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Abstract
The Backward Stochastic Differential Equation (BSDE) is an important tool for pricing
and hedging. Highly accurate pricing for low computation time becomes interesting
for minimizing monetary loss. Therefore, we explore the opportunity of parallelizing
high-order multistep schemes in option pricing. In the multistep scheme the
computations at each space grid point are independent and this fact motivates us to
select massively parallel GPU computing using CUDA. In our investigations we
identify performance bottlenecks and apply appropriate optimization techniques to
reduce the computation time in a uniform space domain. Runtime experiments
manifest optimistic speedups for the parallel implementation on a single GPU, NVIDIA
GeForce 1070 Ti.
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1 Introduction
The backward stochastic differential equations (BSDEs) have been widely used in various
areas such as physics and finance due to one of their key features, namely they provide a
probabilistic representation of solutions of nonlinear parabolic partial differential equa-
tions (PDEs). We consider a (decoupled) forward backward stochastic differential equa-
tion (FBSDE) which has the form:

⎧
⎪⎪⎨

⎪⎪⎩

dXt = a(t, Xt) dt + b(t, Xt) dWt , X0 = x0,

–dyt = f (t, Xt , yt , zt) dt – zt dWt ,

yT = ξ = g(XT ),

(1)

where Xt , a ∈ R
n, b is a n × d matrix, Wt is a d-dimensional Brownian motion,

f (t, Xt , yt , zt) : [0, T] × R
n × R

m × R
m×d → R

m is the driver function and ξ is the ter-
minal condition. For a = 0 and b = 1, namely Xt = Wt , one obtains the standard BSDE of
the form

⎧
⎨

⎩

–dyt = f (t, yt , zt) dt – zt dWt ,

yT = ξ = g(WT ),
(2)
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where yt ∈ R
m and f (t, yt , zt) : [0, T] × R

m × R
m×d → R

m. The existence and uniqueness
of the solution of (1) are proven in [20]. If dXt in (1) is defined as the geometric brownian
motion for modelling the asset price, and g is the payoff function of an European option,
then (1) is related to the Black-Scholes PDE, see [14]. This is to say that y0 gives the option
price and zt/b represents the hegding portfolio, which presents the sensitivity of the option
price yt with respect to the asset price Xt . This is called also �-hedging in the pricing
theory.

Generally, it is rarely possible to find an analytical solution to a BSDE. Recently, many
numerical methods have been thus proposed. For the numerical methods on spatial grids
we refer to, e.g., [29–32]. The approaches based on the Fourier method for BSDEs are de-
veloped in [24, 25]. For probabilistic methods, Monte-Carlo approaches are investigated,
e.g., in [10, 16], and tree-based methods in [6, 26]. And many others, see [1, 2, 4, 8, 9, 17].

Higher order numerical schemes demand usually more computing efforts, effective par-
allel implementations are thus in great demand. Some acceleration strategies based on
Graphics Processing Unit (GPU) computing have been developed for the pricing prob-
lems in finance, however, a very little of them are BSDE-based approach. These works can
be found in [7, 11, 22], where the acceleration strategies are applied on numerical methods
of convergence order not higher than 2.

For higher order of convergence rate, the first multistep scheme on time-space grids
is proposed in [32], where the resulting integrands by discretizing BSDE in time are ap-
proximated by using Lagrange interpolating polynomials. In [13], we have successfully
parallelized that multistep scheme on GPUs, and showed the gain in computational time
for option pricing via the Black-Scholes BSDE. However, the multistep scheme is only sta-
ble up to 3 multiple time levels due to Runge’s phenomenon. For a better stability and the
admission of more time levels, a new multistep scheme is proposed in [27] by using spline
instead of Lagrange interpolating polynomials. In principle, arbitrarily many multilevel
time levels can be chosen in that multistep scheme, and in general the more time levels
the higher accuracy. However, using more time levels also requires more computational
cost. For this reason, in this work we investigate the massively parallel GPU computing in
the multistep scheme [27], to make the scheme be more useful in practice. For example,
a high accuracy for low computation time can minimize monetary loss in financial prob-
lems. An application that shows the importance of efficient approaches for pricing and the
risk management of financial models can be found in [3].

The reminder of this paper is organized as following. In Sect. 2, we introduce the mul-
tistep method [27] for the numerical solution of BSDEs. Section 3 presents the algorith-
mic framework of the numerical method and the potential for preliminary reduction of
computing time due to its special structure for uniform domains. In Sect. 4, we describe
the GPU acceleration strategies for further reduction of computing time. Section 5 shows
the numerical results including financial applications. Finally, we give the conclusions in
Sect. 6.

2 The multistep scheme
In this section we introduce the multistep scheme [27] orientated to be parallelized on
GPUs.
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2.1 Preliminaries
Let (�,F ,P, {Ft}0≤t≤T ) be a complete, filtered probability space. In this space a standard
d-dimensional Brownian motion Wt is defined, such that the filtration {Ft}0≤t≤T is the
natural filtration of Wt . We define | · | as the standard Euclidean norm in the Euclidean
space R

m or Rm×d and L2 = L2
F (0, T ;Rd) the set of all Ft-adapted and square integrable

processes valued in R
d . Moreover, let F t,x

s for t ≤ s ≤ T be a σ -field generated by the
Brownian motion {x + Wr – Wt , t ≤ r ≤ s} starting from the time-space point (t, x). We
define Et,x

s [X] as the conditional expectation of the random variable X under the filtration
F t,x

s , i.e. Et,x
s [X] = E[X|F t,x

s ].
A pair of processes (yt , zt) : [0, T] × � → R

m × R
m×d is the solution of BSDE (1) if it is

Ft-adapted, square integrable, and satisfies (1) in the sense of

yt = ξ +
∫ T

t
f (s, Xs, ys, zs) ds –

∫ T

t
zs dWs, t ∈ [0, T), (3)

where f (t, Xt , yt , zt) : [0, T] ×R
m ×R

n ×R
m×d →R

m is Ft-adapted and the third term on
the right-hand side is an Itô-type integral. This solution exist under regularity conditions
[20].

Let us consider the semilinear PDE

∂u
∂t

+
n∑

i=1

ai(t, x)
∂u
∂xi

+
1
2

n∑

i,j=1

d∑

k=1

bi,k(t, x)bj,k(t, x)
∂2u
∂xixj

+ f
(
t, x, u, b(t, x)�Dxu

)
= 0 (4)

with the terminal condition u(T , x) = g(x). The following theorem can be obtained with a
straightforward application of Itô’s lemma.

Theorem 1 (Nonlinear Feynman-Kac Theorem) Let u ∈ C1,2 satisfying (4) and suppose
that there exists a constant C such that |b(t, x)�Dxu(t, x)| ≤ C(1 + |x|) for each (t, x) ∈
[0, T] ×R

m, then

yt = u(t, Xt), zt = b(t, Xt)�Dxu(t, Xt) (5)

is the unique solution of (1).

We note that the authors in [19] show the existence and uniqueness of a solution for BSDEs
driven by a Lévy process with moments of all orders, which can be used for pricing in a
Lévy market. The nonlinear Feynman-Kac formula for a general non-Markovian BSDE
has been established in [21], where the path-dependent quasi-linear parabolic PDEs are
considered. Furthermore, Feynman-Kac representation of fully nonlinear PDEs has been
investigated, e.g., in [23].

2.2 The stable semidiscrete scheme
Let N be a positive integer and �t = T/N the step size that partitions uniformly the time
interval [0, T]: 0 = t0 < t1 < · · · < tN–1 < tN = T , where tn = t0 + n�t, n = 0, 1, . . . , N .

Let k and Ky be two positive integers such that 1 ≤ k ≤ Ky ≤ N , which represent the
number of time layers and interpolation points respectively. The BSDE (2) can be ex-
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pressed as

ytn = ytn+k +
∫ tn+k

tn

f (s, ys, zs) ds –
∫ tn+k

tn

zs dWs. (6)

Taking the conditional expectation Ex
tn [·] in (6) to obtain the adaptability of the solution

and using cubic spline polynomial to approximate the integrand, the reference equation
for y process reads (see the Appendix)

ytn = Ex
tn [ytn+k ] +

Ky–1
∑

j=0

[

ay
j �t +

by
j �t2

2
+

cy
j �t3

3
+

dy
j �t4

4

]

+ Rn
y ,

where Rn
y is the interpolation error. For the z process, using l and Kz instead of k and Ky,

multiplying both sides by �Wtn+l in (6) and taking the conditional expectation Ex
tn [·], the

reference equation using cubic spline interpolation reads (see the Appendix)

0 = l�tEx
tn [ztn+l ] +

Kz–1∑

j=0

[

az1
j �t +

bz1
j �t2

2
+

cz1
j �t3

3
+

dz1
j �t4

4

]

–
Kz–1∑

j=0

[

az2
j �t +

bz2
j �t2

2
+

cz2
j �t3

3
+

dz2
j �t4

4

]

+ Rn
z ,

where Rn
z = Rn

z1 + Rn
z2 are the interpolation errors. In [27], the authors have shown that the

scheme is stable when

k = 1, . . . , Ky, with Ky = 1, 2, 3, . . . , N ,

l = 1, with Kz = 1, 2, 3, . . . , N .

This is to say that the algorithm allows for arbitrary multiple time levels Ky and Kz. Using
the conditions of cubic spline interpolation to calculate the unknown coefficients, we have

ytn = Ex
tn [ytn+Ky ] + �tKy

Ky∑

j=0

γ
Ky
Ky ,jE

x
tn

[
f (tn+j, ytn+j , ztn+j )

]
+ Rn

y ,

ztn =

(

Ex
tn [ztn+1 ] +

Kz∑

j=1

γ 1
Kz ,jE

x
tn

[
f (tn+j, ytn+j , ztn+j )�Wtn+j

]

–
Kz∑

j=1

γ 1
Kz ,jE

x
tn [ztn+j ]

)

/γ 1
Kz ,0 +

Rn
z

�t
,

(7)

with γ
Ky
Ky ,j and γ 1

Kz ,j representing the calculated coefficients of the cubic spline interpolation
(Table 1 and Table 2 give the values up to 6 time levels). It is shown in [27] that the local
errors in (7) are given by

∣
∣Rn

y
∣
∣ = O

(
�t5),

∣
∣Rn

z
∣
∣ = O

(
�t5),
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Table 1 The coefficients {γ Ky
Ky ,j

}Kyj=0 until Ky = 6

Ky γ
Ky
Ky ,j

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

1 1
2

1
2

2 1
6

2
3

1
6

3 1
8

3
8

3
8

1
8

4 1
12

1
3

1
6

1
3

1
12

5 41
600

19
75

107
600

107
600

19
75

41
600

6 19
336

3
14

15
112

4
21

15
112

3
14

19
336

Table 2 The coefficients {γ 1
Kz ,j

}Kzj=0 until Kz = 6

Kz γ 1
Kz ,j

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

1 1
2

1
2

2 5
12

2
3 – 1

12

3 3
8

19
24 – 5

24
1
24

4 35
96

5
6 – 13

48
1
12 – 1

96

5 131
360

151
180 – 103

360
37
360 – 1

45
1
360

6 163
448

47
56 – 129

448
3
28 – 37

1344
1
168 – 1

1344

provided that f and g are smooth enough. In (7) we need to divide by �t to find the value of
z process. Therefore, in order to balance time truncation errors, one might set Kz = Ky + 1.

The stable semidiscrete scheme for the d-dimensional case is given as follows: we denote
(yn, zn) as the approximation to (ytn , ztn ), given random variables (yN–i, zN–i), i = 0, 1, . . . , K –
1 with K = max{Ky, Kz}. Then (yn, zn) can be found for n = N – K , . . . , 0 such that

yn = Ex
tn

[
yn+Ky

]
+ �tKy

Ky∑

j=0

γ
Ky
Ky ,jE

x
tn

[(
tn+j, yn+j, zn+j)],

zn =

(

Ex
tn

[
zn+1] +

Kz∑

j=1

γ 1
Kz ,jE

x
tn

[
f
(
tn+j, yn+j, zn+j)�W �

tn+j

]
–

Kz∑

j=1

γ 1
Kz ,jE

x
tn

[
zn+j]

)
/

γ 1
Kz ,0

(8)

where yn = (yn,m̃)m̃×1, zn = (zn,m̃,d̃)m̃×d , �W �
tn+j

= (W d̃
tn+j

)d̃×1 – (W d̃
tn )d̃×1, m̃ = 1, 2, . . . , m and

d̃ = 1, 2, . . . , d. In the following, we only present the results of the error analysis, for their
proofs we refer to [27] and [32].

Lemma 1 The local estimates of the local truncation errors in (7) satisfy

∣
∣Rn

y
∣
∣ ≤ C�tmin{Ky+2,5},

∣
∣Rn

z
∣
∣ ≤ C�tmin{Kz+2,5},

where C > 0 is a constant depending on T , f , g and the derivatives of f and g .
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Theorem 2 Suppose that the initial values satisfy
⎧
⎨

⎩

maxN–Ky+1≤n≤N E[|ytn – yn|] = O(�tKy+1),

maxN–Ky+1≤n≤N E[|ytn – yn|] = O(�t4),

where Ky = 1, 2, 3 for the first equation and Ky > 3 for the second one. For a sufficiently small
time step �t it can be shown that

sup
0≤n≤N

E
[∣
∣ytn – yn∣∣

] ≤ C�tmin{Ky+1,4},

where C > 0 is a constant depending on T , f , g and the derivatives of f and g .

Theorem 3 Suppose that the initial values satisfy
⎧
⎨

⎩

maxN–Kz+1≤n≤N E[|ztn – zn|] = O(�tKz ),

maxN–Kz+1≤n≤N E[|ztn – zn|] = O(�t3),

where Kz = 1, 2, 3 for the first equation and Kz > 3 for the second one, and the condition on
the initial values in Theorem 2 is fulfilled. For a sufficiently small time step �t it can be
shown that

sup
0≤n≤N

E
[∣
∣ztn – zn∣∣

] ≤ C�tmin{Ky+1,Kz ,3},

where C > 0 is a constant depending on T , f , g and the derivatives of f and g .

Remark 1 If f does not depend on process z, the maximum order of convergence for the
y process is 4 and 3 for the z process; If f depends on process z, the maximum order of
convergence for the y and z processes is 3.

2.3 The fully discrete scheme
Let �x denote the step size in the partition of the uniform d-dimensional real axis, i.e.

R
d̃ =

{
xd̃

i
∣
∣xd̃

i ∈R, i ∈ Z, xd̃
i < xd̃

i+1,�x = xd̃
i+1 – xd̃

i , lim
i→±∞ xd̃

i = ±∞
}

,

where

R
d̃ = R

1 ×R
2 × · · · ×R

d and d̃ = 1, 2, . . . , d.

Let xi = (x1
i1 , x2

i2 , . . . , xd
id ) for i = (i1, i2, . . . , id) ∈ Z

d . We denote (yn
i , zn

i ) as the approxima-
tion to (ytn ,xi , ztn ,xi ), given the random variables (yN–l

i , zN–l
i ), l = 0, 1, . . . , K – 1 with K =

max{Ky, Kz}. Then (yn
i , zn

i ) can be found for n = N – K , . . . , 0 such that

yn
i = Êxi

tn

[
ŷn+Ky

]
+ �tKy

Ky∑

j=1

γ
Ky
Ky ,jÊ

xi
tn

[
f
(
tn+j, ŷn+j, ẑn+j)] + �tKyγ

Ky
Ky ,0f

(
tn, yn

i , zn
i
)
,

zn
i =

(

Êxi
tn

[
ẑn+1] +

Kz∑

j=1

γ 1
Kz ,jÊ

xi
tn

[
f
(
tn+j, ŷn+j, ẑn+j)�W �

tn+j

]
–

Kz∑

j=1

γ 1
Kz ,jÊ

xi
tn

[
ẑn+j]

)
/
γ 1

Kz ,0,

(9)
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where Êxi
tn [·] is used to denote the approximation of the conditional expectation. The cal-

culations at each space grid point xi in (9) are independent, for each time layer tn. There-
fore, the parallelization strategy is fully related with the space discretization, which will be
discussed in the following Sections.

The functions in the conditional expectations involve the d-dimensional probabil-
ity density function of the Brownian Motions, one can choose e.g., the Gauss-Hermite
quadrature rule to achieve a high accuracy only with a few space points. The conditional
expectation can be can be sufficiently accurately approximated by a clever table interpo-
lation

Êxi
tn

[
ŷn+k] =

1

π
d
2

L∑

	=1

ω	ŷn+k(xi +
√

2k�ta	), (10)

where ŷn+k are interpolating values at the space points (xi +
√

2k�ta	) based on yn+k val-
ues, (ω	, a	) for 	 = (λ1,λ2, . . . ,λd) are the weights and roots of the Hermite polynomial
of degree L (see [12]), ω	 =

∏d
d̃=1 ωλd̃

, a	 = (aλ1 , aλ2 , . . . , aλd ) and
∑L

	=1 =
∑L,...,L

λ1=1,...,λd=1. In
a similar way, one can express the other conditional expectations in (9).

3 The algorithmic framework
According to the numerical algorithm represented in Sect. 2, the whole process for nu-
merically solving BSDEs can be divided into three steps.

1. Construct the time-space discrete domain.
We divide the time period [0, T] into N time steps using �t = T/N , i.e., N + 1

time layers, and the space domain R
d using step size �x (see also Sect. 2.3). We use

the truncated domains [–16, 16] and [–8, 8] for the grid space, where the former is
used for 1-dimensional examples and the latter for the 2-dimensional ones. Note
that larger domain can be also used, however, the approximation will be not
improved. This is to say that those truncated domains are sufficient for our
numerical experiments. Furthermore, in order to balance the errors in time and
space directions, we adjust �x and �t such that they satisfy the equality
(�x)r = (�t)q+1, where q = min{Ky + 1, Kz} and r denotes the global error from the
interpolation method used to generate the non-grid points when calculating the
conditional expectations. For a better illustration, we show a visualisation of the
domain for Ky = Kz = 1, d = 1 in Fig. 1, including the non-grid points.

2. Calculate K initial solutions with K = max{Ky, Kz}.
Generally, only the terminal values are given and one needs to compute the other

K – 1 initial values. To obtain these initial values, we start with K = 1 and choose an
extremely small time step size �t.

3. Calculate the numerical solution (y0
0, z0

0) backward using equation (9).
Note that the calculation for the y process is done implicitly with Picard iteration.

In step 1, some of the generated non-grid points could be outside of the truncated do-
main (see Fig. 1). For these points, we take the values on the boundaries as approximations
(constant extrapolation). Note that one could also do extrapolation for those points out-
side, however, a longer computation time will be needed. As mentioned in (10), we use
interpolation to approximate the values for y and z at non-grid points. The computation
time drawback when interpolating is finding the position of the new points in the inter-
polating process. A natural search algorithm is to loop over all the grid points, and find in
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Figure 1 Time-space domain

which interval the point belongs to. In the worst case, an O(Md) work is needed. Fortu-
nately, the structure of the Gauss-Hermite quadrature creates the symmetry for the non-
grid points. Recall that each new point is generated as Xλd̃

= xid̃
+

√
2k�taλd̃

. This means

that taking int(
Xλd̃

–xmin

�x ) for xid̃
∈ [xmin, xmax] and M – int(

Xλd̃
–xmin

�x ) for xid̃
∈ [xmax, xmin] gives

the left boundary of the grid interval that Xλd̃
belongs to, with int(x) giving the integer part

of x. As a result, this step in the algorithm can be done in O(d), i.e., without a for-loop.
This benefit comes from the uniformity of the space domain. This substantially reduces
the total computation time, as it will be demonstrated in the numerical experiments.

In step 2, we do not consider 2K (K for y and K for z) interpolations for each new cal-
culation, but only 2. Suppose that we are at time layer tn–K . To calculate y and z values
on this time layer, one needs the calculation of conditional expectations for K time layers.
In our numerical experiments, we consider 1 and 2 dimensional examples, the higher di-
mensional problem can be parallelized for a device (GPU) with large memory. The cubic
spline interpolation is used to find the non-grid values for 1-dimensional cases and bicubic
interpolation for 2-dimensional cases. For instance, the coefficients for the y process are
Ay ∈R

K×(4d×Md), all the coefficients are stored. When we are at time layer tn–K–1, only the
spline interpolation corresponding to the previous calculated values is considered. Then,
the columns of matrix Ay are shifted +1 to the right in order to delete the last column and
enter the current calculated coefficients in the first column. The new Ay is used for the
current step. The same procedure is followed until t0. This reduces as well the amount of
work for the algorithm.

In the final step (step 3), we consider to merge calculation of conditional expectations in
(9), which is important for the reduction of computation time in the parallel implementa-
tion. This will be mentioned in more details in the next Section.

4 Parallel algorithm
In this Section we present the parallelization strategy of the multistep scheme presented in
the previous sections. Basically, we parallelize the problem straightforwardly, while keep-
ing attention on the optimal Compute Unified Device Architecture (CUDA) execution
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model, i.e., creating arrays such that the access will be aligned and coalesced, reducing the
redundant access to global memory, using registers when needed etc..

The first and second steps of the algorithm are implemented in the host. The third step,
together with the operator for performing O(d) work in the searching procedure of the
interpolation and the idea of shifting coefficients of this procedure, are fully implemented
in the GPU device. Recall from (9) that the following steps are needed to calculate the
approximated values on each unknown time layer backward:

• Generation of the non-grid points X� = xi +
√

2k�ta�.
In the uniform space domain, the non-grid points need to be generated only once.

To do this, a kernel is created where each thread generates Ld points (Gauss-Hermite
points) for each space direction. This kernel adds insignificant computing time in the
total algorithmic time.

• Calculation of the values ŷ and ẑ at the non-grid points.
This is the most time consuming part of the algorithm, which is related with finding

the corresponding interpolating functions for the given y and z points, in order to
interpolate their values in the non-grid ones. For the 1-dimensional cases, we have
considered the cubic spline interpolation. Since (9) involves the solution of two linear
systems, the Biconjugate Gradient Stabilized (BiCGSTAB) [28] iterative method is
used since the matrix is tridiagonal. For this, we consider the CUDA Basic Linear
Algebra Subroutine (cuBLAS) and CUDA Sparse (cuSPARSE) libraries [5]. For the
inner product, second norm and addition of vectors, we use the cuBLAS library. For
the matrix vector multiplication, we use the cuSPARSE library with the compressed
sparse row format, due to the structure of the system matrix. Moreover, we created a
kernel to calculate the spline coefficients based on the solved systems. Finally, a kernel
to apply the operator for the searching procedure of interpolation is created to find
the values at non-grid points. Note that each thread is assigned to find m + m × d
values (m for y and m × d for z). For the 2-dimensional examples, we have considered
the bicubic interpolation. We need to calculate 16 coefficients for each point. Based
on the bicubic interpolation idea, we need the first and mixed derivatives. These are
approximated using finite difference schemes of the fourth order of accuracy (central
for the interior points, forward and backward for the boundary points). Therefore, a
kernel is created where each thread calculates these values. Moreover, to find the 16
coefficients, a matrix vector multiplication needs to be applied for each point.
Therefore, each thread performs a matrix-vector multiplication using another kernel.
Finally, a kernel to apply the operator for the searching procedure of interpolation is
created to find the values at non-grid points, where each thread calculates m + m × d
values.

• Calculation of the conditional expectations.
As mentioned above, we merge the calculation of conditional expectations. For the

first conditional expectations in the right hand side of (9), we create one kernel, where
each thread calculates one value by using (10). For the other ones, we merged their
calculation (three conditional expectations) in one kernel, namely Êxi

tn [ẑn+j],
Êxi

tn [f (tn+j, ŷn+j, ẑn+j)] and Êxi
tn [f (tn+j, ŷn+j, ẑn+j)�Wtn+j ], for j = 1, 2, . . . , K . This reduces

the accessing of data multiple times from the global memory and gives more work to
the thread, such that it does not stay idle. Note that one thread calculates
2 × m × d + m values.
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• Calculation of the z values.
The second equation in (9) is used and each thread calculates m × d values.

• Calculation of the y values.
The first equation in (9) is used and each thread calculates m values, using the

Picard iterative process.
In the next Section, we present some numerical examples to show the accelerated com-

putation on GPU computing with applications in option pricing.

5 Numerical results
We implement the parallel algorithm using CUDA C programming. The parallel comput-
ing times (only for one run) are compared with the serial ones on a CPU. Furthermore, the
speedups are calculated. The Central Processing Unit (CPU) is Intel(R) Core(TM) i5-4670
3.40Ghz with 4 cores, where only one core is used for the serial calculations. The GPU is
a NVIDIA GeForce 1070 Ti with a total 8GB GDDR5 memory.

We choose the degree of the Hermite polynomial L = 32 for the 1-dimensional examples
and L = 8 for the 2-dimensional ones. For the Picard interations, we choose p = 30. With
these values, the quadrature error and iteration error are so small that they won’t affect
the convergence rate.

Example 1 Consider the nonlinear BSDE [32].

⎧
⎨

⎩

–dyt = (–y3
t + 5

2 y2
t – 3

2 yt) dt – zt dWt ,

yT = exp(WT +T)
exp(WT +T)+1 .

The analytic solution is

⎧
⎨

⎩

yt = exp(Wt+t)
exp(Wt+t)+1 ,

zt = exp(Wt+t)
(exp(Wt+t)+1)2 .

The exact solution with T = 1 is (y0, z0) = ( 1
2 , 1

4 ). In Table 3, we show the importance
of the proposed technique when interpolating non-grid values, for a high N . Note
that the computation time is given in seconds. We see that without the operator to
find the position of the non-grid points in space, the computation serial time is very
high.

In Table 4, we present the results using 256 threads per block with K = Ky = Kz, t0 = 0
and T = 1. As mentioned before, the better accuracy can be archived by using a higher-
step scheme. For K > 3, the errors decrease moderately due to Theorem 2. The higher the
value of time layers N the more work can be assigned to the GPU, and the speedup of the
application can thus be increased. The speed up also increases on a smaller magnitude
for K > 3, since the number of space data points given from M is the same. These are
visualized in the plots of log10(|y0,0 – y0

0|), log10(|z0,0 – z0
0|) and speedup with respect to N

Table 3 Preliminary results with N = 256, Ky = Kz = 3 for Example 1

M tnon–optimal
CPU toptimal

CPU speedup

8192 2041.89 11.02 185.31
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Table 4 The results for Example 1

K N M |y0,0 – y00 | |z0,0 – z00 | tCPU tGPU speedup

1 128 364 9.36E–07 2.78E–05 0.14 0.91 0.15
1 256 512 3.89E–07 1.40E–05 0.37 1.73 0.21
1 512 726 1.74E–07 7.04E–06 1.06 3.57 0.30
1 1024 1024 8.22E–08 3.53E–06 2.91 6.96 0.42

2 128 1218 8.01E–08 8.61E–06 0.64 1.05 0.61
2 256 2048 2.03E–08 4.00E–06 2.06 1.88 1.10
2 512 3446 5.02E–09 1.92E–06 7.18 3.21 2.24
2 1024 5794 1.25E–09 9.41E–07 23.93 5.83 4.10

3 128 4096 1.44E–11 2.77E–08 2.71 1.04 2.61
3 256 8192 1.70E–12 3.50E–09 11.02 1.82 6.06
3 512 16,384 1.87E–13 4.41E–10 44.86 3.68 12.19
3 1024 32,768 2.05E–14 5.53E–11 180.30 10.08 17.89

4 128 4096 1.06E–11 1.69E–08 3.28 1.05 3.13
4 256 8192 1.20E–12 2.13E–09 13.57 1.84 7.36
4 512 16,384 2.57E–13 2.68E–10 55.16 3.84 14.35
4 1024 32,768 1.29E–14 3.34E–11 223.28 10.68 20.91

5 128 4096 1.46E–12 1.90E–08 3.86 1.06 3.63
5 256 8192 1.12E–12 2.40E–09 16.23 1.88 8.65
5 512 16,384 3.46E–14 3.02E–10 65.80 3.97 16.57
5 1024 32,768 9.77E–15 3.78E–11 267.79 11.33 23.64

6 128 4096 6.94E–12 1.84E–08 4.53 1.10 4.11
6 256 8192 7.71E–13 2.32E–09 18.97 1.93 9.84
6 512 16,384 1.07E–13 2.92E–10 77.64 4.23 18.35
6 1024 32,768 1.03E–14 3.65E–11 311.87 11.97 26.06

Figure 2 Plots of the results for Example 1

for K = 1, . . . , 6 in Fig. 2. The highest speedup (26×) is for the multistep scheme with K = 6
and N = 1024.

Example 2 Consider the nonlinear BSDE [32]

⎧
⎨

⎩

–dyt = 1
2 (exp(t2) – 4tyt – 3 exp(t2 – yt exp(–t2)) + z2

t exp(–t2)) dt – zt dWt ,

yT = ln(sin(WT ) + 3) exp(T2).
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Table 5 The results for Example 2

K N M |y0,0 – y00 | |z0,0 – z00 | tCPU tGPU speedup

1 128 364 7.85E–04 3.52E–03 0.32 1.17 0.27
1 256 512 3.77E–04 1.76E–03 0.88 2.13 0.41
1 512 726 1.85E–04 8.78E–04 2.52 4.04 0.62
1 1024 1024 9.15E–05 4.39E–04 6.98 7.80 0.89

2 128 1218 1.85E–04 8.37E–04 1.52 1.24 1.23
2 256 2048 9.13E–05 4.29E–04 5.13 2.51 2.04
2 512 3446 4.54E–05 2.17E–04 17.47 5.11 3.42
2 1024 5794 2.26E–05 1.09E–04 58.93 10.65 5.53

3 128 4096 1.92E–07 8.34E–07 6.61 1.53 4.31
3 256 8192 2.41E–08 1.06E–07 26.81 2.97 9.03
3 512 16,384 3.02E–09 1.33E–08 108.92 6.62 16.46
3 1024 32,768 3.77E–10 1.67E–09 435.23 18.35 23.71

4 128 4096 1.10E–07 4.86E–07 8.06 1.53 5.28
4 256 8192 1.42E–08 6.28E–08 32.82 3.02 10.87
4 512 16,384 1.80E–09 7.99E–09 133.26 6.47 20.61
4 1024 32,768 2.27E–10 1.01E–09 538.13 19.33 27.84

5 128 4096 1.20E–07 5.40E–07 9.48 1.54 6.14
5 256 8192 1.58E–08 7.04E–08 38.68 2.97 13.05
5 512 16,384 2.02E–09 8.99E–09 156.63 6.67 23.48
5 1024 32,768 2.55E–10 1.14E–09 635.01 19.55 32.48

6 128 4096 1.11E–07 5.08E–07 10.91 1.54 7.07
6 256 8192 1.49E–08 6.71E–08 44.77 3.09 14.48
6 512 16,384 1.93E–09 8.63E–09 182.74 7.15 25.57
6 1024 32,768 2.45E–10 1.09E–09 735.15 20.97 35.05

The analytic solution is

⎧
⎨

⎩

yt = ln(sin(Wt) + 3) exp(t2),

zt = exp(t2) cos(Wt )
sin(Wt )+3 .

The exact solution with T = 1 is (y0, z0) = (ln(3), 1
3 ). The results using 256 threads per block

with K = Ky = Kz , t0 = 0 and T = 1 are presented in Table 5. We conclude the same as in
the previous example, except the fact that the accuracy is decreased. This is due to the
convergence order given in Theorem 3, which reduces to be at most 3, since the driver
function depends on the z process. Furthermore, we get higher speedup compared with
previous example due to the more complicated driver function (i.e. more data are accessed,
more special functional unit is used etc.). The speedup is 35×. We display the plots of
log10(|y0,0 – y0

0|), log10(|z0,0 – z0
0|) and speedup with respect to N for K = 1, . . . , 6 in Fig. 3.

To optimize the application, we have used the following iterative approach:
1. Apply a profiler to the application to gather information
2. Identify application hotspots
3. Determine performance inhibitors
4. Optimize the code
5. Repeat the previous steps until desired performance is achieved

We considered the case with N = 1024 and Ky = Kz = 6. To make the optimization pro-
cess be more clear, we show the detailed information after each optimization iteration as
follows.

• In the first iteration of the optimization process, we gathered the application
information using nvprof (NVIDIA Command-line Profiler). The results are
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Figure 3 Plots of the results for Example 2

Table 6 Results of iterative optimization process for Example 2

Time (%) Time (s) Kernel name

(a) Performance of the main kernels
48.35 8.04 nrm2_kernel
14.94 2.48 sp_inter_non_grid_d_no_for
13.70 2.28 calc_f_and_c_exp_d
6.17 1.03 csrMv_kernel
3.60 0.60 calc_y
3.53 0.89 dot_kernel
1.98 0.33 reduce_1Block_kernel
1.56 0.26 axpby_kernel_val
1.34 0.22 calc_c_exp_d

(b) Performance after first iteration of optimization process
27.88 2.49 sp_inter_non_grid_d_no_for
25.53 2.28 calc_f_and_c_exp_d
11.35 1.01 csrMv_kernel
9.64 0.86 dot_kernel
6.74 0.60 calc_y
5.22 0.47 reduce_1Block_kernel
2.65 0.24 axpby_kernel_val
2.50 0.22 calc_c_exp_d
1.76 0.16 step_3

(c) Performance after second iteration of optimization process
22.23 1.46 calc_f_and_c_exp_d
17.67 1.16 sp_inter_non_grid_d_no_for
15.58 1.02 csrMv_kernel
12.86 0.84 dot_kernel
9.05 0.60 calc_y
7.21 0.47 reduce_1Block_kernel
3.41 0.22 axpby_kernel_val
2.38 0.16 step_3
2.12 0.14 copy_d

presented in Table 6(a). The application hotspot is the nrm2_kernel kernel, which
calculates the second norm in the BiCGSTAB algorithm. This is already optimized.
Therefore, to overcome this bottleneck, we used the dot kernel dot_kernel. The
computation time is reduced from 8.04 s to 0.86 s. The new speedup after the first
iteration becomes 57× in stead of 35×.

• In the second iteration, the next bottleneck for the application is the kernel that
calculates the non-grid values for process y and z (sp_inter_non_grid_d_no_for) after
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each time layer backward. The performance of the kernel is limited by the latency of
arithmetic and memory operations. Therefore, we considered loop interchanging and
loop unrolling techniques. This reduced the computation time of the corresponding
kernel and other kernels related with it, as shown in Table 6(b). By this, we reduced the
computation time for sp_inter_non_grid_d_no_for from 2.48 s to 1.16 s. By default,
we have reduced the computation time from 2.28 s to 1.46 s for calc_f _and_c_exp
(the kernel in the third item of Sect. 4) because we needed to change the way how the
non-grid points are stored and accessed and also reduction for calc_c_exp_d
(calculates the conditional expectation) from 0.22 s to 0.04 s. The new speedup is
69×. It can be observed from Table 6(c) that again the application bottleneck is the
same kernel. Therefore, it is not worth optimizing the application furthermore.

• Finally, we decreased the block dimension from 256 threads to 128 in order to
increase parallelism. The final speedup is 70×.

Example 3 Consider the Black-Scholes FBSDE [14]

⎧
⎪⎪⎨

⎪⎪⎩

dSt = μtSt dt + σtSt dWt , S0 = x,

–dyt = –(rtyt + (μt – rt + δ(t, St)) zt
σt

) dt + zt dWt ,

yT = (ST – K)+.

For constant parameters (i.e. rt = r, μt = μ, σt = σ , δt = δ), the analytic solution for a call
option is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yt = V (t, St) = St exp(–δ(T – t))N(d1) – K exp(–r(T – t))N(d2),

zt = St
∂V
∂S σ = St exp(–δ(T – t))N(d1)σ ,

d1/2 = ln( St
K )+(r± σ2

2 )(T–t)
σ
√

T–t ,

where N(·) is the cumulative standard normal distribution function. In this example, we
consider T = 0.33, K = S0 = 100, r = 0.03, μ = 0.05, δ = 0.04 and σ = 0.2 (taken from [32])
with the solution (y0, z0) .= (4.3671, 10.0950). Note that the terminal condition has a non-
smooth problem for the z process. Therefore, for discrete points near the strike price K
(also called at the money region), the initial value for the z process will cause large er-
rors on the next time layers. To overcome this non-smoothness problem, we considered
smoothing the initial conditions, cf. the approach of Kreiss [15]. For the forward part of
Example 3, we used the analytic solution

St = S0 exp

((

μ –
σ 2

2

)

t + σWt

)

.

In order to ensure a uniform stock price domain, we switch to the log stock price domain
Xt = ln(St). In Table 7 we show the importance of using this transformation.

The results using 256 threads per block with K = Ky = Kz , t0 = 0 and T = 0.33 are pre-
sented in Table 8. As in the previous BSDE examples, the highest accuracy is achieved for
the maximal considered number of steps K and the number of time layers N , namely a
6-step scheme with N = 256, where we also have the highest speedup of 12×. We draw
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Table 7 Preliminary results with N = 256, Ky = Kz = 3 for Example 3

M tnon–optimal
CPU toptimal

CPU speedup

24,826 18,531.23 47.54 389.80

Table 8 The results for Example 3

K N M |y0,0 – y00 | |z0,0 – z00 | tCPU tGPU speedup

1 32 316 2.55E–04 1.11E–03 0.04 0.60 0.07
1 64 446 1.24E–04 5.70E–04 0.12 1.03 0.11
1 128 632 6.21E–05 2.89E–04 0.33 1.79 0.18
1 256 892 3.12E–05 1.45E–04 0.93 3.38 0.28

2 32 990 1.34E–05 3.12E–04 0.18 0.61 0.29
2 64 1664 6.88E–06 1.59E–04 0.64 1.04 0.61
2 128 2798 3.38E–06 8.04E–05 2.16 1.92 1.13
2 256 4704 1.69E–06 4.04E–05 7.34 3.73 1.97

3 32 3104 6.45E–09 3.98E–08 0.70 0.63 1.11
3 64 6208 6.88E–10 5.35E–09 2.93 1.14 2.58
3 128 12,414 9.72E–11 6.85E–10 11.81 2.39 4.93
3 256 24,826 1.15E–11 8.50E–11 47.54 5.79 8.21

4 32 3104 6.86E–09 2.73E–08 0.85 0.64 1.32
4 64 6208 4.78E–10 3.81E–09 3.47 1.15 3.00
4 128 12,414 7.55E–11 4.71E–10 14.26 2.45 5.82
4 256 24,826 6.36E–12 5.93E–11 57.54 6.07 9.48

5 32 3104 2.55E–09 2.85E–08 0.94 0.64 1.48
5 64 6208 4.73E–10 4.05E–09 4.04 1.14 3.56
5 128 12,414 4.40E–11 5.04E–10 16.30 2.39 6.83
5 256 24,826 6.22E–12 6.41E–11 67.33 6.22 10.83

6 32 3104 3.77E–09 2.71E–08 1.06 0.65 1.64
6 64 6208 3.56E–10 3.90E–09 4.50 1.18 3.80
6 128 12,414 3.82E–11 4.89E–10 18.69 2.54 7.35
6 256 24,826 6.16E–12 6.24E–11 77.53 6.47 11.99

Figure 4 Plots of results for Example 3

the plots of log10(|y0,0 – y0
0|), log10(|z0,0 – z0

0|) and speedup with respect to N for K = 1, . . . , 6
in Fig. 4.

Compared to the parallelized multistep scheme [32] in [13], the numerical results are
more accurate, since we can considered K > 3. Moreover, we optimized the kernels cre-
ated for the Black-Scholes BSDE for N = 256 and a high K , namely K = Ky = Kz = 6. The
optimization iteration process is the same as in Example 2. The final speedup is 31×. Note
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that this speedup is for 256 time layers. In Example 2, we optimized for 1024 time layers.
The high accuracy O(10–12) with a high value of K can be achieved for more modest com-
putation time then 6.47 seconds.

Obviously, it is more interesting to achieve the parallelization of higher dimensional
BSDEs on the GPUs.

Example 4 We start with the 2-dimensional BSDE [30]

⎧
⎨

⎩

–dyt = (yt – ztA) dt – zt dWt ,

yT = sin(MWT + T),

where Wt = (W 1
t , W 2

t )�, zt = (z1
t , z2

t ), A = ( 1
2 , 1

2 )� and M = (1, 1).

The analytic solution is

⎧
⎨

⎩

yt = sin(MWt + t),

zt = (cos(MWt + t), cos(MWt + t)).

The exact solution with T = 1 is (y0, (z1
0, z2

0)) = (0, (1, 1)). The results using 256 threads per
block with K = Ky = Kz , t0 = 0 and T = 1 are presented in Table 9. Note that |z0,0 – z0

0| in
2-dimensional case is given by 1

2 (|z1
0,0 – z0,1

0 | + |z2
0,0 – z0,2

0 |). The plots of log10(|y0,0 – y0
0|),

log10(|z0,0 – z0
0|) and speedup with respect to N for K = 1, . . . , 6 are displayed in Fig. 5. We

conclude the same as before in terms of the error reduction, except for the speedup. It is
not clear in 2-dimension the increase in magnitude of the later when growing K , since we
have considered maximal number of time layers N = 64. The highest speedup is ca. 59×,
which requires around 3 GB of memory.

Due to GPU memory limitation (8 GB), we optimized the case where N = 64 and
Ky = Kz = 6. In the 1-dimensional case, we used different kernels for the calculation of
non-grid points, conditional expectations and the values for processes y and z. Here we
merged these kernels due to memory constraint and named it main_body kernel. In the
first iteration, we gathered the application information using nvprof . The results are pre-
sented in Table 10. The application hotspot is main_body kernel. The performance of the

Figure 5 Plots of the results for Example 4
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Table 9 The results for Example 4

K N M |y0,0 – y00 | |z0,0 – z00 | tCPU tGPU speedup Memory

1 8 46 1.32E–02 1.95E–03 0.14 0.01 18.60 0.30
1 16 64 6.46E–03 4.64E–03 0.53 0.01 45.96 0.30
1 32 92 3.18E–03 3.24E–03 2.12 0.04 47.55 0.30
1 64 128 1.57E–03 1.85E–03 8.73 0.17 50.33 0.30

2 8 78 5.90E–04 8.49E–03 0.62 0.01 44.08 0.30
2 16 128 8.31E–04 3.46E–03 3.56 0.07 49.93 0.31
2 32 216 5.84E–04 1.44E–03 21.96 0.42 51.75 0.34
2 64 364 3.39E–04 6.39E–04 131.09 2.57 50.95 0.42

3 8 128 3.94E–04 1.43E–03 2.12 0.04 49.40 0.32
3 16 256 6.75E–05 2.08E–04 21.05 0.41 51.83 0.38
3 32 512 9.72E–06 2.79E–05 187.79 3.61 52.04 0.65
3 64 1024 1.30E–06 3.60E–06 1719.55 30.54 56.30 1.66

4 8 128 1.90E–04 8.09E–04 2.41 0.05 45.19 0.33
4 16 256 3.78E–05 1.24E–04 25.99 0.51 51.18 0.40
4 32 512 5.69E–06 1.67E–05 239.73 4.63 51.80 0.75
4 64 1024 7.76E–07 2.17E–06 2279.06 40.10 56.83 2.09

5 8 128 1.39E–04 7.49E–04 2.39 0.05 45.06 0.35
5 16 256 3.65E–05 1.30E–04 30.16 0.59 51.27 0.43
5 32 512 6.00E–06 1.83E–05 292.10 5.67 51.54 0.86
5 64 1024 8.48E–07 2.42E–06 3049.33 48.75 62.55 2.52

6 8 128 8.13E–05 5.97E–04 2.21 0.04 50.61 0.34
6 16 256 3.07E–05 1.18E–04 32.93 0.64 51.76 0.46
6 32 512 5.49E–06 1.73E–05 341.15 6.46 52.81 0.97
6 64 1024 8.00E–07 2.32E–06 3394.13 57.56 58.96 2.94

Table 10 Performance of the main kernels for Example 4

Time (%) Time (s) Kernel name

83.27 47.83 main_body
13.18 7.57 swap_coeff
3.23 1.86 find_coeff
0.16 0.91 swap_val

kernel is limited by the memory operations, because the access of the bicubic spline coef-
ficients is not optimal. However, we can’t optimize this part, otherwise requesting aligned
and coalesced memory operations shifts the spine coefficients and the threads access the
wrong coefficients. Moreover, we can’t increase the block dimension because there are not
enough resources. Therefore, the final speedup is ca. 59×.

Finally, we consider the zero strike European spread option, which is a 2-dimensional
problem.

Example 5 The zero strike European spread option BSDE reads

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dSt = μSt dt + σSt dWt , S0 = x,

E[dWt] = ρdt ,

–dyt = –(ryt + ztA–1M�) dt + zt dWt ,

yT = (S1
T – S2

T )+.

where St = (S1
t , S2

t )�, μ = (μ1,μ2), σ = (σ1,σ2), Wt = (W 1
t , W 2

t )�, zt = (z1
t , z2

t ), A =
( σ1 0

ρσ2 σ2
√

1–ρ2

)
and M = (μ1 –r,μ2 –r). The analytic solution is given by Margrabe’s formula
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Table 11 The results for Example 5

K N M |y0,0 – y00 | |z0,0 – z00 | tCPU tGPU speedup Memory

1 8 46 2.71E–03 1.21E–02 0.15 0.00 31.96 0.33
1 16 64 1.16E–03 6.22E–03 0.61 0.01 49.03 0.34
1 32 92 5.62E–04 3.18E–03 2.49 0.04 56.82 0.35
1 64 128 2.67E–04 1.61E–03 10.29 0.17 58.93 0.34

2 8 78 9.09E–05 2.31E–03 0.65 0.01 44.33 0.35
2 16 128 5.06E–05 1.34E–03 4.08 0.07 57.72 0.35
2 32 216 1.75E–05 7.22E–04 26.64 0.42 63.82 0.38
2 64 364 8.00E–06 3.73E–04 153.21 2.51 60.96 0.46

3 8 128 6.79E–06 4.23E–06 2.19 0.04 58.92 0.36
3 16 256 3.73E–08 2.67E–07 22.90 0.38 61.02 0.42
3 32 512 7.56E–08 6.22E–08 214.17 3.41 62.74 0.69
3 64 1024 1.69E–08 9.01E–09 1911.74 29.26 65.34 1.70

4 8 128 1.07E–07 2.40E–06 2.29 0.04 57.21 0.36
4 16 256 5.16E–07 1.22E–07 28.10 0.46 61.37 0.45
4 32 512 4.19E–08 5.90E–08 275.75 4.37 63.16 0.79
4 64 1024 1.11E–08 6.46E–09 2509.67 38.55 65.10 2.13

5 8 128 6.50E–06 1.06E–06 2.17 0.04 57.84 0.37
5 16 256 1.53E–04 1.07E–07 32.14 0.53 60.92 0.47
5 32 512 2.84E–08 6.07E–08 333.62 5.31 62.78 0.90
5 64 1024 1.04E–08 5.54E–09 3083.75 47.94 64.32 2.56

6 8 128 6.70E–05 9.72E–07 1.77 0.03 57.63 0.38
6 16 256 4.27E–07 7.13E–08 35.05 0.58 60.59 0.50
6 32 512 7.56E–07 7.14E–08 387.05 6.19 62.56 1.01
6 64 1024 1.02E–08 4.73E–09 3666.74 57.06 64.26 2.99

[18]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yt = V (t, St) = S1
t N(d1) – S2

t N(d2),

zt = A�∇VSt ,

d1/2 =
ln(

S1
t

S2
t

)± σ̃2
2 (T–t)

σ̃
√

T–t ,

where σ̃ =
√

σ 2
1 + σ 2

2 – 2σ1σ2ρ and ∇VSt = ( ∂V
∂S1

t
S1

t , ∂V
∂S2

t
S2

t )�. In this example, we consider
T = 0.1, S1

0 = S2
0 = 100, r = 0.05, μ1 = μ2 = 0.1, σ1 = 0.25, σ2 = 0.3 and ρ = 0.0 with the so-

lution (y0, (z1
0, z2

0)) .= (15.48076, (14.3510, –12.6779)). The results are presented in Table 11
for the same parameters as in Example 4. The highest speedup is ca. 64×, which requires
again a large memory of ca. 3 GB. The plots of log10(|y0,0 –y0

0|), log10(|z0,0 –z0
0|) and speedup

with respect to N for K = 1, . . . , 6 in Fig. 6.

Note that the speedup is higher than in Example 4 since we have additionally the for-
ward SDE and more work is conducted from the GPU threads. But we could not optimize
further as the main constraint is the GPU memory. In Table 12 we present the perfor-
mance of the main kernels. Our results show that the multistep scheme [27] with GPU
computing performs very well also for the 2-dimensional case. Increasing the dimension
becomes difficult when considering a single GPU due to memory constraint. However,
this approach can be applied to a cluster of GPUs, where the possibility to achieve even
higher speedups is enormous. This highlights the fact that the implementation of clus-
ter GPU computing in the multistep scheme [27] offers very high accurate results in low
computation time even for high dimensional problems.
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Figure 6 Plots of the results for Example 5

Table 12 Performance of the main kernels for Example 5

Time (%) Time (s) Kernel name

84.77 51.58 main_body
11.91 7.24 swap_coeff
3.00 1.83 find_coeff
0.14 0.88 swap_val

6 Conclusions
In this work we parallelized the multistep method developed in [27] for solving BSDEs on
GPU. Firstly, we analyzed the algorithm and presented approaches for reduction of com-
putation time. The most important reduction effort was the optimal operation to find the
location of the interpolated values. It was essential for the reduction of the computational
time. For a further acceleration, we have investigated how to optimize the application after
finding the performance bottlenecks and applying optimization techniques. Our numeri-
cal results have shown that the multistep scheme is well suited on massively parallel GPU
computing and very efficient for real-time applications such as option pricing and their
risk management. Our parallelization strategy should work for other multistep schemes
as well, and make those schemes be more useful in practice. Using sparse grids and cluster
GPU computing to solve higher dimensional problems is the task for our ongoing work.

Appendix: Detailed derivation of reference equations
We derive the reference equations for y and z in Sect. 2.2. To receive the reference equation
for y, we need to obtain the adaptability. Therefore, we take the conditional expectation
Ex

tn [·] in (6) and obtain

ytn = Ex
tn [ytn+k ] +

∫ tn+k

tn

Ex
tn

[
f (s, ys, zs)

]
ds, (11)

where martingale property of Itô integral is used. To approximate the integral in (11), Teng
et al. [27] used the cubic spline polynomial to approximate the integrand. Based on the
support points (tn+j, Ex

tn [f (tn+j, ytn+j , ztn+j )]), j = 0, . . . , Ky, we have

∫ tn+k

tn

Ex
tn

[
f (s, ys, zs)

]
ds =

∫ tn+k

tn

S̃tn ,x
Ky (s) ds + Rn

y ,
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where the cubic spline interpolant is given as

S̃tn ,x
Ky (s) =

Ky–1
∑

j=0

s̃tn ,x,j
Ky (s),

where

s̃tn ,x,j
Ky (s) = ay

j + by
j (s – tn+j) + cy

j (s – tn+j)2 + dy
j (s – tn+j)3

with

s ∈ [tn+j, tn+j+1], j = 0, . . . , Ky – 1.

Obviously, the residual reads

Rn
y =

∫ tn+k

tn

(
Ex

tn

[
f (s, ys, zs)

]
– S̃tn ,x

Ky (s)
)

ds.

We calculate

∫ tn+k

tn

S̃tn ,x
Ky (s) ds =

∫ tn+k

tn

Ky–1
∑

j=0

s̃tn ,x,j
Ky (s) ds

=
Ky–1
∑

j=0

∫ tn+k

tn

s̃tn ,x,j
Ky (s) ds

=
Ky–1
∑

j=0

∫ tn+j+1

tn+j

s̃tn ,x,j
Ky (s) ds.

and obtain the reference equation for y as given in Sect. 2.2

ytn = Ex
tn [ytn+k ] +

Ky–1
∑

j=0

[

ay
j �t +

by
j �t2

2
+

cy
j �t3

3
+

dy
j �t4

4

]

+ Rn
y .

To receive the reference equation for the z process, we use l instead of k in (11), multiply
both sides by �Wtn+l , take the conditional expectation Ex

tn [·] to obtain

0 = Ex
tn [ytn+l�Wtn+l ] +

∫ tn+l

tn

Ex
tn

[
f (s, ys, zs)�Ws

]
ds –

∫ tn+l

tn

Ex
tn [zs] ds,

where Itô isometry is used. Again, with the cubic spline interpolation and the relation

Ex
tn [ytn+l�Wtn+l ] =

1√
2π l�t

∫ ∞

–∞
u(tn+l, x + v) exp

(

–
v2

2l�t

)

dv,

=
l�t√
2π l�t

∫ ∞

–∞
∂u
∂x

(tn+l, x + v) exp

(

–
v2

2l�t

)

dv,

= l�tEx
tn [ztn+l ],
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we obtain the reference equation for z process

0 = l�tEx
tn [ztn+l ] +

Kz–1∑

j=0

[

az1
j �t +

bz1
j �t2

2
+

cz1
j �t3

3
+

dz1
j �t4

4

]

–
Kz–1∑

j=0

[

az2
j �t +

bz2
j �t2

2
+

cz2
j �t3

3
+

dz2
j �t4

4

]

+ Rn
z .
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