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Abstract
Crop protection from diseases through applications of plant protection products is
crucial to secure worldwide food production. Nevertheless, sustainable management
of plant diseases is an open challenge with a major role in the economic and
environmental impact of agricultural activities. A primary contribution is expected to
come from precision crop protection approaches, with treatments tailored to spatial
and time-specific needs of the crop, in contrast to the current practice of applying
treatments uniformly to fields. In view of this, image-based automatic detection of
early disease symptoms is considered a key enabling technology for high throughput
scouting of the crop, in order to timely target the treatments on emerging infection
spots. Thanks to the unprecedented performance in image-recognition problems,
Deep Learning (DL) methods based on Convolutional Neural Networks (CNNs) have
recently entered the domain of plant disease detection. This work develops two DL
approaches for automatic recognition of powdery mildew disease on cucumber
leaves, with a specific focus on exploring unsupervised techniques to overcome the
need of large training set of manually labelled images. To this aim, autoencoder
networks were implemented for unsupervised detection of disease symptoms
through: i) clusterization of features in a compressed space; ii) anomaly detection. The
two proposed approaches were applied to multispectral images acquired during
in-vivo experiments, and the obtained results were assessed by quantitative indices.
The clusterization approach showed only partially capability to provide accurate
disease detection, even if it gathered some relevant information. Anomaly detection
showed instead to possess a significant potential of discrimination which could be
further exploited as a prior step to train more powerful supervised architectures with
a very limited number of labelled samples.

Keywords: Plant disease detection; Anomaly detection; Unsupervised deep
learning; Powdery mildew; Multispectral imaging; Precision agriculture

1 Introduction
Plant disease management plays a pivotal role in securing high quality and abundant yield
of agricultural products. Disease control is mainly obtained by plant protection products,
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commonly referred to as pesticides, that are repeatedly applied uniformly across entire
fields. However, it is well established that most crop diseases exhibit an uneven spatio-
temporal distribution, with randomly sparse patchy structures evolving around discrete
foci (i.e. localized initial infection spots), especially at the early stages of development [1].
This pattern offers great opportunities to develop precision crop protection solutions, i.e.
the application of precision agriculture (PA) concept to protection operations, with spatial
and temporal variation of the treatments as needed by the crop [2], leading to great reduc-
tion of pesticide use with associated benefits in term of costs and environmental impact
[3].

A fundamental requirement for the full implementation of precision crop protection
systems is the capability of automatically detect symptoms of disease at early stages in
order to timely target the treatments on emerging infection spots, and preventing their
establishment and following epidemic expansion. To this aim, different disease sensing
methods and technologies have been applied, including molecular analysis, spectroscopy,
fluorimetry, analysis of volatile organic compounds [4, 5], but imaging-based approaches
emerges as the most widely studied techniques for disease sensing applications [6, 7].

Indeed, computer vision has an inherent great potential since symptoms of crop disease
very often cause a signature on plant organs which can be automatically detected by ade-
quate image-analysis techniques. Disease symptoms have been detected and identified by
analyzing color or reflectance, texture, shape features specifically extracted from leaf or
plant images [8, 9], or by computing spectral vegetation indices (VIs), i.e. algebraic com-
binations of pixel values in two or more spectral channels, which can enhance the features
differences between healthy and diseased tissue [10–12]. While these approaches rely on
human experts for the selection of the most relevant features to discriminate diseased
from healthy plants, recent developments in machine learning disclosed new possibilities
toward the automatic identification of relevant features [13]. Among these, Deep Learn-
ing (DL) methods based on Convolutional Neural Networks (CNNs) are being applied
in almost any image-recognition problem with unprecedentent successful results. In this
framework a burst of CNNs applications to imaging based detection and identification of
crop diseases has being published in the last few years [14]. For example, the authors in [15]
used existing CNNs (GoogleNet and Alexnet) to classify 26 diseases over 14 crop species,
using as training data 54,306 labelled RGB color images from the PlantVillage repository
[16]. CaffeNet CNN was used in [17] to classify 13 diseases over various plant species with
a training set of 4483 (augmented to 30,000) images downloaded from the web and sub-
mitted to preliminary manual masking and labelling. Transfer learning techniques were
adopted in both [15] and [17] to specialize CNNs to the application objectives. The authors
in [18] considered 5000 images of tomato leaves with manually annotated bounding boxes
containing disease spots to train different architectures of Region Proposal Networks to
detect diseased leaves. They also explored the use of “very deep feature extractors” such
as the Visual Geometry Group (VGG) net and the Residual Network in order to obtain
accurate disease classification under diverse field conditions. The authors in [19] used a
Res-Net architecture on 16,415 images of diseased tomato leaf images and 1590 healthy
tomato leaves from the PlantVillage dataset, upon classification of nine types of disease
by human experts. The proposed algorithm automatically classified leaves into healthy or
diseased and a U-net architecture was applied to semantically segment a subset of the im-
ages to recognise the disease and to estimate per-leaf its severity. Semantic segmentation
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was performed as well in [20] to recognize powdery mildew spots on cucumber leaves,
using a U-net architecture trained with 30 annotated samples (augmented to 10,000).

A common trait of all the previously mentioned approaches is that substantial efforts
have to be spent by human experts to label/annotate the images in order to prepare the
typically large amount of samples required to train the chosen CNN model. Even when
transfer learning techniques are used by taking advantage of already available labelled
data, further labelling targeted to the specific application case is however required. This
work aims to leverage the capabilities of DL methods to define unsupervised techniques
for achieving a preliminary but fairly accurate automatic detection of plant diseases, in-
cluding early stage symptoms. Two unsupervised approaches for disease detection are
investigated, namely: a clustering approach which is intended to be a very basic proto-
type of this kind of conventional Machine Learning approaches and, as a preferred and
more effectively choice, an unsupervised automatized feature extraction approach based
on anomaly detection. As case study, we considered powdery mildew disease on cucum-
ber (Cucumis sativus). Powdery mildew is a major fungal disease that mostly affects leaves
in many crop plants (vegetables, fruits, cereals, etc) exhibiting common symptoms: the
proliferation of hyphae filaments of the mycelium on the hosting tissue influences leaf
reflectance to incident light, leading to a whitish–gray, powdery appearance. At early to
middle stages of infection, these thin filamentous structures have still a low influence on
the spectral signature of the leaf surface due to their small size, low density, and spatial
arrangement, making the early detectability of powdery mildew a non–trivial problem.
The study considered multispectral images of leaves in order to exploit the altered spec-
tral signature of disease symptoms not only in the visible (RGB) spectrum but also in the
near-infrared (NIR) band [7, 12, 21, 22].

In the following sections, after a brief recall on the relevance of leaf reflectance for dis-
ease detection purposes and the description of the measurement procedures, an in depth
presentation of the unsupervised approaches of CNN clustering and anomaly detection is
given, along with details on the networks architectures implemented. Finally the obtained
results are discussed to highlight the most significant findings of this work.

2 Data acquisition
2.1 Biophysical background
Leaf reflectance features have a high potential in detecting deviations from the healthy
status of plants linked to dysfunction of the photo-system or destruction of the photo-
chemical pigments, modifications in plant tissue composition and structure, or to the de-
velopment of pathogen spores or propagules on the leaf surface. These biophysical mod-
ifications induce significant changes in the spectral signature of plant tissue that can be
detected with adequate techniques [5, 23]. Changes in the visible (VIS, 400 to 700 nm) and
near-infrared (NIR, 700 to 1100 nm) spectral ranges are of particular relevance since they
can be measured with common silicon-based sensors or cameras. In these bands, healthy
leaves typically exhibit (a) low reflectance at VIS wavelengths owing to strong absorp-
tion by pigments; (b) high reflectance in the NIR owing to internal scattering in the leaf
structure, except for weak water absorption at specific wavebands. General disease symp-
toms correspond to discrete structures or lesions on leaf tissue evolving from millimeter-
scale size to macroscopic patches, and are characterised by an increased reflectance in
VIS range, especially in the chlorophyll absorption bands in the blue (430-470 nm) and
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red (630-690 nm) bands. Conversely, at more advanced stages of disease, reflectance in
NIR range on symptomatic areas is reduced by oxidation and senescence processes in the
tissue, and at plant canopy scale by decreased biomass growth, defoliation and drying.
These general features hold for the specific case of powdery mildew and upon this it re-
lies the rationale of using multi-spectral imaging in the above indicated bands to detect
regions in leaf surface exhibiting deviations from healthy spectral signatures.

2.2 Plant material and disease inoculation
Plants of cucumber (Cucumis sativus) were sown and grown in pots under controlled con-
ditions in greenhouse at 25/22◦C (day/night), 60% relative humidity. Plants were regularly
watered and fertilized as needed, and no pesticide treatment was applied. At a develop-
ment stage of 3 leaves, a group of plants was separately inoculated with isolates of the
fungus Podosphaera xanthii by spraying a suspension of freshly sporulating colonies onto
leaves. The rest of the plants were kept isolated under controlled conditions in order to
maintain healthy conditions during the growth. Multiple lots of plants were subsequently
cultivated and inoculated to provide enough samples to the aim of the experiment.

2.3 Multispectral images acquisition and preprocessing
In order to obtain a wide range of severity in powdery mildew symptoms, the inoculated
plants were sampled at different dates, i.e. after 5, 10, 15 days from the inoculation, and im-
aged together with age-companion healthy plants. Healthy and diseased cucumber leaves
were imaged via a QSi640 ws-Multispectral camera (Atik Cameras, UK) equipped with a
Kodak 4.2 Mp micro-lens image sensor and 8 passband spectral filters operating at wave-
bands from 430 to 740 nm. For the purpose of this experiment, leaves were imaged singu-
larly on a dark background, under controlled diffuse illumination conditions (see Fig. 1).
Images were acquired in the single spectral channels 430 nm (blue, B), 530 nm (green,
G), 685 nm (red, R) and 740 nm (near–infrared, NIR). A set of RGB images of the same
leaves in standard CIE color space were also acquired for reference. Camera parameters
were set and image collection was performed via an in–house developed acquisition soft-
ware written in MATLAB. Reflectance calibration of the grey-level intensity of the pixels
at different acquisitions was carried out by including in each image 3 reflectance refer-
ences targets (Spectralon R = 0.02, R = 0.50 and R = 0.99; Labsphere, USA). The obtained
dataset consisted in 97 images of healthy leaves and 114 images of diseased leaves exhibit-
ing a wide range of symptoms, from early to severe. Starting from an original resolution
of 2048 × 2048, each image was cropped and resized in order to get the resolution down
to 512 × 512, which was more manageable for processing purposes. The resized images
were preprocessed with min-max normalization in order to obtain pixels values within the
interval [0, 1]. By using the NIR channel, where high reflectance of leaf tissue allows im-
mediate discrimination from the background, binary masks indicating foreground pixels
belonging to leaves were computed.

3 Anomaly detection: clustering and deep learning techniques
Anomaly detection, also known as novelty detection, is the process of detecting data in-
stances that do not conform to a model of “normal” behavior. Feature extraction is closely
related to dimensionality reduction: this technique consists in the transformation of data
from a high-dimensional space into a low-dimensional space, so that the low-dimensional
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Figure 1 RGB images of four samples of cucumber leaves from the acquired dataset. The leaves show
different symptoms of powdery mildew, from very mild (top left) to severe, in clockwise order

representation is an informative encoding of the original data. In the following, we first
provide a brief background on autoencoders and then we discuss more in detail the two
considered approaches.

3.1 Background on autoencoders
Autoencoders (AE) play a fundamental role in unsupervised learning and in deep archi-
tectures for transfer learning and other machine learning tasks and are basically a form of
compression. As used in this work, an AE is a neural net which has the primary purpose
of learning an encoding of reduced dimensionality with respect to the input that can be
used for different applications by learning to reconstruct a set of input observations well
enough [24, 25]. Typically, an AE of this type is composed by an encoder, which is an op-
erator φe depending on the parameters �e that maps the input x into the so called hidden
representation z = φe(x;�e), a meaningful representation of the input with a reduced di-
mensionality attained at the bottleneck of the net, and by a decoder, which is an operator
φd depending on the parameters �d that decodes the hidden representation into an es-
timate of the input x̂ = φd(z;�d). Both encoder and decoder operators are composed by
series of linear filtering operations (convolutions), optionally followed by non linear acti-
vation functions (e.g., sigmoid, hyperbolic tangent, ReLU function) and they can be trained
with backpropagation algorithms. This architecture learns the structure of the mappings
φe and φd by estimating the set of network parameters that minimize a distance metric,
called loss function �, between the input and its reconstruction

{�e,�d}∗ = arg min
�e ,�d

∑

x∈train

�
(

φd
(

φe(x;�e);�d
))

, (1)
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where x belongs to a subset of the collected data called train set. The loss function � is
chosen in this work as the standard mean square error (MSE). Alternative forms of loss
functions can also be used in specific contexts, using metrics different from the L2 one,
weighted metrics, or different functionals as for example cross-entropy. The minimiza-
tion procedure can be carried out through well-known iterative techniques, for example
gradient descent methods [26–28]. Our AE formulation then reads:

z = φe(x;�e), x̂ = φd(z;�d),
{

�∗, W ∗} = arg min
�,W

∑

x∈train

∥

∥x – φd
(

φe(x;�e);�d
)∥

∥

2.
(2)

3.2 Feature extraction and clustering
Cluster analysis is the process of finding “natural” groupings by gathering objects together
according to some similarity measure. Clustering is a well known hard task, whose out-
comes depend on a number of factors, among which data dimensionality. Since not all the
original features are relevant for clustering, preprocessing strategies such as dimension-
ality reduction allow clustering to perform better. In this work, we use the AE framework
to extract a reduced feature set on which to carry out clustering. Clustering is then per-
formed using a classic k-means approach where cluster centroids are sought by an iterative
optimization process that minimizes the Euclidean distance between data points in the re-
duced feature space and their nearest centroid. Despite the fact that more sophisticated
approaches have been proposed in literature (see, e.g., [29]), in this work we stick to this
simple algorithm since our aim is limited to probe the discriminating potential embedded
in the features representation space.

3.3 Feature extraction and anomaly detection
Anomaly detection, also known as novelty detection, is the process of detecting data in-
stances that deviate from a given set of samples (observations in the train set). Anomaly
detection can be carried out via a neural network by training the net on normal samples so
to build a feature representation of “normality”. The idea that we pursue to use of AEs as
anomaly detectors is inspired by [30] (albeit if this work belongs to a very different context)
and is the following: an AE tailored to encode and decode a specific kind of data, fails in
encoding and decoding correctly other kinds of data, revealing an anomaly. If we feed the
AE with a train set only consisting in images of healthy leaves, the net learns to represent
not showing any disease trace. If the trained AE is then fed with the image of a leaf present-
ing disease spots, it will fail in encoding the presented input and the error can be used as
anomaly indicator. Namely, an anomaly score can be introduced to quantify the discrep-
ancy of a sample from its reconstruction performed by the net, so that normal (healthy
leaves) samples will yield a low anomaly score, while anomalous samples (diseased leaves)
will yield a higher anomaly score. We define the score of a sample x (not included in the
train set) as

sx =
‖x – x̂∗‖2

‖x‖2 , (3)

where x̂∗ = φ∗
d(φ∗

e (x)) represents the reconstruction of the input sample x performed by
the net with the optimized parameter set θ∗. If the score is larger than a set threshold,
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then the sample is classified as an anomaly. One can also profitably use the anomaly score
based on the discrepancy between the compressed representation z∗ = φ∗

e (x) of the sample
and the compressed representation of its reconstruction ẑ∗ = φ∗

e (̂x∗), given by

sz =
‖z – ẑ∗‖2

‖z‖2 . (4)

We found that this latter choice provided enhanced results due to the informative content
of the encoded representation. This is a common finding in these architectures, where the
latent representation offers a more effective space where to evaluate score metrics or to
perform operations like regularization procedures (see, e.g., [31, 32] in different applica-
tions).

4 Convolutional autoencoder networks architectures and implementation
We describe in this section the convolutional autoencoder architectures considered for
the two studied approaches.

4.1 Clustering approach
4.1.1 Clu-AE network
For clustering approach the encoder part of the network was composed of 4 blocks, each
made of a convolutional layer, a batch normalization layer and a ReLU activation layer. The
blocks are connected through max pooling layers in order to decrease the resolution of the
image. The number of features for each block was 8, 16, 32, 64, respectively, going from the
shallowest block to the deepest one. At the deepest level, a dropout layer was inserted to
both reduce over–fitting and training time. Our experiments also showed that the drop–
out layer also positively affects the network to learn diverse, non–redundant features. The
decoder part symmetrically mirrored the encoder, except for the last block. In fact it was
composed of 3 blocks, with 32, 16, 8 filters, connected through upsampling layers in order
to increase the resolution of the image, eventually restoring its original size. After the last
decoder block, a convolutional layer with a 1×1 kernel and a number of filters equal to the
channels of the original image is considered, coupled with a logistic activation function,
providing as final output a reconstruction of the input image (see Fig. 2). For brevity, this
architecture is hereby referred as Clu-AE.

Figure 2 Structure of the convolutional autoencoder used in the clustering approach (Clu-AE network). Each
block is composed of a convolutional layer, a batch normalization layer and a ReLU activation. The block
marked with the symbol � includes a dropout layer at its end. The block marked with the symbol � is
followed by a 1× 1 kernel convolutional layer with a number of features equal to the number of channels of
the input image
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As input for the experiments on Clu-AE network, the spectral index NIR/R obtained
as the pointwise ratio between the NIR channel and the R channel (NIR/R) was also in-
cluded, in addition to regular R, G, B channels. The dataset of images was split in training
(90%), validation (5%) and test (5%). The training was performed via Adam optimizer, with
learning rate η = 10–3, default hyperparameters and He initialization of the parameters.
The maximum number of epochs to train the model was set to 500 and early stopping was
implemented, monitoring the validation loss with a patience parameter of 20 epochs. The
batch size was set to 8. After each epoch, the whole training set was shuffled. For clus-
tering of features, we used the sklearn.cluster.KMeans module of the sklearn
library package in Python [33] using k-means++ with 20 initializations. We have also tried
random initialization but, in general, this gave us worse results (not reported here). We
choose 2, 3 or 4 clusters in the attempts to first separate healthy leaves from diseased ones
and then to obtain clusters according to the severity of the disease. We found than using
more than 4 clusters did not yield improvements, especially in view of recognizing early
stages of the disease.

4.2 Anomaly detection approach
For the anomaly detection approach, the autoencoder architectures employed were deeper
than for Clu-AE, and leveraged on the use of residual units, in which each layer feeds
into the next layer and farther layers to improve over degradation problems in gradient
backpropagation. The residual blocks were connected through max pooling layers in order
to decrease the resolution of the image, while moving to deeper levels. Also in this case,
at the deepest level, a dropout layer was included to reduce overfitting and training time,
and the decoder part mirrored the encoder with three residual blocks, connected through
upsampling layers.

The last decoder residual block was followed by a final convolutional layer with a 1 × 1
kernel and by a number of filters equals to the channels of the original input image, with a
logistic activation function providing the output image. For the aim of this study, different
AE architectures with a varying number of filters in each block and/or kernel size were
experimented, namely:

• Model S3: 2, 4, 8, 16, 8, 4, 2 filters and 3 × 3 kernels
• Model S5: 2, 4, 8, 16, 8, 4, 2 filters and 5 × 5 kernels
• Model M3: 4, 6, 8, 10, 8, 6, 4 filters and 3 × 3 kernels
• Model M5: 4, 6, 8, 10, 8, 6, 4 filters and 5 × 5 kernels
• Model B3: 32, 64, 128, 256, 128, 64, 32 filters and 3 × 3 kernels.
The latter model B3 resulted to perform better, and in the following we will refer to it

as Ano-AE (shown in Fig. 3). The results presented and discussed in next section were
obtained by this network, unless differently specified.

As input images in the experiments on this approach, the R,G,B, NIR channels were
used. Each considered model was only trained on healthy leaves. The dataset was split in:
70% of images for training, 10% for validation and the remainder for testing. Data aug-
mentation was perfomed on the dataset by translation, rotation, reflection, and zooming.
The resulting train dataset consisted of 552 healthy samples. Training was performed with
Adam optimizer, learning rate η = 10–3, default hyperparameters and He initialization.
The maximum number of epochs to train the model was set to 500 with early stopping,
with a patience parameter of 20 epochs for monitoring validation loss. The batch size was
set to 4 and after each epoch, the whole training set was shuffled.
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Figure 3 Structure of Ano-AE, the convolutional autoencoder used in the anomaly detection algorithm. Filter
sizes correspond to Model B3 in the body text and each block is composed of convolutional layers, two batch
normalizations, ReLU activation and residual skip connections. The block marked with the symbol � has a
dropout layer at its end. The block marked with the symbol � is followed by a 1× 1 kernel convolutional layer
with a number of features equal to the number of channels of the input image

Figure 4 Clu-AE model: comparison between original and reconstructed images of two random leaves. For
each channels, RGB, NIR, and NIR/R, the original channel is shown on the left and its reconstruction on the
right. The first row refers to a healthy leaf, the second row to a diseased leaf

5 Results and discussion
The numerical experiments were performed using the TensorFlow, Keras and scikit–learn
machine learning libraries, under the Python 3 framework. All the computations have
been run on the cluster INDACO owned by University of Milan on a NVIDIA Tesla K40
GPU.

5.1 Clustering approach results
5.1.1 Clu-AE images reconstruction and compression
A first indicator of the results obtained with the Clu-AE model was a qualitative assess-
ment of its capability to reconstruct the visual features of input images. In Fig. 4 we show
an illustrative example of the original datum x and the reconstructed datum x̂ for one ran-
dom healthy leaf and one random diseased leaf. The Clu-AE autoencoder resulted able to
reconstruct the leaves shapes, and attributes like veins or other spots, with fair accuracy,
even if a certain degree of blurriness was however present, as commonly found in applica-
tions of autoencoders. Figure 5 visualizes the 64 maps of the learned compressed features
for a random diseased leaf. It is evident that many of the features are focused more on
shape (for example in features: 1, 3, 4, 9, 15, 28, 30, 31, 51, 52, 61, 62) than on inner pat-
ter, by encoding the leaf area or edge highlighting different portions of the leaf shape and
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Figure 5 Visualization of the representation space extracted by the Clu-AE model. The input image is the
(diseased) leaf shown in RGB. Each of the 64 features has its own range of values; the brighter the color of a
pixel in the feature image, the higher its numerical value

edge. More interestingly, other features encode the information in the interior of the leaf,
highlighting leaf veins (for example, in features: 2, 29, 37), shades of healthy tissue (for
example, in features: 7, 29, 37, 60) or the presence and degree of severity of disease spots
(for example, features: 13, 32, 33). Not all the features are intuitive to interpret, as some of
them light up without a clear meaning for a human observer.

5.1.2 Clustering results
The clustering quality has been evaluated using two common metrics:

• Silhouette coefficient [34], defined as:

S(i) =
ds(i) – da(i)

max{da(i), ds(i)} ,

where da(i) is the average distance of point i from all other points belonging to its
cluster and ds(i) is the smallest average distance of i to all points in any other cluster.
The Silhouette coefficient measure how well each individual point fits in its cluster: if
S � 0, the point is right at the border between two clusters; if S � –1 the point would
be better assigned to another cluster, if S � 1, the point is well-assigned to its cluster.
In order to obtain a global evaluation of the clustering quality, it is customary to



Benfenati et al. Journal of Mathematics in Industry            (2023) 13:5 Page 11 of 16

average the Silhouette coefficients of all the points to give the Average Silhouette
coefficient (aSC);

• Davies-Bouldin index (DB) [35], defined as

DB =
1
n

n
∑

i=1

max
j �=i

σi + σj

d(ci, cj)
,

where n is the number of clusters, d(ci, cj) is the distance between the centroid of
cluster i and cluster j, and σi is the average distance of all points in cluster i from its
centroid ci. The DB index leverages the concept that very dense and well spaced
clusters constitute a good clustering result. The lower the DB value, the better the
clustering performance, with a minimum score of zero corresponding to perfect
clustering.

Table 1 reports the evaluation metrics of the clustering performance when all of the 64
extracted features were considered. The number of clusters obtained is considered here
as an hyperparameter to be chosen. The best results indicated by the two metrics were
obtained by a different number of clusters: 2-clusters for aSC and 4-clusters the for DB
index. When analysing the composition of the 2-clusters case, we found that the first clus-
ter contained the vast majority of the leaf samples, both healthy and diseased leaves, even
the most severely infected leaves. The second cluster contained as well both healthy and
diseased leaves. This result can be arguably explained by the fact that many of the leaves
are similar in terms of their shape and size. More interestingly, when analysing the 4-
clusters case, we found that the first and third clusters again contained both healthy and
diseased leaves. On the other hand, the fourth cluster only contained healthy leaves, while
the second cluster was instead composed of the most severely diseased leaves. Despite
this encouraging result, it must be underlined that also the 4-clusters partition failed to
establish if a certain leaf with no evident signs of infection was diseased or not. In fact, the
dichotomy “healthy cluster” vs “diseased cluster” was lost in favour of size, shape char-
acteristics, as it is especially evident in the first, third and fourth cluster. This failure can
be mainly explained by two reasons: first, the dimensionality of the data, even if it was
reduced by 80% in the encoding, it appeared to be still too high for the k-means algo-
rithm; secondly, too many features identified by the Clu-AE network only detected the
edge of the leaf, which explains the tendency of the model to partition the leaves based on
their shape and dimension. In an attempt to improve these results, we tried to cluster a
compressed version of our data, only considering a restricted number of features as they
appeared more relevant for the objective of the study. We obtained the best results by se-
lecting only one feature, i.e. feature no.33 (see Fig. 5). In Fig. 6, we report some illustrative
responses of this feature when applied to input leaves exhibiting different levels of disease
symptoms. This highlights how this feature is evidently responsive to disease spots: the
more severe the disease symptoms, the higher the response.

Table 1 Evaluation metrics for the Clu-AE approach obtained using all the 64 extracted features. In
bold the best performance for each index

aSC DB

2 clusters 0.17056 2.33102
3 clusters 0.13617 2.21739
4 clusters 0.14190 2.14507
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Figure 6 Example of responses of feature 33 to different input leaves. The feature lights up in
correspondence of disease symptoms (values are normalized considering all the leaves in the dataset)

Table 2 Evaluation metrics of the Clu-AE approach when only feature no.33 of Fig. 5 is used. In bold
the best performance for each index

aSC DB

2 clusters 0.58295 0.91016
3 clusters 0.33386 1.38958
4 clusters 0.32163 1.87777

Table 2 reports the evaluation metrics of the clustering when only feature no.33 is con-
sidered. Both the aSC and DB indexes improved considerably compared to previous Ta-
ble 1 referring to all the 64 features, and both the metrics indicated as best performing the
2-clusters partition. This showed that by sharply reducing the dimension of data, the per-
formance of the clustering largely improved. Looking at the composition of the clusters,
however indicated that the two clusters were not really informative yet for the aim of the
study. The first cluster was composed by the majority of the samples, with both healthy
and mildly diseased leaves grouped together, while the second cluster contained the most
severely diseased leaves. The single extracted feature was evidently not informative to dis-
criminate all the disease ranges, with early–mild symptoms appearing much more similar
to healthy leaves than to diseased ones at the feature level. Such a problem was not solv-
able by increasing the granularity (number) of clusters, as our experiments showed that
more clusters still group healthy and diseased leaves together.

5.2 Anomaly detection approach
5.2.1 Reconstruction results
Looking at the capability of Ano-AE to reconstruct the visual features of input images,
first we refer healthy leaves. Figure 7 shows as the Ano-AE network can reconstruct with
great accuracy the pattern of leaves, together with their characteristic traits like the stem,
the veins, or different shades of color. Not surprisingly, the reconstructed images show a
certain blurriness compared to the original ones, even if much lesser than found in the
clustering. When considering images of diseased leaves (see Fig. 8), the reconstruction
power is fair enough, even if the diseased area spots are reconstructed in a more impre-
cise and blurred way compared to healthy tissue areas. Furthermore, the reconstructed
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Figure 7 Comparison between original and reconstructed channels of healthy leaves belonging to the test
set

Figure 8 Comparison between original and reconstructed channels of diseased leaves belonging to the test
set

color of the disease spots deviated from the original, appearing in general more brown-
ish and slightly darker. The capability of the Ano-AE to reconstruct symptoms spots in
diseased leaves demonstrates that a number of healthy leaves in the training set included
some lesions or other–than–disease spots which trained the model to reconstruct also
powdery mildew spots. For example, in the leaf of the first row in Fig. 8, the presence of a
whitish area with similar visual features of powdery mildew symptoms can be observed.
Of course, by removing all healthy leaves with such imperfections from the training set
could increase the performance of the model, but this would make the model useless in
a real-life scenario, where leaves are normally riddled with imperfections due to different
reasons other than disease.
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Figure 9 ROC curves and AUC values for the different neural architectures proposed for anomaly detection.
The bold ROC corresponds to the best performing model (Ano-AE), the dashed curve corresponds to random
guess. The panel on the left refers to the performance of the models when considering the image
reconstruction error as anomaly score, while the panel on the right considers feature reconstruction error as
anomaly score

5.2.2 Anomaly detection results
The performance of the Ano-AE model in unsupervised detection of anomalies, i.e. dis-
ease symptoms, was quantified by using the Receiver Operating Characteristic (ROC)
curve, which represents the probability of detection of false positives vs true positives by
spanning all possible values of the threshold �. By lowering the anomaly threshold, more
samples are classified as positive (anomalies), resulting in an increase of both false posi-
tives and true positives. The overall capability of detection can be indicated by the AUC,
i.e. the area under the ROC curve (AUC). The AUC can be interpreted as the probabil-
ity that a classifier gives a higher probability of being an anomaly to a randomly chosen
abnormal (diseased) sample than to a randomly chosen normal (healthy) sample. AUC
values range between 0 (classification estimated labels are always wrong) and 1 (classifi-
cation estimated labels are always correct), with mid scale 0.5 (random guess). Figure 9
shows the ROC curves obtained for the different neural architectures introduced above
for anomaly detection. Each curve shows the diagnostic ability of the model while varying
the threshold � applied in the scoring system. Results are reported both the image recon-
struction error sx as anomaly score (Fig. 9, left) and the feature reconstruction error as
anomaly score sz (Fig. 9, right). As anticipated, it is evident that model B3 (i.e., Ano-AE)
performed better than the other experimented models, with the highest overall AUC for
both the scores considered.

6 Conclusions
This study developed two deep learning approaches based on autoencoder networks for
the automatic recognition of powdery mildew disease in multispectral images of cucum-
ber leaves. The specific objective was to explore unsupervised techniques to overcome the
need of large training set of manually labelled images, typical of CNN applications. To this
aim, autoencoder networks architectures were implemented to obtain:

i) a clusterization of the features in a compressed space. This approach showed a
limited capability to provide accurate disease detection, even if it was able to
highlight relevant information contained in compressed features. This prospects
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potential of improvements when using feature clustering with supervised
preliminary filtering in order to further filter the relevant features;

ii) an anomaly detection approach. This approach showed superior capabilities in
unsupervised detection in diseased leaves, with a significant potential of
applications in reducing the need of manual labelling of leaves images. Indeed, the
developed approach could be used as an unsupervised classifier trained on a large
dataset integrated with a supervised neural network trained with a limited number
of manually labelled samples. Beside the binary classification healthy versus
diseased leaves, this approach may provide a reliable quality check on synthetic
leaves [36], artificially generate by a GAN architecture, which can be employed in a
data augmentation strategy for Neural Network training.
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