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Abstract
The integration of machine learning (Keplerian paradigm) and more general artificial
intelligence technologies with physical modeling based on first principles
(Newtonian paradigm) will impact scientific computing in engineering in
fundamental ways. Such hybrid models combine first principle-based models with
data-based models into a joint architecture. This paper will give some background,
explain trends and showcase recent achievements from an applied mathematics and
industrial perspective. Examples include characterization of superconducting
accelerator magnets by blending data with physics, data-driven magnetostatic field
simulation without an explicit model of the constitutive law, and Bayesian free-shape
optimization of a trace pair with bend on a printed circuit board.

1 Introduction: what is hybrid modeling?
If we take a look at Gartner’s 2018 Hype Cycle of Emerging Technologies [43], Deep Learn-
ing has been at the top of inflated expectations and should now be moving towards the
plateau of productivity. Indeed, machine learning and more general artificial intelligence
technologies recently have spurred a lot of interest in the applied mathematics and indus-
trial communities, see for instance [5, 10, 45], and [21] for an introduction.

The idea of combining physics with data has a long history. Following [10, p. 57], we
call modeling based on first principles the Newtonian paradigm. Newton’s laws of motion
provided (within their range of validity) “for the first time a unified quantitative expla-
nation for a wide range of observations” [44]. Conversely, Johannes Kepler1 started from
astronomer Tycho Brahe’s and own measurement data, and worked towards a mathemat-
ical description to fit the measured data. Following again [10], we call this approach the
Keplerian paradigm. Both paradigms complement each other. For a simple enough model
system, Kepler’s laws can be derived from Newton’s theory. Conversely, starting from a
two-body model system, actual trajectories of celestial bodies can be modeled by New-
ton’s laws plus data-driven terms that correct for perturbations due to effects that are not
present in the model.

1Johannes Kepler was born exactly 450 years ago when this paper was written, namely on 27.12.1571 in Weil der Stadt.
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In modern terms, we call this complementary approach hybrid modeling.

Definition Hybrid models combine first principle-based models with data-based models
into a joint architecture, supporting enhanced model qualities, such as robustness and
explainability.

First principles express formalized domain knowledge. For the purpose of this paper the
domain knowledge results from physics. But there are other possibilities, such as statistics
(e.g., probabilistic graphical models [3, Ch. 8]) or discourse (e.g., ontologies [16]). Data
may be obtained from any source, in particular from observation or simulation. We find
also the somewhat narrower terms scientific machine learning [29], physics-based machine
learning [39] and predictive data science [45], respectively.

Consider a high-dimensional manifold that contains some big data. It might be that
a submanifold can be identified, which is dictated to us by the laws of physics, e.g. re-
garding admissible system dynamics. Learning algorithms can then be used to project the
data into this submanifold. In other words, the structure of submanifold embeds physi-
cal constraints. A classical example is Kálmán filtering [23]. Kálmán filtering was actually
an enabling technology for the moon landing in 1969, where the goal was landing within
≈500 m after ≈400,000 km of travel. More preference is given to physics or data, depend-
ing on the level of uncertainty. Kálmán filtering can be recognized as recursive Bayesian
estimation. A more sophisticated example is presented in Sect. 2. Ensemble Kálmán fil-
tering is used in weather forecasting centers worldwide [37]. They have to deal with about
106 incoming data points per hour, and mathematical models with about 109 states. This
use case is similar to digital twinning, since data from the field is acquired and used to
update the models. Citing [45, p. 39]: “Learning from data through the lens of models is a
way to exploit structure in an otherwise intractable problem.”

Looking closer into engineering, we notice that a large class of physics models can be
decomposed into conservation laws and constitutive laws [40, Ch. 1.3], [41]. The conser-
vation laws are of topological nature and can therefore be discretized easily, leaving little
room for data-driven techniques. The situation is different for the constitutive relations,
which are of metric nature, and encode phenomenological material properties. Except for
simple media (local, linear) there are many potential complications (non-local, hysteretic,
non-linear, multi-scale, multi-physics, etc.). Here, data-driven models can be useful, pro-
vided that the models fulfil certain admissibility criteria, which can often be expressed in
terms of invariance with respect to symmetry groups (orthogonal group, Lorentz group,
etc.). This is demonstrated in Sect. 3.

In physics-based modeling, one often aims at sparse models, by exploiting the principle
of locality [18],2 or at least at low-rank representations. Some popular hybrid approaches
model physics by partial differential equations plus boundary conditions, represent the
solution space by a deep neural network, and learn the solution in a data-driven fashion
(Deep Ritz [11], Physics-Informed Neural Networks, PINNs [32]). In general, the notion
of sparsity is then lost, though. Recently, Sparse, Physics-based, and partially Interpretable

2Citing [18]: The German term “Nahwirkungsprinzip” is more impressive than the somewhat colourless word “locality”.
Certainly the idea behind these words, proposed by Faraday around 1830, initiated the most significant conceptual advance
in physics after Newton’s Principia.
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Neural Networks (SPINNs) were proposed, where sparsity is recovered by exploiting con-
cepts from traditional mesh-free numerical methods [33].

To sum up, hybrid modeling has the potential to improve the Pareto tradeoff between
simulation accuracy and simulation cost significantly, and therefore bring scientific com-
puting in engineering to the next level. In the remainder of the paper we will showcase
this by some recent achievements.

2 Blending data with physics [30]
This section deals with the characterization of normal and superconducting magnets of
CERN’s accelerator complex. Due to the complex interplay of iron saturation, eddy cur-
rents and magnetic hysteresis, numerical field simulation alone fails to achieve the re-
quired accuracy for particle tracking applications. However, after a well-defined excita-
tion current cycling, the physical state of the magnet is reproducible. The magnets are
therefore precycled and the static magnetic field is characterized by measurements. It is
beneficial to model the magnetostatic field by the Boundary Element Method (BEM). In
this way, the reconstructed field is locally an exact magnetostatic solution, no domain dis-
cretization inside the air gap is required and high convergence rates are achieved for field
evaluations [30].

In the sequel, the field is represented by a double layer potential. The dipole layer is
located on the boundary of the domain of interest, which follows the particle trajectory,
such as the curved domain illustrated in Fig. 1. Following an isogeometric approach, the
domain itself is described by NURBS (Non-Rational Uniform B-Splines) surfaces and the
double layer density is discretized by higher oder basis splines [8]. This gives rise to a state
vector ν ∈ R

N , with N degrees of freedom. The measurement data y ∈ R
M relates to the

state vector ν , by means of the observation operator H ∈ R
M×N : ν → y.

Spatial field sampling is achieved by using alignment machines and magnetic field sen-
sors, such as Hall probes or induction coils, which are supported on stages or beams with
finite stiffness. To achieve a reasonable total measurement duration the data is almost al-
ways acquired on the fly. This means that the machine is performing moves along lines and
a measurement is triggered whenever a certain distance is passed. As field gradients are
large in the fringe field region of a magnet, most of the measurement uncertainty is due to
positioning errors and vibrations. Such errors are perturbing the observation operator H.
To quantify the impacts, the perturbations d ∈ R

6M may be introduced, encoding the de-

Figure 1 Magnetic field described by boundary elements on a curved geometry following the particle
trajectory. Right: Sampled data obtained from Hall probe measurements. Middle: Boundary mesh described
on a NURBS geometry. Left: Resulting double layer potential and B-field evaluation in the center of the domain
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grees of freedom of a rigid body motion of the sensor, six for each of the M measurements.
As perturbations are small deviations from zero, the linearization y = H(ν)+∂dH(ν)d is jus-
tified. The operator ∂dH encodes the derivatives of H with respect to d. A hybrid model is
established, by estimating the state vectors ν and d from measurement data. Considering
both ν and d as unknown random variables, Bayesian inference provides the framework to
utilize all the available knowledge. To this end, Bayes rule is applied to the joint probability
density function p(ν, d|y) ∝ p(y|ν, d)p(ν)p(d).

The distributions p(ν) and p(d) are called prior distributions as they encode knowledge
about ν and d, which has been available before the data y was collected. Due to the de-
pendency of y on ν and d the explicit computation of the statistical moments of p(ν, d|y)
is infeasible. However, under normal distribution assumptions, the conditionals p(ν|d, y)
and p(d|ν, y) take on the least squares forms,

p(ν|d, y)

p(d|ν, y)

⎫
⎬

⎭
∼ exp

(

–
1
2
∥
∥Ai(ν, d) – bi

∥
∥2

)

, i ∈ {ν, d}, (1)

Aν ∈ R
(M+N)×(M+N), bν ∈ R

M+N , Ad ∈ R
(M+6M)×(M+6M), bd ∈ R

M+6M . With the conditionals
at hand, samples from the joint distribution p(ν, d|y) can be computed by Gibbs sampling
[35], according to Algorithm 1. As the mechanical degrees of freedom can be considered as
uncorrelated between the moves, samples are drawn move-by-move in a blockwise fash-
ion. In Fig. 2 the sampled mean as well as the maximum and minimum values for the verti-
cal sensor position over a single move are drawn. For verification, an optical measurement
was taken. Differences are within measurement precision.

In case of a linear observation operator H, sampling νk from the high dimensional
p(ν|d, y) is efficient, when implemented as the solution of the stochastic linear equation
system [31]

(
H̃T

k R–1H̃k + Lν

)
νk = H̃T

k R–1y + Lνν0 +
(

H̃T
k R–1/2, L1/2

ν

)
ε,

ε ∼N (0, IM+N ), (2)

where a Gaussian prior p(ν) ∼ N (ν0, L–1
ν ) was selected. The vector ν0 ∈ R

N is the prior
expected value of the BEM state vector and Lν ∈ R

N×N is the prior precision matrix. The
matrix R ∈ R

M×M is a sparse, symmetric and positive definite covariance matrix of the
sensor noise and H̃k ∈ R

M×N is the perturbed observation matrix, which is constructed

Algorithm 1 Sampling from the posterior p(ν, d|y)
d0 = 0 � initialize mechanical state vector
ν0 ∼ p(ν|d0, y) � sample BEM state vector, see (2)
for k = 1, . . . , number of samples K do

for j = 1, . . . , number of moves J do
dk,j ∼ p(dj|νk–1, yj) � sample mechanical state vector for move j

end for
dk = (dT

k,1, . . . , dT
1,J )T � collect mechanical state vectors

νk ∼ p(ν|dk , y) � sample BEM state vector, see (2)
end for
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Figure 2 Recovered vertical sensor position w(t) determined by sampling from the posterior, for a single
move. Solid red line: sampled mean. Dashed grey lines: maximum and minimum values, respectively. Dashed
blue line: measured sensor position, by using a laser tracker with an effective precision of ∼10 μm as ground
truth for verification. Typical parameter values: K ∼ N ∼ 103, M∼ 105, J ∼ 50 . . .103

by changing the sensor position and orientation in H according to the mechanical state
vector dk , by leveraging the linearization of the observation operator in d.

Equation (2) follows from the conditional p(ν|d, y) and the linearity of the expected
value function [2, 1.17]. The structure of H̃k depends on the underlying field representa-
tion. Boundary element formulations give rise to dense discrete operators. Fast multipole
methods can be applied to compress the products H̃T

k y and H̃kx if required. A solution to
(2) can then be obtained by conjugate gradient iterations.

The matrix H̃T
k R–1H̃k + Lν corresponds to the inverse of the posterior covariance matrix.

It therefore needs to be symmetric and positive definite. This can generally be achieved
with the selection of a symmetric and positive definite prior precision matrix Lν , (see e.g.
[2, 5.1.1]). In the results presented in Fig. 2, dense operators were used and the solution of
(2) was computed by using the Cholesky solver of the Eigen C++ library [17].

3 Data-driven field simulation [7, 13, 14]
This section is about data-driven field simulation for magnetostatic problems. Here, data-
driven simulation is meant in the context of simulations directly on the material data and
was first introduced in [26]. Consider Maxwell’s equations for magnetostatics,

curl H = j, div B = 0 in �, (3)

where H denotes the magnetic field strength, j the imposed source current density, B the
magnetic flux density, and � the considered domain. The problem formulation (3) is com-
pleted with appropriate boundary conditions.

The phase space of the system is denoted by Z := {z(x) := (B(x), H(x))}, x ∈ �. The set
of all states that fulfill (3) and the boundary conditions is denoted by M ⊂ Z , the set
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of Maxwell-conforming fields.3 Yet, to uniquely solve equations (3), a relation between B
and H is necessary. Following the conventional approach, first a material law is assumed.
Secondly, various fitting techniques are employed to compute the coefficients of the con-
sidered material law such that it fits best to the available measurement data. However, this
approach suffers from approximation errors and additionally introduces epistemic uncer-
tainties, i.e. the uncertainty is in the actual choice of the material model. Note that in
contrast Maxwell’s equations are derived from first principles and accepted to be known
exactly.

The hybrid solver acts directly on material data and circumvents the demand for a
fixed material model. The measurement data is collected in a set D∗ := {z∗

i := (B∗
i , H∗

i ), i =
1, . . . , N}, where N is the number of measurement points. This gives rise to a set of dis-
crete material states D := {z ∈ Z|z(x) ∈ D∗∀x ∈ �}. “The material response is not known
exactly and, instead, it is imperfectly characterized” [26, p. 95] by the set D.

The solution is given by the states M ∩ D that fulfill Maxwell’s equations, while being
compatible with the material states. However, for a finite number of data points, this set
is very likely to be empty, M ∩D = ∅. Therefore, we define the solution S by the relaxed
condition

S := argmin
{

d(z,D), z ∈M
}

, (4)

where the distance function

d(z ∈M,D) := min
z∗∈D

{
1
2
∥
∥B – B∗∥∥2

ν̃
+

1
2
∥
∥H – H∗∥∥2

μ̃

}

(5)

is defined in terms of the auxiliary norms ‖ · ‖ν̃,μ̃, which are defined as

∥
∥B – B∗∥∥2

ν̃
=

∫

�

(
B – B∗) · ν̃(

B – B∗)d�,

∥
∥H – H∗∥∥2

μ̃
=

∫

�

(
H – H∗) · μ̃(

H – H∗)d�,

⎫
⎪⎪⎬

⎪⎪⎭

(6)

where ν̃ , μ̃ are diagonal tensors carrying the so-called weighting factors ν̃, μ̃. Note that
ν̃, μ̃ are of computational nature and do not represent physical material properties. Yet,
their choice affects the convergence rate of the numerical scheme [13]. The optimization
problem (4) is essentially a double minimization problem, where we accept a solution z
that conforms to Maxwell’s equations, while at the same time being closest to available
measurement data. The solution of (4) is organized as a fixed point iteration, see Fig. 3
right. Let d̃(z1, z2) denote the distance function between the two states z1 and z2 defined
over the auxiliary norms (6). For any given state z ∈ Z a modified finite element solver
is used to compute the state z� ∈ M such that d̃(z, z�) = min. The solver is based on a
variational principle discussed in [34]. The idea is to solve Ampère’s and Faraday’s laws
exactly and shift the discretization error entirely into the constitutive relation.4 Given
z� ∈ M, a discrete optimization selects the closest measurement data points, see Fig. 3

3We do not delve into regularity considerations or functional analytical frameworks here.
4This formulation was proposed on the Compumag Conference 1983 in Genoa. The related variational principle was called
“Ligurian”, in honor of the Genoa region, and in similarity to “Lagrangian” [42, p. 49].
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Figure 3 Iterative hybrid solver. Left: Measured B(H)-characteristic. Active measurement data (red crosses) are
closest to given field points (blue circles). Right: The outer fixed point iteration combines solutions of a
variational principle by a modified finite element solver (blue circles) with discrete optimizations that select
states associated with active measurement data (red crosses)

Figure 4 Data-driven field simulation. Left: Relative error to reference solution for global and local weighting
factors, respectively, in dependence of the number of data points. Right: Field solution |Bx|, |Hx| of
conventional approach (extended Brauer) and data-driven solution at the quadrature points of the finite
element model

left. These so-called active measurement data are associated with a state z× ∈D such that
d̃(z×, z�) = min. State z = z× is the starting point for the next iteration. Under convexity as-
sumptions this algorithm converges to the solution of (4). Furthermore, it has been shown
in [4] that for linear elasticity, the conventional solution is recovered with measurement
data sets of increasing size.

The hybrid solver was applied to the model of a two-dimensional quadrupole magnet in
[7] and [13]. The first work [7] extended the hybrid solver to cope with problems that fea-
ture domains where only measurement data is at hand and domains where the material law
is known, e.g. in the case of vacuum. Such known material laws can be naturally included
into the data-driven iterations. To analyze the performance of the hybrid solver, a strongly
nonlinear soft-magnetic material was considered in the iron part of the quadrupole mag-
net. As a baseline, a standard magnetostatic finite element solution was considered, by
discretizing 1/8 of the geometry with 6k piecewise linear elements. For the novel method,
data was created by an equidistant sampling of the given non-linear B(H) characteristic,
without adding noise. Global weighting factors ν̃, μ̃ were employed throughout. The re-
sults show that the relative error to the reference solution, the so-called energy-mismatch,
decreases as more measurement data is employed, see the dashed line in Fig. 4. However,
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depending on N = 102 . . . 104 the proposed method required 50 . . . 1300 outer iterations for
convergence. In [13] local weighting factors ν̃(x), μ̃(x) have been introduced and defined
as to be the local tangent on the current operation point z×. Particularly in the case of
unbalanced and/or data-starved sets D, local weighting factors yield significant improve-
ment in accuracy, see the solid line in Fig. 4. Moreover, approximately 55 iterations are
needed irrespective of the cardinality of D.

A computationally demanding 3D inductor model was considered in [14], where real-
world measurement data [1] was employed for the iron part. For comparison, an extended
Brauer model [22] was constructed on the measurement data and utilized in a standard
Newton solver. Figure 4, right shows the absolute value of the x-component of the mag-
netic fields for the data-driven solution as well as the solution computed with the extended
Brauer model. Furthermore, the available measurement data is depicted in red. The solu-
tion of the hybrid solver clusters around the measurement data, which is expected due to
the sparse data set. Here, the data-driven solution is next to the available measurement
data in all regimes of the BH-curve. That does not hold for the extended Brauer model
which provides a good approximation in the linear part, but fails to properly model the
Rayleigh part as well as the saturation part of the BH-curve. Both approaches lead to an
acceptable solution, yet the employed material is well understood and significant effort
has already been spent in the material model. If a more complex material is utilized, the
hybrid solver should outperform the conventional approach.

In summary it can be said that so far hybrid solvers fail to be as computationally efficient
as standard methods, albeit lots of effort is spent to improve the performance [24, 27]. Yet,
hybrid solvers are advantageous if complex or novel materials are considered, since the
effort for matching a material model to the measurement data is abolished. Furthermore,
by circumventing the demand for a fixed material model, no epistemic uncertainties arise.

4 Bayesian free-shape optimization [36]
Bayesian optimization (BO) is an optimization method to optimize a given function which
is expensive to evaluate [12]. It is built upon a hybrid architecture that blends intricate
physical models with a Bayesian machine learning technique, such as Gaussian Process
(GP) regression. The resulting surrogate models are cheap to evaluate, including deriva-
tives, and keep track of their interpolation uncertainty. The core idea of BO is to succes-
sively refine those surrogates in regions of design space that are close to optimal, which
are however not known beforehand. Regions with high surrogate uncertainty might be
optimal even though the mean interpolation says otherwise. Thus, surrogate refinement
requires balancing exploration against exploitation during sampling, the so-called bandit
problem.5 There are different strategies for achieving a good balance. One strategy con-
siders the best value achieved so far and computes the Expected Improvement (EI). The
next sample is taken at the point with the largest EI; this yields yet another optimization
problem. The BO algorithm stops if the EI drops below some threshold. The BO approach
can be generalized in various ways, such as BO with noise, BO in several dimensions, and
BO for several objectives.

5In this model problem, an array of slot machines is considered. The gambler must balance the goal to find the slot machine
with the highest gain (exploitation) with the goal to achieve good results on every play (exploration).



Kurz et al. Journal of Mathematics in Industry            (2022) 12:8 Page 9 of 12

Figure 5 Schematic for system simulation: extracted equivalent electrical circuit (EEC) of the trace pair,
surrounded by mode converters

Figure 6 Trace pair with bend. Left: The outer trace is fixed, the inner trace has a free interior surface. Right:
Shape gradient vectors at the free surface for the two objectives (i) and (ii)

As an industrial example we consider BO of a differential trace pair on a printed circuit
board. Differential signalling benefits from high immunity against electromagnetic inter-
ference and low crosstalk. However, bend discontinuities in transmission lines introduce
(i) reflection and (ii) differential-to-common-mode conversion. An optimal design hence
requires multi-objective optimization of the geometry. A parametric case was studied in
[15], while we aim at free-shape optimization. Figure 5 shows a schematic for system sim-
ulation. The trace pair with ports 1,1’ and 2,2’, respectively, is described by an equivalent
electrical circuit (EEC). Mode converters admit a separation of differential mode (D) and
common mode (C) signal components. The optimization objectives can be stated in terms
of S-parameters:6

(i) reflection |SDD11| != min; (ii) mixed mode conversion |SCD21| != min.

The geometric setting is depicted in Fig. 6 left. The outer trace is fixed, while the in-
ner trace has a free interior surface. The geometry is described by a finite element mesh,
and the free surface can be re-shaped by mesh morphing. This corresponds to a high-
dimensional design space with ≈200 dimensions. This should be put in contrast to the
six-dimensional design space that was considered in [15]. The optimization problem is:
Find the Pareto front for the shape of the free surface that minimizes the objectives.

The ingredients for solving the optimization problem are: finite element electromag-
netic field solver, EEC extraction, and adjoint sensitivity analysis. Figure 6 right shows the
shape gradient vectors at the free surface for the two objectives (i) and (ii). The two gra-
dient vector fields point in opposite directions, so the objectives are conflicting. However,
the gradient fields are not exactly negatives of each other, so there is still subtle room for
improvement.

The BO is extended to the multi-objective case as follows. The Pareto front is ap-
proached via a sequence of auxiliary optimization problems, each with respect to a certain

6For simplicity evaluated at a fixed frequency of f = 500 MHz.
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Figure 7 Converged Pareto front for the trace pair with bend (green dots). The algorithm was started with a
parametrically optimized design (black dot). An optimized design from the Pareto front was selected as an
example (red dot)

Table 1 Three examples of hybrid modeling

Sect. Physics Data Approach

2 3D magnetostatics:
BEM discretization

Fields measured by Hall
probe or moving coil

Synthesis of physics and
data by Bayesian update

3 2D/3D magnetostatics:
Ampère’s & Gauss’s law

Measured material data
points (B∗

i ,H
∗
i )

Projection of data into
admissible physics
manifold

4 Electromagnetic
Darwin model

Data sampling from
physics model

Bayesian Optimization:
GP machine learning

2D affine subspace of the high-dimensional design space. This particular affine subspace
is spanned by the adjoint-based gradients; it is the subspace of maximum objective vari-
ance. For each optimization problem of the sequence, BO learns and optimizes GP surro-
gate models for the objective functions, restricted to this subspace. Once the intermediate
Pareto front is converged in this subspace, new subspaces may be chosen on the interme-
diate Pareto front. Figure 7 shows the result of this algorithm, after only ≈100 design
evaluations. Note that even subtle improvement potentials will be exploited by the hybrid
free-shape optimizer.

5 Summary and outlook
We highlighted three examples of hybrid modeling, cf. Table 1. Further examples stem
from other applied mathematics and industrial domains, and involve artificial neural net-
works, such as Physics Informed Neural Networks (PINNs) [25], Deep Learning (DL) with
embedded physics simulation [6], or Field Inversion and Machine Learning (FIML) [9].
They will soon find their way into scientific computing in electrical engineering, too.
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