an MLP on a financial problem such as pricing. The key model
parameters to choose are the number of layers nL and the number of units nu in each
layer (we are assuming that we want to choose the same number in each layer). A very
simple way to obtain a documented choice for that is to not pick one arbitrary parameter
vector (nu, nL), but to specify a grid of those parameters and built an MLP for each of
them, see Fig. 4 for an example. The idea is to then train all of those models with the same
data, analyze their learning curves and the performance of the trained model and then the
select the least complex model such that its performance is within thresholds acceptable
by the business case. As discussed in Sect. 3, this simple procedure already satisfies many
key requirements of model validation, but there is one catch.

A key question, which is not only interesting from a model validation perspective is: For
the given learning problem, is it better to increase model performance by increasing the
number of layers or by increasing the number of units? If the grid G = (gij) of parameters
gij = (nui , nLj) is a cartesian product of a vector of possible number units (nui) and a vector

Figure 4 Mapping model parameters to models NN

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 8 of 19

Figure 5 Number of trainable weights

of possible number of layers (nLj), this amounts to the question of whether one should go
down a row or right along a column in the grid, see Fig. 4.

In order to obtain a meaningful answer to this question, one has to consider the degrees
of freedom of the model. For a neural network, these are exactly the number nw of trainable
weights. It is good model selection practice to increase the degrees of freedom of a model
slowly from below to obtain as many as needed to be accurate, but no more than necessary
to avoid overfitting. Applied to MLPs, this means that we actually want a grid where along
the one (and only one) dimension, we can increase the degrees of freedom and along the
other we can change the topology of the network keeping the degrees of freedoms fixed.
This is not achieved by a grid G that is simply a cartesian product of number of units
and number of layers, because both increase the degrees of freedom and they do so in a
very different way, see Fig. 5(a). An easy way to fix this is to build the grid by first fixing the
smallest candidate for the number of layers, say nL1 = 2, and then fill the first column of the
grid with gi1 = (nui , nL1), where nui is the vector of candidate number of units. In a second
step, we then compute the resulting degrees of freedom nw for each row in the first column.
In a third step, we fill the other columns by gradually increasing the number of layers, but
simultaneously reducing the number of units to keep the degrees of freedom in each row
constant. In this way, the row axis increases the degrees of freedom (via increasing the
number of units) and along the column axis we obtain models with the same degree of
freedom, but different network topologies. That is exactly what we want. To carry out
this program in detail, we need to calculate the degrees of freedom, i.e. the number of
trainable weights of the network, see below, and formalize the above in an algorithm, see
Algorithm 2.2.

For an MLP NN = (Al, bl,σl)1≤l≤nL , calculating the number of trainable weights amounts
to the following: Given that any layer has a matrix A ∈R

nl–1×nl and a bias b ∈R
nl , this yields

nl–1nl + nl = nl(nl–1 + 1) trainable weights per layer. Taking into account that n0 = ni and
nL = no, i.e. the dimensions of the input and the output layers are fixed, the total number
nw of trainable weights is given by

nw =

⎧
⎨

⎩
no(ni + 1), nL = 1,

n1(ni + no + 1) + no, nL = 2,
(1)

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 9 of 19

and for nL ≥ 3

nw = n1(ni + 1) + no(nL + 1) +
nL–1∑

l=2

nl(nl–1 + 1). (2)

While in theory it is perfectly possible to choose a different number of units for every
hidden layer, in practice one often uses the following.

Assumption 2.1 The number of units nu is the same in each layer.

In that case Eq. (2) simplifies to

nw = nu(ni + 1) + no(nu + 1) + (nL – 2)nu(nu + 1)

= n2
u(nL – 2) + (ni + no + nL – 1)nu + no, (3)

which requires two choices, namely nL, the number of layers, and nu, the number of units
per layer. In Fig. 5(a) we plot this function for an example. We see that – in accordance with
Eq. (3) – the number of trainable weights nw = nw(nL, nu) depends linearly in the number
nL of layers, but quadratically in the number nu of units. The crucial exception from this is
the case of nL = 2 as evident from Eq. (1), where the number of units only enters linearly.
This is why we see the huge jump in trainable weights when passing from nL = 2 to nL = 3
layers.

Computing a reduced number nu of units after increasing the number nL of layers keep-
ing the total number of weights constant, therefore amounts to rewriting the quadratic
equation Eq. (3) as

n2
u +

ni + no + nL – 1
nL – 2︸ ︷︷ ︸

=:p

nu +
no – nw

nL – 2︸ ︷︷ ︸
=:q

= 0, (4)

which is easily solved by setting

nu = –
p
2

+
√

p2

4
– q. (5)

Of course in practice one has to take the floor
nu� (or a rounding) to enforce an integer
number of units. Using this we can keep the number of weights approximately constant
when increasing the number of layers. This is illustrated in an example in Fig. 5(b). Keeping
the number of weights constant when increasing the layers allows us to control the degrees
of freedom with a single variable resulting in a more meaningful comparison between
various network topologies.

This leaves us with the following method of determining a good network topology for
any given problem.

Algorithm 2.2 (Network topology selection)
Input:

(i) An artificial neural network NN.

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 10 of 19

(ii) A labeled data set (x, y) together with a train/test split (e.g. 80%, 20%).
(iii) A range of number of layers NL = (L1, . . . , Lr).
(iv) A range of number of original units Nu = (u1, . . . , us).
(v) A bias threshold tb and a variance threshold tv together with metrics for both (e.g.

MSE).
(vi) A number emax of maximal epochs.

Steps:
(i) Create a grid G = (gij)1≤i≤s,1≤j≤r of tuples gij as follows: For the first number nL1 of

layers initialize gi1 := (ui, nL1), i.e. use the original number of units and L1 layers. For
any j > 1, set gij := (u′

i, nLj) where u′
i is the solution of Eq. (5) with nw set as the same

as resulting from gi1. This results in a grid where the degrees of freedom increase by
going down a row, but keep constant when going right a column, c.f. Figure 4.

(ii) For each network NN resulting from the parameters in the grid G , train the
network with (x, y) until the bias and variance is below the thresholds tb and tv (or
the maximum number of epochs emax is reached). This results in a grid of trained
models, see Sect. 5.2 for an example.

(iii) Cross out all networks on the grid, for which the bias and the variance are not
below the given thresholds.5

(iv) Amongst the remaining, find the smallest number nL of layers, for which there exist
a number of units nu such that the model (nu, nL) has not been crossed out.
Amongst those, choose the one with the smallest number nu of units.

Output: A number (nu, nL) of units and layers for the network NN such that the bias and
the variance of the network on (x, y) are within the threshold and the numbers (nu, nL) are
optimal within the given range.6

Optionally, one can create a second grid to compare how the MLP performs against the
LSTM. One only has to determine the number of weights in an LSTM as well and choose
the number of units in the original LSTMs such that the resulting degrees of freedom are
approximately the same as in the reference MLPs. It follows from Definition 1.3 that the
number of weights in a single LSTM layer is given by

4m2 + 4(k + 1)m

and thus by Definition 1.5, we obtain that the total number nw of weights in the LSTM is
given by

nw = 4(2nL – 3)n2
u + (4ni + no + 4nL – 4)nu + no,

where nL is the number of layers, nu is the number of units in each layer and ni and no are
the number of inputs and outputs.

5In case all models are crossed out, the number of units or layers or the number of training samples or the number of
epochs needs to be increased to yield a meaningful result.
6They are not optimal in a mathematical sense as a grid obviously only tests this on a finite number of candidate models.
However, if the grid is fine enough, this is sufficient for practical model validation purposes.

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 11 of 19

3 Fulfillment of model validation requirements
The network topology selection as discussed in Algorithm 2.2 serves to fulfill various
model validation requirements as mandated by SR 11-7, see [2]. First of all we note that just
because neural networks are not classical Monte Carlo simulations, this does not mean
that they are in principle ineligible for production. In fact, SR 11-7 explicitly states that
the “nature of testing and analysis will depend on the type of model and will be judged by
different criteria depending on the context”, [2, Sect. IV, p.6]. Thus, it is reasonable and
compliant that testing neural networks looks a bit different from testing a Monte Carlo
simulation.

Our approach to select a network topology addresses multiple SR 11-7 validation re-
quirements simultaneously:

1. Documented Choice: “A sound development process will produce documented
evidence in support of all model choices. Comparison to alternative theories and
approaches should be included” ([2, Sect. V.I, p.11]). The learning curves of a grid of
trained models resulting from the network topology selection method, see Fig. 9 for
an example, serve as documented evidence that a “comparison with alternative
theories and approaches” as a “fundamental component of a sound modeling
process” ([2, Sect. IV, p.6]) has been conducted. This applies to both, the number of
layers and units within a network topology, and comparisons between multiple
network topologies.

2. Benchmarking: “Benchmarking is the comparison of a given model’s inputs and
outputs to estimates from alternative internal or external data or models. It can be
incorporated in model development as well as in ongoing monitoring. Whatever
the source, benchmark models should be rigorous and benchmark data should be
accurate and complete to ensure a reasonable comparison.” ([2, Sect. V.2, p.13])
Because the model selection is based on a comprehensive systematic benchmark
against alternatives based on exactly the same implementation approach, input data
and fitting parameters, this requirement is satisfied automatically.

3. Outcome Analysis: “The third core element of the validation process is outcomes
analysis, a comparison of model outputs to corresponding actual outcomes. The
precise nature of the comparison depends on the objectives of a model, and might
include an assessment of the accuracy of estimates or forecasts, an evaluation of
rank-ordering ability, or other appropriate tests.” ([2, Sect. V.3, p.13]) Because a
model in the grid is only chosen, if its bias is below the specified threshold in a
suitable metric, this ensures that the chosen model is accurate.

4. Prevention of Overfitting: “Analysis of in-sample fit and of model performance in
holdout samples (data set aside and not used to estimate the original model) are
important parts of model development...” ([2, Sect. V.3, p.14]) Because the learning
curves include the variance, the requirement to consider both is satisfied. In fact,
because the total number of degrees of freedom in the model is increased from
below, this method automatically makes the model much less prone to overfitting.

One should highlight that the last point is particularly delicate for financial applications.
Models in the financial domain that have hundreds or even thousands of parameters are
typically met with great scepticism as avoiding overfitting and instabilities in those models
is no easy task. Because the machine learning community routinely deals with models
that have many parameters, diagnostic methodological frameworks, a strong culture to

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 12 of 19

cross-validate and standardized open source solutions have already made those models
tractable.

We conclude by stressing that the proposed method to network topology selection is
only one aspect of model selection, which in turn is only one aspect of model validation.
Performing the suggested method of network topology selection does not exonerate the
user from performing the full set of validation tasks mandated by SR11-7.

4 Technical implementation
An advantage of the network topology selection method (Algorithm 2.2) is that in theory,
the implementation is straightforward. Any framework that can run one neural network
can be used to run a grid of neural networks by using a loop. In practice, however, this
results in various IT tasks such as managing the IDs of the models, loading and saving
them, ensuring that their training parameters are consistent etc. The numerical simulation
in Sect. 5 has been performed using the popular keras models, see [6]. We have isolated
the part of the code that wraps the models into keras_grid, an open source module,
which conveniently solves these problems.7

5 Application to quant finance models
In this section we apply the network topology selection method (Algorithm 2.2) to the
problem of learning the option pricing function of the Black–Scholes model and the He-
ston model. In both cases we compare the topologies resulting from the MLP and the
LSTM. We find that even though the prices C(T , K) of call options clearly have a time
dependence T , the MLP is actually much better suited to learn them than the LSTM.
This is plausible as the problem of managing complex long-term-short-term memory does
not really occur for Markovian paths generated by the Black–Scholes or Heston model.
The results are described below and can also be explored interactively in a jupyter note-
book.8

5.1 Black–Scholes & Heston model
The Black–Scholes model, see [4], assumes that the stock price St is a stochastic process on
a probability space (�,F ,Q) (where we think of Q as the risk-neutral measure) satisfying

dSt = rSt dt + σSt dWt , (6)

where r ∈R is a fixed risk-free rate, σ > 0 is the volatility and the process Wt is a Brownian
motion. We denote by F = (Ft)t≥0 the augmented filtration generated by Wt . Under these
assumptions, a European call option with expiry at T and strike K , i.e. a derivative with
payoff (ST – K)+ can be priced analytically with the famous Black–Scholes formula:

Ct(T , K) = E
[
e–r(T–t)(ST – K)+ |Ft

]

= St�(d1) – Ke–r(T–t)�(d2),
(7)

7See https://github.com/niknow/keras-grid.
8See https://github.com/niknow/machine-learning-examples/tree/master/network_topology_selection.

https://github.com/niknow/keras-grid
https://github.com/niknow/machine-learning-examples/tree/master/network_topology_selection

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 13 of 19

where � denotes the cdf of the standard normal distribution and

d1 :=
1√

T – t

(
log

(
St

K

)
+

(
r +

σ 2

2

)
(t – T)

)
,

d2 := d1 – σ
√

T – t.

The Black–Scholes model rests on the assumption that the volatility is constant, which
is arguably not realistic. The Heston model, see [13], belongs to the class of stochastic
volatility models, which assume a stochastic dynamic not just for the stock price, but also
for the volatility. It is defined by

dSt = rSt dt +
√

νtSt dW S
t , (8)

dνt = κ(θ – νt) dt + ξ
√

νt dW ν
t , (9)

dW S
t dW ν

t = ρ dt, (10)

where r ∈R is the risk-free rate, κ ∈R is the rate at which the stochastic variance νt reverts
to the long-term mean θ > 0, ξ > 0 is the volatility of the volatility and ρ ∈ [0, 1] is the
correlation between the Brownian motions W S

t , W ν
t .

The option price in a Heston model can be computed via (see [7])

C0(T , K) = S0�1 – e–rT K�2, (11)

where �1 and �2 are given as integrals over the characteristic function
 =
ln(ST) of
ln(ST):

�1 =
1
2

+
1
π

∫ ∞

0
Re

(
e–iw ln(K)
(w – i)

iw
(–i)

)
dw,

�2 =
1
2

+
1
π

∫ ∞

0
Re

(
e–iw ln(K)
(w)

iw

)
dw.

We learn the Black–Scholes formula Eq. (7) for t = 0 as well as the Heston option pricing
formula Eq. (11) with a neural network.

To that end we generate a data set as follows: We first define an evenly spaced grid of 60
maturities T between 3M and 5Y. Second, for the other model parameters, we generate
10,000 samples uniformly distributed in the hypercube with the bounds specified in Fig. 6.
Third, we take the cartesian product between the maturities and the samples and obtain
a data set with 600,000 samples. The special treatment of the maturity as a parameter is
required here to adhere to the input format of the LSTM. Notice that in a productive envi-
ronment, the specification of the bounds for the traning set has to be in line with business
requirements and careful input checking against these bounds has to be performed af-
ter training when predictions are made. An example of a price surface for both models is
shown in Fig. 7.

5.2 Performing network topology selection
For the grid of MLPs we choose the range of number of layers as NL = (2, 3, 4) and the
original number of units for L = 2 layers as Nu = (64, 128, 256, 512, 1024). For the grid of

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 14 of 19

Figure 6 Parameter Ranges Training Set

Figure 7 Data Set

LSTMs we choose the original number of units such that the total number of trainable
weights in the first column of the LSTM grid is the same as in the MLP grid. This ensures
the degrees of freedom of the LSTMs are comparable to the MLPs. The resulting graph of
weights is shown in Fig. 8. The key insight here is that while their shape looks the same as
expected, the order of magnitude of original number of units is much lower for the LSTM
as for the MLP. That is because all these additional complexities of the LSTM, recall Def-
inition 1.3, mean that for the same number of units, the LSTM has much more trainable
weights than the MLP. Thus, in order to achieve the same number of trainable weights as
the MLP, the LSTM has to be instantiated with a much lower number of units.

We train both models on the above data set with an 80%/20%-split into train/test data
with random shuffling. The thresholds are set to tb := tv := 0.25 and the maximal number
of epochs is emax := 50. We choose the mean squared error (MSE) as a loss function and the
mean absolute error (MAE) as our metric. The resulting learning curves with the bias and
the variance are shown in Fig. 9 for the MLP. In this grid the number of layers increases in
each column from left to right and the number of original units increases in each row from
top to bottom. We find that the first column does not have enough layers to capture the

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 15 of 19

Figure 8 Number of trainable weights

Figure 9 Learning Curves MLP

non-linearity in the pricing function of the Black–Scholes or the Heston model. However,
in the second column, the first row is already below the threshold, but only barely and
not yet very stably after the 50 epochs, so we select the model below in the second row.
This model has L = 3 layers and just nu = 26 units in the hidden layers (reduced from the
original number of 128). This means that this model has learned the Black–Scholes and
Heston pricing function with only nw = 885 trained weights after just 50 epochs.

The learning curves for the corresponding LSTMs are shown in Fig. 10. We find that
they are significantly worse than the MLP. Only for the very last model for L = 3 layers and
nu = 17 units per hidden layer (reduced from an original number of 1024), the learning
curves are just at the threshold, so we select this one. Despite having nw = 6274 trained

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 16 of 19

Figure 10 Learning Curves LSTM

weights in total, it still performs worse than the MLP we selected above (which has less
than 7x the number of trained weights). The conclusion from this is not that LSTMs can-
not learn the Black–Scholes or Heston pricing function, but rather that the simplicity of
the MLP network topology is better adapted to this specific problem. The complexity of
the LSTM network topology is adapted to a situation, which doesn’t occur here, and thus it
cannot achieve the same performance as the MLP when constrained by the same number
of trainable weights.

5.3 Error distribution
While the mean absolute error (MAE) is a good metric for the learning curve, it is often not
sufficient for financial applications. Therefore, we study the whole error distribution for
the MLP and the LSTM selected above, see Fig. 11. Unsurprisingly, the LSTM has a higher
and a wider error distribution indicating it has learned the pricing functions less well than
the MLP. For the MLP it is interesting to note that while the learning curves in Fig. 9
suggest that in the mean error for the Black–Scholes and the Heston model is similar, we
see in Fig. 11, that the Heston error distribution is wider than Black–Scholes. This shows
that it is ‘harder’ for the network to learn this, which given the higher dimensionality of
the data set is not surprising.

Both impressions are also confirmed Fig. 12, where we compute some statistics of the
error distribution. While for MLP, high percentiles or even the max of the error is still
<1, meaning in cases where the MLP error is worse than the mean, this network fails
‘gracefully’, the max error for the LSTM is much worse. For the MLP, the 95th and 99th
quantile of the error as well as the max error are slightly higher for Heston than for Black–
Scholes.

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 17 of 19

Figure 11 Distribution of Error

Figure 12 Error Statistics

5.4 Generalization to other models
We have illustrated the network topology selection method for parametric models trained
on synthetic data in a given range as this flavour is currently the most popular. It is well
known that neural networks usually do not perform very well in regions outside the train-
ing set, i.e. when they extrapolate. Therefore, we suggest to take that into account when
generating the training set. The fact that this is possible is one of the big advantages of
working with synthetic data (rather than real world or historic data). In practice, we rec-
ommend an automated bound checking of the new inputs supplied to the network that is
consistent with the bounds used in training. Even more care has to be taken when training
non-parametric models on historic data, e.g. a VaR model on historic market data shifts.
The high dimensionality of the input and non-linearity of the PnL might require a topol-
ogy so big that given limited availability of historic data, it might simply not be trainiable
to get the bias below an acceptable threshold. This will also make it impossible to reduce

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 18 of 19

the variance to satisfactory level. If the network is trained on a decade where markets are
calm, it will also easily breach the ranges in which it was trainined when used in a time of
market stress causing extrapolation failures.

6 Conclusions
We conclude that the SR 11-7 requirement to conduct model validation, in particular a
thorough model selection process, can be satisfied for neural network models as well. The
simple grid based network topology selection method is a pragmatic way of producing a
good and documented choice of hyperparameters for a given financial application.

As a byproduct we obtain interesting insights into how neural networks learn financial
models. Given that evaluating a network is very fast, this makes the use of pricing mod-
els feasible, which are too computationally expensive otherwise. We also find that while
option prices (or implied volatilities) clearly have a time dependence, LSTMs are overly
complicated for this application and the much simpler MLPs perform better in a fair com-
parison – a textbook case of Occam’s razor.

Acknowledgements
We would like to thank Gordon Lee for interesting discussions and feedback. We would also like to thank the reviewer for
constructive comments.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials
Data and an illustrating notebook is available on github:
https://github.com/niknow/machine-learning-examples/blob/master/network_topology_selection

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the paper. All authors read and approved the final manuscript.

Author details
1Acadia, London, UK. 2Fachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Wuppertal,
Germany. 3The African Institute for Financial Markets and Risk Management (AIFMRM), University of Cape Town, Cape
Town, South Africa. 4Acadia, Bonn, Germany. 5Acadia, Frankfurt, Germany. 6Airplus, Frankfurt, Germany.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 January 2021 Accepted: 16 December 2021

References
1. Abadi M, Agarwal A, Barham P et al. TensorFlow: large-scale machine learning on heterogeneous systems. 2015.

https://www.tensorflow.org/.
2. B. of Governors of the Federal Reserver System/Office of the Comptroller of the Currency. Governors of the Federal

Reserver System/Office of the Comptroller of the Currency. Supervisory Guidance on Model Risk Management. 2010.
https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf.

3. Bayer C, Stemper B. Deep calibration of rough stochastic volatility models. 2018. https://arxiv.org/abs/1810.03399.
4. Black F, Scholes M. The pricing of options and corporate liabilities. J Polit Econ. 1973;81(3):637–54.

https://doi.org/10.1086/260062.
5. Buhler H, Gonon L, Teichmann J, Wood B. Deep Hedging. 2019. https://arxiv.org/abs/1802.03042.
6. Chollet F, et al. Keras. 2015. https://keras.io.
7. Crisostomo R. An analysis of the heston stochastic volatility model: implementation and calibration using Matlab.

2014. https://ssrn.com/abstract=2527818.
8. Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signals Syst. 1989;2(4):303–14.

https://doi.org/10.1007/BF02551274. issn: 0932-4194.

https://github.com/niknow/machine-learning-examples/blob/master/network_topology_selection
https://www.tensorflow.org/
https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf
https://arxiv.org/abs/1810.03399
https://doi.org/10.1086/260062
https://arxiv.org/abs/1802.03042
https://keras.io
https://ssrn.com/abstract=2527818
https://doi.org/10.1007/BF02551274

Nowaczyk et al. Journal of Mathematics in Industry (2022) 12:1 Page 19 of 19

9. Ern A, Guermond J. Theory and practice of finite elements. Applied mathematical sciences. New York: Springer; 2004.
ISBN 9780387205748. https://books.google.co.uk/books?id=CCjm79FbJbcC.

10. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. Springer series in statistics. New York: Springer;
2001.

11. Haykin S. Neural networks: a comprehensive foundation. 2nd ed. New York: Prentice Hall; 1998. ISBN 0132733501.
12. Hernandez A. Model Calibration with Neural Networks. 2016. https://ssrn.com/abstract=2812140.
13. Heston SL. A closed-form solution for options with stochastic volatility with applications to bond and currency

options. Rev Financ Stud. 2015;6(2):327–43. https://doi.org/10.1093/rfs/6.2.327. issn: 0893-9454.
https://academic.oup.com/rfs/article-pdf/6/2/327/24417457/060327.pdf.

14. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9:1735–80.
15. Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991;4(2):251–7.

http://www.sciencedirect.com/science/article/pii/089360809190009T.
16. Horvath B, Muguruza A, Tomas M. Deep Learning Volatility. 2019. https://arxiv.org/abs/1901.09647.
17. Jin H, Song Q, Hu X. Efficient neural architecture search with network morphism. In: CoRR. 2018.

http://arxiv.org/abs/1806.10282.
18. Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014. 1412.6980 [cs.LG].
19. Liu S, Oosterlee CW, Bohte SM. Pricing options and computing implied volatilities using neural networks. 2019.

https://arxiv.org/abs/1901.08943.
20. Muller A, Guido S. Introduction to machine learning with python: a guide for data scientists. Sebastopol: O’Reilly

Media; 2018. ISBN 9789352134571. https://books.google.co.uk/books?id=jGdXswEACAAJ.
21. Murphy KP. Machine learning: a probabilistic perspective. Cambridge: MIT Press; 2013. ISBN 9780262018029.

https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_
2?ie=UTF8&qid=1336857747&sr=8-2.

22. Rudin W. Functional analysis. International series in pure and applied mathematics. New York: McGraw-Hill; 1991.
ISBN 9780070542365. https://books.google.co.uk/books?id=Sh/_vAAAAMAAJ.

23. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature.
1986;323(6088):533–6. http://www.nature.com/articles/323533a0.

24. Timan A. Theory of approximation of functions of a real variable. Dover books on advanced mathematics. New York:
Dover; 1994. ISBN 9780486678306. https://books.google.co.uk/books?id=JlJvzgQf/_2IC.

https://books.google.co.uk/books?id=CCjm79FbJbcC
https://ssrn.com/abstract=2812140
https://doi.org/10.1093/rfs/6.2.327
https://academic.oup.com/rfs/article-pdf/6/2/327/24417457/060327.pdf
http://www.sciencedirect.com/science/article/pii/089360809190009T
https://arxiv.org/abs/1901.09647
http://arxiv.org/abs/1806.10282
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1901.08943
https://books.google.co.uk/books?id=jGdXswEACAAJ
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://books.google.co.uk/books?id=Sh/_vAAAAMAAJ
http://www.nature.com/articles/323533a0
https://books.google.co.uk/books?id=JlJvzgQf/_2IC

	How deep is your model? Network topology selection from a model validation perspective
	Abstract
	Keywords

	Artiﬁcial neural networks (ANN)
	Multilayer perceptron (MLP)
	Long-Term-Short-Term-Memory Network (LSTM)

	Network topology selection
	Fulﬁllment of model validation requirements
	Technical implementation
	Application to quant ﬁnance models
	Black-Scholes & Heston model
	Performing network topology selection
	Error distribution
	Generalization to other models

	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References

