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Abstract
This work is devoted to the efficient simulation of large multi-physical networks
stemming from automated modelling processes in system simulation software. The
simulation of hybrid, battery and fuel cell electric vehicle applications requires the
coupling of electrical, mechanical, fluid, and thermal networks. Each network is
established by combining the connection structure of a graph with physical
equations of elementary components and resulting in a DAE (differential algebraic
equation). To speed up the simulation a non-iterative multirate time integration
co-simulation method for the system of coupled DAEs is established. The power of
the multirate method is shown via two representative examples of battery powered
electric vehicle with a cooling system for the battery pack and a three phase inverter
with a cooling system. This work is an extended version of (Kolmbauer et al. in
Scientific Computing in Electrical Engineering (SCEE 2020), Springer, Cham,
pp. 231–240, 2021).
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State-of-the-art modelling and simulation packages such as AVL CRUISE™M,1 Dymola,2

or Amesim3 offer many concepts for the automatic generation of dynamic system mod-
els. Modelling is done in a modularized way, based on a network of subsystems which
again consists of simple standardized subcomponents. In this work network modelling
approaches are presented for electric, fluid and thermal solid networks, which are already
known in literature, cf. [2–4]. These approaches can be extended to gas, mechanical and
control systems to model multi-physical systems. For instance, in case of HEVs (hybrid
electric vehicles), BEVs (battery electric vehicles), cf. [2], and FCEVs (fuel cell electric ve-
hicles) these can be the vehicle chassis, the drive line, the air path of the ICE (internal
combustion engine) including combustion and exhaust aftertreatment, the cooling and

1https://www.avl.com/de/cruise-m
2http://www.dynasim.com
3http://www.plm.automation.siemens.com
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lubrication system of the ICE and battery packs, the electrical propulsion system includ-
ing the engine and a battery pack, the air conditioning and passenger cabin models, cf. [5],
waste heat recovery and finally according control systems. Due to the complex interaction
of the subsystems, the challenges in the development of future power trains do not only lie
in the design of individual components but in the assessment of the power train as a whole.
On a system engineering level, it is required to optimize individual components globally
and to balance the interaction of different subsystems. Due to the increasing complexity of
the models, the systems exhibit largely varying time scales and are difficult in the numer-
ical simulation. A mainly automatized multirate approach is a promising way to decrease
the computational effort. One possible implementation for this is the time integration via
a co-simulation approach, cf. [6–8].

The structure of the work is the following: In Sect. 1 the individual physical networks
are introduced, and the coupling conditions are stated in order to obtain a fully coupled
system of network DAEs. The multirate time integration technique for the coupled sys-
tem of network DAEs is described in Sect. 2 and the corresponding numerical results are
presented in Sect. 3 and Sect. 4. Finally we conclude in Sect. 5.

1 Problem formulation
In the following, a network is discussed that consists of several multi-physical ele-
ments. The network elements describing the electric contribution are provided by cur-
rent sources, voltage sources, nodes, ground, resistors, capacitors, and inductors. The
fluid network consists of pipes, pumps, demands, junctions, and reservoirs. The electro-
thermal coupling is established by lumped mass elements representing the pipe wall and
the masses from the battery and heat transfer connections. The individual components
are assembled to a network N , which is represented by a linear directed graph. The graph
structure is described by an incidence matrix A, which can be used for the model de-
scriptions, cf. [9]. In the following we state the DAEs for the three main involved physical
networks.

Electrical network The electrical network NE = {R, C, L, V , I, N , G, B} is composed of re-
sistors R, capacitors C, inductors L, voltage sources V , current sources I , nodes N , grounds
G and batteries B. The DAE for the network in NE in input-output form is given by: For
predefined continuous inputs u = (uT

R , uT
C , uT

B )T find the potentials e = (eT
N , eT

G)T , the cur-
rents j = (jT

R , jT
C , jT

L , jT
V , jT

B )T and the outputs y = yR, such that

ARjR + ACjC + ALjL + AV jV + ABjB + AI j̄I = 0,

r(uR)jR – AT
R e = 0,

jC –
d(c(uC)AT

Ce)
dt

= 0,

l
djL
dt

– AT
L e = 0,

AT
V e = v̄V ,

AT
B e = v̄B(jB, uB),

yR =
∣
∣jR ◦ AT

R e
∣
∣

(1)
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for given boundary conditions eG = 0 and predefined resistance r, capacitance c and induc-
tance l as well as prescribed currents j̄I and prescribed voltages v̄V and v̄B. The coupling
variables are expressed as temperature of the resistor uR, the capacitor uC and the battery
uB as well as the energy flux of the resistor yR, where ◦ denotes the Hadamard product,
i.e. the elementwise vector product, and | · | the elementwise absolute value.

Solid network We consider a solid network NS = {SW , LW , HT , HS, TB} that includes
solid walls SW , lumped walls LW , heat transfers HT , heat sources HS and temperature
boundaries TB. The DAE for the network NS in input-output form is specified by: For pre-
defined continuous inputs (uT

HsS
, uT

TbS
)T , find the temperatures (TT

Sw, TT
Lw)T , the heat fluxes

HHtS and the outputs (yT
Sw, yT

Lw, yT
HtS

)T , such that

mSwcp,Sw
dTSw

dt
= ASw,HtS HHtS + ASw,HsHHs + ASw,Hsu uHsS ,

0 = ALw,HtS HHtS + ALw,HsHHs + ALw,Hsu uHsS ,

HHtS = cHtS

(

AT
Sw,HtS

TSw + AT
Lw,HtS

TLw + AT
Tb,HtS

TTb + AT
Tbu ,HtS

uTbS

)

,

ySw =
∣
∣
(

AT
Sw,Hsu + ATbu ,HtS AT

Sw,HtS

)∣
∣TSw,

yLw =
∣
∣
(

AT
Lw,Hsu + ATbu ,HtS AT

Lw,HtS

)∣
∣TLw,

yHtS = ATbu ,HtS HHtS

(2)

for given boundary conditions HHs = H̄Hs and TTb = T̄Tb and predefined positive definite
coefficient matrices mSw, cp,Sw and cHtS . The coupling variables are expressed as the energy
fluxes uHsS and uTbS and the temperatures ySw, yLw and yHtS .

Fluid network The fluid network NF = {PI, PU , DE, VJ , LJ , RE, HT , TB} consists of pipes
PI , pumps PU , demands DE, volume junctions VJ , lumped junctions LJ , reservoirs RE,
heat transfers HT and temperature boundaries TB. The DAE for the network NF in input-
output form is given by: For predefined continuous inputs (uT

HsF
, uT

TbF
)T , find the pres-

sures (pT
Lj, pT

Vj)T , the mass flows (qT
Pi, qT

Pu)T , the temperatures (TT
Vj, TT

Lj)T , the heat fluxes
(HT

HtF
, HT

Pu, HT
Pi)T and the outputs (yT
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)T , such that

dqPi
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= c1,Pi
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(|qPi|

)

qPi + c3,Pi,

fPu(qPu) = AT
Jc,PupJc + AT

Re,PupRe,

0 = AJc,PiqPi + AJc,PuqPu + AJc,DeqDe,

mVjcp,Vj
dTVj

dt
= AVj,PiHPi + AVj,PuHPu

+ AVj,DeHDe + AVj,HtF HHtF + AVj,Hsu uHsF ,

0 = ALj,PiHPi + ALj,PuHPu

+ ALj,DeHDe + ALj,HtF HHtF + ALj,Hsu uHsF , (3)

HPi = BJc(qPi)TVj + BJc(qPi)TLj + BJc(qPi)TRe,

HPu = BJc(qPu)TVj + BJc(qPu)TLj + BJc(qPu)TRe,
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HHtF = cHtF

(
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Vj,HtF
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Lj,HtF
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uTbF

)

,
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for given boundary conditions qDe = q̄De, HDe = H̄De, pRe = p̄Re and TRe = T̄Re and prede-
fined coefficients c1,Pi, c2,Pi, c3,Pi, mVj, cp,Vj and cHtF as well as provided functions fPu. The
function BJc checks for the sign of the mass flow qPi, cf. [3]. The coupling variables are
expressed as the temperatures uHsF and uTbF and the energy fluxes yVj, yLj and yHtF .

Multi-physical model The multi-physical model is derived by combining (1), (2) and (3)
with appropriate coupling conditions. The coupling conditions describe the relation be-
tween the inputs and outputs of the individual models. For the model used in Sect. 3 and
Sect. 4, the following coupling conditions are used, see e.g. [2].
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. (4)

The connectivity equation (4) represents the electro-thermal coupling of the electrical
network and the cooling systems. Combining all subsystems and their connectivity equa-
tions (4) yields a DAE:

Find

z := (uR, uC , uB, uHsS , uTbS , uHsF , uTbF , eN , eG, jR, jC , jL, jV , jB, TSw, TLw, HHtS ,

pLj, pVj, qPi, qPu, TVj, TLj, HHtF , HPu, HPi, yR, ySw, yLw, yHtS , yVj, yLj, yHtF ),

ż :=
dz
dt

such that

F(ż, z, t) = 0. (5)

DAEs resulting from automated modelling software typically obtain a structure with d-
index (differentiation index) greater than 1, cf. [3, 4, 10] and hence are not suitable for
a direct simulation with standard solvers. In the setup of multiple physical networks, it
is not sufficient, that the full DAE (5) can be reduced to a d-index 1. Additionally, each
subsystem, to which a solver is applied, has to fulfill d-index 1 conditions as well, cf. [7, 11].
In our applications an automatic index reduction is performed if the electric or the fluid
system are detected to be of d-index 2. This is achieved by providing surrogate models
according the corresponding literature, cf. [3, 4], which enables additionally a consistent
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definition of initial values. Similarly, it is possible to describe the coupling of thermal solid
systems with gas systems. An approach for coupling fluid, gas and thermal solid systems
can be found in [5].

2 Multirate integration for coupled network DAEs
In our multirate approach the full DAE (5) is partitioned due to the physical background
to n ∈ N subsystems (typically n � 2). Each subsystem is index reduced according to the
available literature, cf. [3, 4, 10]. Since in the global network the individual subsystems are
interacting with each other, i.e. inputs and outputs are connected according to the con-
nectivity equation (4), it is necessary to put it into an input-output form. For this purpose,
each subsystem i = 1, . . . , n classifies its inputs ui, state variables xi, algebraic variables ai

and outputs yi. To conclude, this approach yields a coupled system of n semi-explicit DAEs
in input-output form of d-index 1. For inputs ui specified by equation (4), find xi, ẋi, ai and
yi, such that

ẋi = fi(xi, ai, ui, t),

0 = gi(xi, ai, ui, t), (6)

yi = ri(xi, ai, ui, t)

for i = 1, . . . , n. A careful choice of the connectivity matrix given in (4) guarantees that the
coupled system obtains d-index 1 as well, cf. [2, 7]. E.g. one possible choice is the usage of
differential states, which are not involved in any index reduction, as coupling variables.

For each subsystem (6) an arbitrary Runge-Kutta method with micro-step sizes hi is
used, cf. Fig. 1, in an indirect approach, cf. [12]. This means that just the differential part
is solved using a Runge-Kutta scheme, while the algebraic part is solved for each given
time and differential state. The choice of the actual integration technique depends on the
properties of the underlying system and can be explicit, implicit, fixed, or adaptive. The
whole system (5) is integrated via a non-iterative co-simulation technique with macro-step
size H = max(hi). All systems are updated at the end of each macro-step. This principle
relates to synchronous communication and we refer to these points in time as synchro-
nization times, cf. Fig. 1. In the general case, the individual time steps vary significantly,
which means that a global synchronization time quickly pushes the multirate approach
to its limits. A hierarchical modelling approach allows for defining individual synchro-
nization times for coupled subsystems. A partitioning algorithm detects co-simulation
components that can exchange information on smaller synchronization step sizes. By

Figure 1 Macro-step of the ith system from synchronization time tk to tk+1
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grouping on multiple levels, multiple synchronization times can be configured. This al-
lows higher frequency subsystems to be exchanged on lower time scales. The evaluation of
each macro-step of the subsystems is done in a sequential Gauss-Seidel-approach. The val-
ues ui are handled with appropriate interpolation or extrapolation techniques, depending
on the slow or active characteristic of the interacting subsystems. To support energy con-
servation across circuit borders, fluxes are integrated and interpolated accordingly such
that incoming and outgoing energies are identical. It is important to mention that for our
multi-physical model (5), we always have cyclic dependencies between the coupled phys-
ical domains. For example, the temperature and the heat flux are exchanged when cou-
pling electric and solid systems. Therefore, extrapolation is always needed at some point.
Nevertheless, it is possible to state convergence order results of the method for slow-first,
fast-first and fully decoupled co-simulation approaches for n = 2, cf. [7]. Due to n � 2 this
approach is generalized to a more general one. This is done by establishing an evaluation
order for all subsystems. By defining dependencies within and between the subsystems, it
is possible to analyze the evaluation order based on a graph on multiple levels. According
to this graph, an algorithm computes a valid evaluation order. In most relevant cases, this
satisfies the conditions, cf. [7], such that the co-simulation approach has convergence or-
der p if the Runge-Kutta method has convergence order p and the interpolation is of order
p – 1. This applies to the examples presented in Sect. 3 and 4.

3 Simulation of a BEV with cooling system
The given BEV example demonstrates the modelling of an electrical system linked with
the required cooling system, cf. Fig. 2. The model consists of an electrical propulsion and
two cooling circuits. An oil circuit is used for cooling of the electric machine and a coolant

Figure 2 Schematic representation of a BEV with cooling system in AVL CRUISE™M. The corresponding
results are displayed in Fig. 3–5 and Table 1 for BEV with cooling system simulation
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circuit is used for cooling of the battery pack, inverter, and DC-DC converter. The involved
subsystem of the coupled electro-thermal model can be reduced to DAEs of d-index 1.

The multirate approach presented in Sect. 2 is put into context with the reference solu-
tion of a single solver approach (both sequential/single CPU). In this example eight ther-
mal circuits of the form (2), three mechanical circuits, an electric circuit of the form (1), 14
gas circuits given in [5] and two fluid (oil and cooling and lubrication) circuits of the form
(3) are present which represent in total 461 equations. The preferred choice of solvers for
both, the single solver approach and the multirate approach are adaptive explicit solvers
[13] but are compared for completeness with a fixed step singlerate approach as bench-
mark solution. Hence the step size of the single solver is limited to the minimum step size
of all subdomains, while the multirate approach is limited to the synchronization time and
the characteristic of the global domain. Four different solver parametrizations were simu-
lated and compared. The first parametrization is a fixed step singlerate solver with a time
step of 1 ms. We refer to this in the charts and tables as Singlerate (Fixed: 1 ms). The sec-
ond one is an adaptive singlerate solver with a maximum time step of 50 ms, referenced by
Singlerate (Adaptive: 50 ms). In this example no singlerate parametrization was found that
achieves a better performance. On the other hand, we have two multirate solvers which
use the benefit of adaptive solvers. In the first approach, which is called Multirate (Sync-
time: 20 ms), the electric, gas and oil circuits use a maximum step size of 10 ms while
cooling and lubrication, mechanical and thermal domains use a maximum step size of
20 ms. Here the information is exchanged at a global synchronization time of 20 ms. The
last parametrization (Multirate (Synctime: multiple)) uses a maximum step size of 10 ms
again for the electric, gas and oil circuits. For mechanical and thermal it uses 20 ms and for
the cooling and lubrication it uses 40 ms as a maximum step size. In this constellation two
interacting subsystems derive their synchronization time from the highest maximum step
size of both parametrizations. Thus, synchronization times of 10 ms, 20 ms and 40 ms
are used. Since many physical subsystems are involved, the overall evaluation sequence
of the individual physical domains is complex to visualize. We give a simplified list of the
evaluation order with the main contributions:

1. Cooling and lubrication circuit
2. Oil circuit
3. Electrical circuit
4. Mechanical circuits
5. Gas and thermal solid circuits

This evaluation order is valid for both the Multirate (Synctime: 20 ms) and Multirate (Sync-
time: multiple) approaches. In the Multirate (Synctime: multiple) approach the oil and
electric circuit are exchanging data at synchronization time 10 ms and form a new group.
This itself is coupled to the mechanical, gas and thermal solid circuits with a synchroniza-
tion time of 20 ms and again creates a new group. At the end for the coupling with the
cooling and lubrication circuit a synchronization time of 40 ms is applied.

A comparison of the results in the heat flow between the battery and the cooling sys-
tem shows that the two singlerate solutions differ from the multirate solutions, cf. Fig. 3.
Because of the information exchange on macro step size, multirate approaches are more
inert in the simulation. For real-time simulations, such deviations in results are usually not
of major importance. It is more important that the overall model is calculated in an energy
conserving manner to avoid unphysical effects and unrealistic controller behaviours. This
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Figure 3 Comparison of heat flow between battery pack and cooling system of multirate cases against single
solver cases for BEV with cooling system simulation

Figure 4 Comparison of the energy loss of the electric system of multirate cases against single solver cases
for BEV with cooling system simulation

is achieved by using flux averaging techniques similar to the more advanced approach in
[14] for mechanical couplings. The verification of the energy conservation is mainly done
empirically and with a-posteriori consistency checks. The energy loss in the electrical sys-
tem shows that there is no difference between singlerate and multirate solvers, cf. Fig. 4.
The multirate solvers provide sufficiently accurate results.

Besides accuracy, performance is an important criterion for real-time applications.
Both, simulation time and real-time factor (RTF) are interesting characteristics to assess
the performance. The real-time factor is calculated based on the computation time Si for
each individual time window [ti, ti + hi] by

RTF =
Si

hi
.

This value can be used to evaluate the real-time capability of a simulation. In Table 1 the
simulation time and average RTF of the singlerate cases is compared with those of the
multirate case, cf. Fig. 5. A significant speed up in the calculation time can be achieved
and one can see that this is achieved per time step not only in some critical areas. Using
multiple synchronization times, another 10% of the computing time can be saved com-
pared to the standard multirate approach. In total, the computation time can be reduced
to a fifth of the best singlerate case.
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Table 1 Comparison of singlerate and multirate approaches corresponding CPU-time and average
real time factor (RTF) for BEV with cooling system simulation

Case CPU-Time Avg RTF

Singlerate (Fixed: 1 ms) 419.81 2.332257
Singlerate (Adaptive: 50 ms) 147.71 0.820612
Multirate (Synctime: 20 ms) 31.40 0.174472
Multirate (Synctime: Multiple) 27.49 0.152721

Figure 5 Comparison of elapsed time of multirate cases against single solver cases for BEV with cooling
system simulation

Figure 6 Schematic representation of a three-phase inverter with cooling system in AVL CRUISE™M. The
corresponding results are displayed in Fig. 7–8 and Table 2 for BEV with cooling system simulation

4 Simulation of a three phase inverter with cooling system
We consider a detailed physical model of an inverter with transitors, IGBT (insulated-gate
bipolar transistor), switches, an RC (resistor-capacitor) filter as well as a 3 phase ohmic
load. The inverter is used to convert a DC (direct current) voltage through timed switching
of the six transistors into a PWM (pulse width modulation) signal. The RC filter then
averages the PWM and thus creates a 3 phase AC (alternating current) voltage, cf. Fig. 6.

In total this example consists of 178 equations which are spread over 20 solvers. A fluid
circuit described by (3), seven gas circuits modeled like in [5] and eleven solid thermal
circuits of the form (2) are responsible for modelling the cooling of the electric system (1).
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In this example three solver constellations are compared. The reference solution (Sin-
glerate (Fixed: 1 μs)) of the system is using an explicit fixed step solver with 1 μs. In the
first multirate scheme (Multirate (Synctime: 1 ms)) each physical domain is solved using
again an explicit fixed step method. A step size of 1 μs is applied for the electric system. All
other domains take 1 ms as step size. Again, an explicit fixed step method is used, whereby
the chosen step size is now 1 μs. The information exchange takes place after each macro-
step of 1 ms. The second multirate scheme (Multirate (Synctime: Multiple)) uses, again as
in the previous example, multiple synchronization times. The electric system is still solved
with 1 μs. But now, only the solid thermal circuits apply steps of 1 ms. The gas and fluid
circuit use a step size of 5 ms. Therefore, within the system two synchronization times are
used, 1 ms and 5 ms. Again, like in the previous example a simplified evaluation order can
be given by:

1. Electric circuit
2. Gas circuits
3. Fluid circuit
4. Thermal solid circuits
This model is of special interest, since the electrical network and all other domains run

on completely different time scales (of order O(1000)). The results of an IGBT show that
the temperature is the same in all three constellations, cf. Fig. 7. In general, the results of
the multirate solvers are sufficiently accurate in this example.

Again, significant speed up in the calculation time can be achieved, cf. Fig. 8. The mul-
tirate approaches are more than 6 times faster than the singlerate approach, cf. Table 2.
Comparing the two multirate solutions with each other, it can be seen that the use of dif-
ferent synchronization times does not provide any further significant improvement. This
is because the thermal networks of fluid, gas and solid circuits require to be resolved on
almost the same time scale compared to the electric system. In general, the RTFs for this
example are very high as the electrical system must be resolved very accurately. Thus,
despite enormous performance improvements, the simulation is still far from being real-
time capable, which means that further improvements both on modelling side as well as
the solver side are necessary.

Figure 7 Comparison of temperature in an IGBT of multirate cases against a single solver case for three-phase
inverter with cooling system simulation
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Figure 8 Comparison of elapsed time of multirate cases against a single solver case for three-phase inverter
with cooling system simulation

Table 2 Comparison of singlerate and multirate approach corresponding CPU-time and average real
time factor for the three-phase inverter with cooling system simulation

Case CPU-Time Avg RTF

Singlerate (Fixed: 1 μs) 320.60 641.198024
Multirate (Synctime: 1 ms) 52.44 104.872401
Multirate (Synctime: Multiple) 51.75 103.492756

5 Conclusion
As shown, the multirate approach offers a possibility to reduce computation time consid-
erably. Its can be adapted to the requirements of the model to be simulated. Any physical
system can be accompanied by a solver tailored to its own needs. If the solver step sizes
in the model vary strongly between the different solvers (n � 2), a stable solution can still
be guaranteed by a hierarchical synchronization approach. To ensure a stable simulation,
automatic index reduction of the physical networks, appropriate solver settings for each
subsystem and an adequate coupling procedure, are important. For the correct choice a
significant speed up can be achieved, while satisfying the accuracy requirements. Despite
the considerable improvements using the presented co-simulation approach, this still can
be improved. Thus, there is the possibility to save additional computation time by par-
allelisation and intelligent inter-/extrapolation methods. However, further analysis of the
considered systems and the applied methods are necessary to achieve this properly.
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