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Abstract
Hamilton–Jacobi–Bellman equation (HJBE) and backward stochastic differential
equation (BSDE) are the two faces of stochastic control. We explore their equivalence
focusing on a system of self-exciting and affine stochastic differential equations
(SDEs) arising in streamflow dynamics. Our SDE is a finite-dimensional Markovian
embedding of an infinite-dimensional jump-driven process called the superposition
of continuous-state branching processes (a supCBI process). We formulate new
ergodic control problems to evaluate the worst-case streamflow discharge in the
long run and derive their HJBEs and ergodic BSDEs. The constant ambiguity aversion
classically used in assessing model ambiguity must be modified in our case so that
the optimality equations become well-posed. With a suitable modification of the
ambiguity-aversion coefficient depending on the distributed reversion speed, we
demonstrate that the solutions to the optimality equations are equivalent to each
other in the sense that they lead to the same result. Finally, we apply the proposed
framework to the computation of realistic cases with an existing record of discharge
through a numerical Markovian embedding.

Keywords: Stochastic processes; Non-Markovian processes;
Hamilton–Jacobi–Bellman equation; Backward stochastic differential equation;
Numerical Markovian embedding; Streamflow management

1 Introduction
1.1 Problem background
Streamflow as a part of hydrological processes significantly affects not only the aquatic
environments and ecosystems but also human living. On the one hand, streamflow regu-
lation for hydropower generation can provide indispensable electricity for modern human
life. On the other hand, it alternates downstream flow and temperature regimes, which
negatively affect biological processes, such as fish migration [1, 2]. Extremely low flow
due to water abstraction for human activities critically affects aquatic fauna as they may
lack the adaptations to persist in such events [3]. Meanwhile, flood events cause dam-
ages, such as house collapses, wide inundations, and loss of human lives [4, 5]. Therefore,
the modeling and control of streamflow dynamics have been a hotspot in research fields
related to aquatic environments and ecosystems.
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The stochastic modeling of streamflow dynamics has been a major approach toward
their efficient analysis. Typically, a stochastic differential equation (SDE) is employed to
describe the temporal evolution of Markovian state variables, such as the flow discharge
[6, 7], water quality indices [8, 9], and river morphology [10], as well as key hydrologi-
cal variables, such as active channel length [11]. Applied problems, such as flood diver-
sion [12] and ecomorphodynamics [13], have also been analyzed using stochastic mod-
els.

Theories of optimal control and optimization covering dynamic programming [14] and
martingale representation [15] have been established. Formally, dynamic programming
and martingale representation are in a dual relationship as the two mutually different
descriptions of the same control problem. In dynamic programming, the resolution of
a control problem reduces to finding a classical or viscosity solution to a Hamilton–
Jacobi–Bellman equation (HJBE) as a nonlinear degenerate parabolic partial differential
equation [16]. Dynamic programming has often been used for detailed analysis of Marko-
vian stochastic control problems with two to three state variables [17–19] as the compu-
tational costs of the modern numerical solver may become prohibitive in higher dimen-
sions.

By contrast, in martingale representation, backward SDEs (BSDEs) have been used as the
optimality equations, which are typically coupled with the forward SDEs of system dynam-
ics. An advantage of using BSDEs is that they apply to non-Markovian, high-dimensional,
and nearly optimal cases to which HJBEs do not apply [20–22]. However, the disadvan-
tage is that BSDEs have many unknowns to be solved than HJBEs and the accuracy of
their numerical solutions is often affected by statistical biases [23]. The rigorous equiv-
alence of the two approaches has been proven under several regularity conditions [24].
Both HJBEs and BSDEs have been well-studied and compared in economics and related
research fields. Nevertheless, to the best of our knowledge, their use for problems related
to streamflow dynamics is still rare, despite their inherent stochasticity and the great de-
mand for in-depth understanding and improvement of their management processes. This
consideration motivates us to study HJBE and BSDE in the same streamflow optimiza-
tion problem. Consistently analyzing their theories in a dual relationship would signif-
icantly deepen their mathematical structures and may yield secondary contributions to
other aspects such as developing numerical methods for complex control problems in the
future.

The stochastic control theory also contributes to evaluating model ambiguity. Indeed, a
critical aspect in modeling with stochastic methods, such as SDEs, is that their identifica-
tion in a real application contains some modeling errors (i.e., model ambiguity), resulting
in biased analysis results and hence biased decisions. This ambiguity is due to the limited
availability and quality of data and structural modeling assumptions [25, 26], which are dif-
ficult to avoid in most cases. A robust control approach [27] enabled us to describe model
ambiguity as a control variable chosen by nature. Model ambiguity is evaluated in terms
of the relative entropy between the baseline and worst-case models. With this approach,
stochastic control under model ambiguity has successfully been studied in applied prob-
lems [28–31]. We employed this approach for environmental problems, such as managing
riparian environments [32] and sediment replenishment [33]. However, the BSDE-based
approach to these problems is still lacking, although several scholars have suggested that
BSDEs with specific nonlinearities can handle model ambiguity [34–37].
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1.2 Objectives and contributions
The objectives of this study are to formulate and analyze a kind of stochastic control model
to evaluate streamflow dynamics under model ambiguity. We especially solve the same
problem from the two different standpoints, HJBEs and BSDEs, and show their equiva-
lence.

In the previous studies, we proposed a model that governs the discharge, the volume
of water passing through a river cross-section in a unit time, as a jump-driven non-
Markovian stochastic process having the subexponential autocorrelation function [38, 39].
The subexponential autocorrelation implies the existence of memory decaying slower
than exponential speed in streamflow dynamics [40, 41], which should be considered in
modeling and optimization for accurate prediction and management of aquatic environ-
ments. In this study, we extend the above model to an affine process model, called the
superposition of continuous-state branching processes (supCBI process) [42, 43], having
a more generic noise term accounting for clustered jump events, such as flood events,
due to typhoons and rainy seasons. More specifically, the supCBI process is an analyti-
cally tractable model (i.e., its moments and autocorrelation are found analytically) that is
able to represent jump-driven long-memory processes. It has widely been accepted in the
pasthat the streamflow discharge reasonably follows a jump-driven SDE (e.g., [11]) (this
is why we do not focus on processes without jumps), while they assume an exponential
decay of the autocorrelation but real data of the discharge often exhibit a long memory as
also reviewed in Yoshioka et al. [43]. In summary, the shortcoming of the other models is
that they do not reproduce the long memory, while the advantage is that our model does
without the critical loss of analytical tractability. In addition, the SDE representation har-
monizes with the stochastic control, which is another advantage over the other models;
however, especially the approaches based on long-run BSDEs have not been addressed
in the literature including our works despite their relevance in analyzing the sustainable
environmental management. To the best of our knowledge, HJBE and BSDE related to the
supCBI process have not been studied yet.

The supCBI process is a tractable mathematical model as stated above. However, its op-
timization needs care because it is a non-Markovian process, as it is a superposition of
infinitely many continuous-state branching (CBI) processes. We overcome this issue us-
ing the Markovian embedding [42–45] to rewrite or approximate a non-Markovian pro-
cess to a system of Markovian processes. In the supCBI process, the superposition (i.e.,
integration) as the source of a subexponential decay is performed with respect to rever-
sion speed distributed according to a probability measure. Then, we formulate a consistent
finite-dimensional supCBI process as a system of affine processes by discretizing this prob-
ability measure. Our control problem is based on this finite-dimensional representation
as presented in Fig. 1.

Our control problem is not a policy-making problem of some decision-maker but rather
a worst-case dynamic optimization of long-run (i.e., time-average) discharge under model
ambiguity in the sense of Anderson et al. [27]. This is an ergodic control problem of the
finite-dimensional supCBI process subject to linear feedback so that the discharge is man-
aged to be close to a target value by a water infrastructure. The problem is simple at a first
glance but contains several nontrivial issues to be tackled. First, the conventional approach
that penalizes model ambiguity with a constant ambiguity-aversion coefficient fails as the
degree of the Markovian embedding becomes finer. Although similar well-posedness is-
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Figure 1 The approach used in this study

sues have been discussed in both finite- and infinite-dimensional diffusive SDEs with ex-
treme ambiguity aversion [46], our problem varies in that it concerns jump-driven SDEs.
We show that the ambiguity-aversion coefficient must depend on the distributed reversion
speed to resolve this issue and present such an alternative with a correct scaling relation-
ship between the ambiguity-aversion coefficient and reversion speed.

Another issue is that the research on the martingale representation-based approach
to the ergodic control problem of jump-driven SDE is inadequate; only a few contribu-
tions have been made [47, 48]. Meanwhile, the dynamic programming of ergodic problems
has been well-studied (e.g., Arapostathis et al. [49]). We show that, given an ambiguity-
aversion coefficient, finding the worst-case upper and lower bounds of long-run discharge
can be reduced to solving HJBEs, which have smooth solutions. Then, the aforementioned
issue on the well-posedness related to the ambiguity-aversion coefficient is analyzed and
a closed-form solution is obtained.

We also derive a BSDE, i.e., an ergodic BSDE (EBSDE), associated with our control prob-
lem. The difference between the present and existing EBSDEs is that the noise process
in the former is the self-exciting jumps, while that in the latter is the Brownian motion
[50, 51] or Lévy process [48]. BSDEs driven by self-exciting jumps have been introduced
in pricing [52] and hedging and utility valuation [53]. Such BSDEs have also been used for
dam operation but without considering model ambiguity [23]. To the best of our knowl-
edge, EBSDE driven by self-exciting processes has neither been analyzed nor applied to
engineering problems.

The worst-case upper and lower bounds of the long-run discharge for the original
supCBI case are then obtained by a limit of the finite-dimensional case. Although we do
not directly discuss the control in the infinite-dimensional case, it turns out that this limit
exists and that it can be evaluated efficiently by numerical computation without resorting
to a complex and time-consuming method such as Monte-Carlo methods. The tractability
of our mathematical framework is attractive in this view.

Finally, we apply the proposed model to the evaluation of streamflow dynamics in a study
site in Japan. This is based on a numerical implementation of the Markovian embedding
whose convergence is demonstrated computationally. We also mention the applicability
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of the proposed model to the analysis of the dissolved silica (DSi) as a key driver of aquatic
food webs and eutrophication [54–56]. In summary, we contribute to the theory, model-
ing, and application of the ergodic control problem of a non-Markovian process.

2 Mathematical model
2.1 supCBI process
The supCBI process and its finite-dimensional Markovian embedding are formulated.
Hereinafter, time as a real parameter is expressed as t. The following is an overview of
the model based on Yoshioka et al. [43]. We consider the temporal evolution of a dis-
charge X = (Xt)t≥0 at a cross-section of a river as a continuous-time scalar process. A CBI
process with reversion speed r > 0 is a single-variable unique stationary càdlàg process
Y (r) = (Y (r)

t )t≥0 governed by a self-exciting SDE [57]

dY (r)
t = –rY (r)

t dt +
∫ +∞

0

∫ A+rBY (r)
t–

0
zNr(du, dz, dt), t > 0 (1)

given an initial condition Y (r)
0 ≥ 0 (the left limit of the value of a stochastic process at

time t is indicated with the subscript t–). A and B with A2 + B2 > 0 are non-negative pa-
rameters. Nr represents the Poisson random measure on (0, +∞)3; its compensated ver-
sion Ñr is Ñr(du, dz, ds) = Nr(du, dz, ds) – duv(dz) ds, with a Lévy measure v(dz) satisfying∫ +∞

0 min{1, z}v(dz) < +∞ and
∫ 0

–∞ v(dz) = 0. The second term on the right-hand side of (1)
is seen as a jump process having the state-dependent Lévy(-like) process with the corre-
sponding jump measure (A + rBY (r)

t– )v(dz). The affine coefficient A + rBY (r)
t– represents the

state-dependence of jumps, where the second term is scaled by r for later use.
We assume a tempered stable Lévy measure v(dz) = z–(α+1) exp(–βz) dz (α < 1, β > 0)

as a model for jumps with bounded variations [58]. Set Mk =
∫ +∞

0 zkv(dz) (k = 1, 2, 3, . . .).
This Lévy measure is the simplest one that can cover both finite (α < 0) and infinite jump
activities (0 ≤ α < 1). We assume

1 – BM1 > 0, (2)

which means that the self-exciting jumps are not large. The stationarity of the CBI process
is broken without this condition [33].

Considering (1), the supCBI process Y = (Yt)t≥0 is formulated as the superposition (i.e.,
integration) of mutually independent CBI processes with respect to the reversion speed r
[43]:

Yt = Y0 +
∫ +∞

0
Y (r)

t (dr), t ≥ 0, (3)

where (Y (r)
t (dr))t≥0 (r > 0) is a measure-valued process governed by the formal SDE

dY (r)
t (dr) = –rY (r)

t (dr) dt +
∫ Aπ (dr)+rBY (r)

t– (dr)

0

∫ ∞

0
zμr(du, dz, dt). (4)

Each μr (r > 0) is formally a mutually independent Poisson random measure for a differ-
ent r having the compensator du × v(dz) × dt, and π is a probability density on (0, +∞)
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satisfying the usual normalization condition
∫ +∞

0 π (dr) = 1, having the average, and the
regularity condition

∫ +∞

0

1
r
π (dr) < +∞. (5)

The condition (5) implies that if π (dr) has a probability density function, it behaves near
r = 0 as rα′ (α′ > 0). Notably, the superposition can be understood via Lévy basis (e.g.,
[59]), but we do not directly use this property. Instead, we consider a discretized process
as explained later in this subsection.

Remark 1 Equation (4) is formal as it is a measure-valued SDE. Rigorously, the process Y
has been considered as a limit in the sense of characteristic functions, namely, in the sense
of law, of the finite-dimensional process Yn explained later (Appendix A of Yoshioka [42]).

Condition (5) is necessary to have statistical moments of Y at a stationary state [42, 60].
Under (5), the stationary statistics are [42]

E[Yt] =
AM1

1 – BM1

∫ +∞

0

1
r
π (dr), (6)

E
[(

Yt – E[Yt]
)2] =

AM2

2(1 – BM1)2

∫ +∞

0

1
r
π (dr), (7)

Cor(s) =
E[(Yt+s – E[Yt+s])(Yt – E[Yt])]

E[(Yt – E[Yt])2]

=
[∫ +∞

0

1
r
π (dr)

]–1 ∫ +∞

0

1
r

exp
(
–r(1 – BM1)s

)
π (dr), s ≥ 0. (8)

Higher statistical moments, such as skewness and kurtosis, can also be obtained.
We present a Markovian embedding of the supCBI process (3). The key of the embed-

ding is the representation (3) itself, where the right-hand side is seen as an informal sum
(actually, an integration) of mutually independent supCBI processes. This type of formu-
lation is also the foundation of the other superpositions of stochastic processes, such as
the superposition of Ornstein–Uhlenbeck processes [59].

For n ∈ N, n ≥ 2, set the discrete probability measure πn as πn(dr) =
∑n

i=1 δri ci, where δr

is the Dirac’s delta at r > 0, and the non-negative sequences {ri}i=1,2,...,n and {ci}i=1,2,...,n are
given using another sequence {ηi}i=1,2,...,n with 0 = η0 < η1 < · · · < ηn–1 < ηn = +∞ as

ci =
∫ ηi

ηi–1

π (dr) and ri =
1
ci

∫ ηi

ηi–1

rπ (dr) (1 ≤ i ≤ n). (9)

We also set a discrete measure ln(dr) =
∑n

i=1 δri . In addition, for a fixed n ∈ N, we can find
a continuous function c : [0, +∞) → [0, +∞), such that c(ri) = ci (1 ≤ i ≤ n) with an abuse
of notations.

The Markovian embedding is discretizing the integral in the right-hand side as a finite
sum to obtain the finite-dimensional supCBI process Yn = (Yn,t)t≥0 as

Yn,t =
n∑

i=1

Y (ri)
t =

∫ +∞

0
Y (r)

t ln(dr), t ≥ 0 (10)
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with CBI processes

dY (r)
t = –rY (r)

t dt +
∫ +∞

0

∫ c(r)A+rBY (r)
t–

0
zNr(du, dz, dt), t > 0 (11)

defined at each r = ri (1 ≤ i ≤ n) with an initial condition. This is a natural discrete ana-
logue of (4). The choice of {ηi}i=1,2,...,n is not arbitrary and should be specified so that Yn

converges to Y in the sense of law [42, 43]. The convergence in this sense is satisfied in the
discretization scheme employed in Sect. 5.3. The measure-based representation, such as
(10) turns out to be useful in finding linkages between the original and discretized supCBI
processes. In addition, it allows us to analyze them with the least coexistence of summa-
tions and integrals. For the finite-dimensional supCBI process, a natural filtration gener-
ated by {Nri}i=1,2,...,n is denoted as F = (Ft)t≥0, which is augmented by sets of measure zero
as usual. Hereinafter, F -measurable and F -adapted processes are called measurable and
adapted processes without reference to F .

We end this subsection by presenting the discharge X = (Xt)t≥0 subject to a linear feed-
back control. In the previous studies, the discharge was not controlled, where we used
Xt = X + Yt with a constant X ≥ 0 representing the minimum discharge [38, 42]. We ex-
tend this by incorporating linear feedback as [43]

Xt = X + ω

∫ t

0
e–ρ(t–s)Xs ds + Yn,t , t ≥ 0, (12)

where ρ > 0 and ω ∈R are parameters of the feedback control, ω > 0 and ω < 0 represents
the water addition and abstraction, respectively. This is the simplest model to control the
discharge based on the observable inflow information (the last term of (12)) and the past
duration (the second term of (12)). The problem without any control is obtained by set-
ting ω = 0, suggesting that the proposed model generalizes the evaluation problem of the
supCBI process.

As we want to consider an ergodic control problem where the discharge eventually be-
comes stationary, we need the condition ρ > ω. Indeed, a straightforward calculation yields

E[Xt] =
ρ

ρ – ω

(
X + E[Yn,t]

)
with E[Yn,t] =

AM1

1 – BM1

∫ +∞

0

1
r
πn(dr). (13)

From (13), if the feedback is imposed so that the discharge Xt is close to a prescribed target
X̂ > 0, we should choose (ρ,ω) so that

E[Xt] = X̂ or equivalently ω = ρ

(
1 –

X + E[Yn,t]
X̂

)
. (14)

We also present the differential form of (12):

dXt =
{

–(ρ – ω)Xt + ρX +
∫ +∞

0
(ρ – r)Y (r)

t ln(dr)
}

dt

+
∫ +∞

0

∫ +∞

0

∫ c(r)A+rBY (r)
t–

0
zNr(du, dz, dt)ln(dr), t > 0

(15)

with X0 = X + Yn,0.
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Remark 2 The discharge for the original supCBI process can be analogously defined by
simply omitting the subscript n in the discussion above. This formal relationship between
the original and finite-dimensional supCBI processes is exploited in the sequel. See, also
Remark 4 on the notion of symbols.

Remark 3 What is essential in our model, especially from the well-posedness of the am-
biguity aversion that we will discuss, is the superposition of the measure-valued functions
rather than the feedback term. In fact, qualitatively, the same result holds if we use the
feedback

∫ t
0 ω(ρ – Xs) ds with ω,ρ > 0. Our results therefore apply to the case without

feedback regulations.

2.2 Ambiguity model
Ambiguity is formulated as a distortion of the Poisson random measure Nr such that
its compensator duv(dz) ds is modulated by some measurable and càdlàg field φ(·) =
(φt(·, ·))t≥0 with φt : (0, +∞)2 → (0, +∞), called the ambiguity process, as duφt(r, z)v(dz) ds
[27]. This modulation is performed under a measure change based on the Radon–
Nikodym derivative as in Yoshioka and Tsujimura [33] with a suitable modification to
account for the distributed reversion speed.

The benchmark probability measure is denoted as P under which the compensator of
Nr is duv(dz) ds. Hereinafter, the expectation under a probability measure Q is expressed
as EQ[·]. The Poisson random measure Nr is denoted as NQ,r under Q. We introduce the
exponential process M = (Mt)t≥0 depending on φ as follows:

Mt = exp

{∫ +∞

0
mt(r)ln(dr)

}
, t ≥ 0 (16)

with

mt(r) =
∫ t

0

∫ +∞

0

∫ c(r)A+rBY (r)
s–

0

(
lnφs–(z){NP,r(du, dz, ds) – duv(dz) ds}

–(φs(z) – 1 – lnφs(z)) duv(dz) ds

)
. (17)

The dependence of φ on r is suppressed in (17) to simplify the descriptions, which are
used in the sequel.

For φ, we assume the following conditions under which (16) is a positive martingale [61]:

EP

[∫ +∞

0

∫ t

0

∫ +∞

0

∫ c(r)A+rBY (r)
s–

0

(
φs(z) – 1 – lnφs(z)

)
duv(dz) dsln(dr)

]

< +∞, t > 0 (18)

and

EP

[
exp

{∫ +∞

0

∫ t

0

∫ +∞

0

∫ c(r)A+rBY (r)
s–

0

(
1 – φs(z) + φs(z) lnφs(z)

)
duv(dz) dsln(dr)

}]

< +∞, t > 0. (19)

As M is a positive martingale with M0 = 1, it is a Radon–Nikodym derivative that can be
written as dQ(φ)

dP between P and Q(φ) such that the compensator of the Poisson random
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measure NQ(φ),r on Q(φ) is duφt(z)v(dz) ds. We say that there is an ambiguity unless φt(·) ≡
1 (t ≥ 0). The ambiguity level is measured by the relative entropy [27]

EP

[
dQ(φ)

dP
|t ln

dQ(φ)
dP

|t
]

= EQ(φ)

[
ln

dQ(φ)
dP

|t
]

= EQ(φ)

[∫ +∞

0
mt(r)ln(dr)

]

= EQ(φ)

⎡
⎢⎣
∫ +∞

0

∫ t

0

∫ +∞

0

∫ c(r)A+rBY (r)
s–

0

⎛
⎜⎝

lnφs–(z)(NQ(φ),r(du, dz, ds)
– duv(dz) ds)

– (φs(z) – 1 – lnφs(z)) duv(dz) ds

⎞
⎟⎠ ln(dr)

⎤
⎥⎦

= EQ(φ)

⎡
⎢⎢⎢⎣
∫ +∞

0

∫ t

0

∫ +∞

0

∫ c(r)A+rBY (r)
s–

0

⎛
⎜⎜⎜⎝

lnφs–(z)(NQ(φ),r(du, dz, ds)
– duφs(z)v(dz) ds)

+ (φs(z) lnφs(z)
– φs(z) + 1) duv(dz) ds

⎞
⎟⎟⎟⎠ ln(dr)

⎤
⎥⎥⎥⎦

= EQ(φ)

[∫ +∞

0

∫ t

0

(
c(r)A + rBY (r)

s
)

×
∫ +∞

0

(
φs(z) lnφs(z) – φs(z) + 1

)
v(dz) dsln(dr)

]
, t ≥ 0. (20)

We end this subsection by defining the admissible set A of ambiguity processes φ:

A =
{
φ =

(
φt(·)

)
t≥0|φ is adapted and measurable, and satisfies (18) and (19).

}
. (21)

Hereinafter, we only consider ambiguity processes φ belonging to A. The reference to A
is omitted when there will be no confusion.

Remark 4 The mapping φ may depend on n ∈ N to define the measure πn, but its depen-
dence on n is suppressed in what follows. The same rule applies to the mappings b and κ

appearing in the sections below. Sometimes, we write a short description such that b(ri) is
described as bi for simplicity. This notation will be useful to better understand the finite-
and infinite-dimensional problems.

2.3 Worst-case evaluation problems
We introduce the worst-case maximization and minimization problems to evaluate the
maximum and minimum long-run discharge under the ambiguity. We explain the max-
imization case in this study; the minimization case can be handled similarly through a
suitable change of the sign of the ambiguity-aversion coefficient.

Set the penalty A(t,φ) of the ambiguity given φ as

A(t,φ) = EQ(φ)

[∫ +∞

0

1
ψ(r)

∫ t

0

(
c(r)A + rBY (r)

s
)

×
∫ +∞

0

(
φs(z) lnφs(z) – φs(z) + 1

)
v(dz) dsln(dr)

]
, t ≥ 0 (22)
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with an ambiguity-aversion coefficient ψ(·) as a positive univariate function. This ψ repre-
sents the degree of ambiguity aversion of the decision-maker who evaluates the discharge
in a manner that small ψ (resp., large ψ ) represents small (resp., large) penalization of the
ambiguity in our problem.

The penalty A reduces to the usual relative entropy when ψ is a constant, which corre-
sponds to the penalization used in the classical control problems [27], whereas it is rather
a weighted version of the relative entropy with respect to the reversion speed r > 0. This
case is understood as a situation where the decision-maker has a distributed ambiguity
aversion against the different time scales in the discharge timeseries.

Then, the worst-case evaluation problem of the long-run discharge is formulated as fol-
lows:

Find sup
φ∈A

lim sup
T→+∞

(
1
T
EQ(φ)

[∫ T

0
Xs ds

]
–

1
T
A(T ,φ)

)
. (23)

The supremum (23), if it exists, is denoted as H . The maximizing φ, if it exists, is denoted
as φ∗ and is called the worst-case ambiguity. The goal of this control problem is to find H ,
φ∗, and each term of (23) given φ∗. Indeed, what is important would be not the optimized
objective (23) itself but the worst-case discharge (first term) having the physical meaning
and the corresponding relative entropy (second term).

For later use, we provide the expectations of EQ(φ)[Y (ri)
t ] (i = 1, 2, . . . , n) and EQ(φ)[Xt]

given φt ≡ eθz (θ < β) such that M̄1 =
∫ +∞

0 eθzzv(dz) < B–1. Such a θ exists by (2). Taking
the expectations of (11) and (15) yields

d
dt

EQ(φ)
[
Y (ri)

t
]

= ciAM̄1 – ri(1 – BM̄1)EQ(φ)
[
Y (ri)

t
]
, t > 0 (24)

and

d
dt

EQ(φ)[Xt] =

{
–(ρ – ω)EQ(φ)[Xt] + ρX + AM̄1

+
n∑

i=1

(
ρ – ri(1 – BM̄1)

)
EQ(φ)

[
Y (ri)

t
]}

, t > 0. (25)

Therefore, we obtain the following proposition.

Proposition 1 Assume φt ≡ eθz (θ < β) such that M̄1 =
∫ +∞

0 eθzzv(dz) < B–1. Then, it fol-
lows that

∣∣EQ(φ)
[
Y (ri)

T
]∣∣, ∣∣EQ(φ)[XT ]

∣∣≤ C0 + C1 exp(–C2T), T ≥ 0, i = 1, 2, . . . , n (26)

with some positive constants C0, C1, C2 independent of T . In addition, for any real bounded
sequence {ai}i=0,1,...,n, it follows that

lim
T→+∞

1
T
EQ(φ)

[
a0XT +

n∑
i=1

aiY
(ri)
T

]
= 0. (27)
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Proof of Proposition 1 The first statement (26) is realized by a straightforward calculation
by ρ > ω and the assumption on θ . The second statement (27) is a consequence of the first
one (26). Indeed, we have

lim
T→+∞

1
T
EQ(φ)

[
a0XT +

n∑
i=1

aiY
(ri)
T

]

= a0 lim
T→+∞

1
T
EQ(φ)[XT ] + lim

T→+∞
1
T

n∑
i=1

aiEQ(φ)
[
Y (ri)

T
]

≤ |a0| lim
T→+∞

1
T
∣∣EQ(φ)[XT ]

∣∣ +
n∑

i=1

|ai| lim
T→+∞

1
T
∣∣EQ(φ)

[
Y (ri)

T
]∣∣

≤ |a0| 1
T

(C0 + C1) +
n∑

i=1

|ai| lim
T→+∞

1
T

(C0 + C1)

= 0. (28)

The other side of the inequality can be obtained similarly. �

Remark 5 The minimizing problem can be formulated as follows:

Find inf
φ∈A

lim inf
T→+∞

(
1
T
EQ(φ)

[∫ T

0
Xs ds

]
+

1
T
A(T ,φ)

)
. (29)

In the HJBE and EBSDE presented later, H and φ∗ in the minimization case are obtained
in a similar way.

3 HJBE formulation
3.1 Derivation
Following the ergodic control formulation (e.g., [9, 33]), the HJBE associated with (29) is

–h + x +

{
–(ρ – ω)x + ρX +

n∑
i=1

(ρ – ri)yi

}
∂V
∂x

–
n∑

i=1

riyi
∂V
∂yi

+ sup
{φi}=1,2,...,n

{ n∑
i=1

(ciA + riByi)

×
∫ ∞

0

(
�Vi(zi)φi(z) –

1
ψ(ri)

(
φi(z) lnφi(z) – φi(z) + 1

))
v(dzi)

}
= 0 (30)

with

�Vi(zi) = V (x + zi, y0, y1, . . . , yi + zi, . . . , yn)

– V (x, y0, y1, . . . , yi, . . . , yn), 1 ≤ i ≤ n (31)

whose solution is a couple (h, V ) of a constant h ∈ R and a smooth function V =
V (x, y0, y1, . . . , yn) ∈ C1(Rn+1) satisfying the linear growth condition with a constant C > 0:

lim sup
|x|,|y1|,|y2|,...,|yn|→+∞

V (x, y0, y1, . . . , yn)
1 + |x| +

∑n
i=1 |yi| ≤ C. (32)
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This HJBE (30) is rewritten by calculating the “sup” term as follows:

–h + x +

{
–(ρ – ω)x + ρX +

n∑
i=1

(ρ – ri)yi

}
∂V
∂x

–
n∑

i=1

riyi
∂V
∂yi

+
n∑

i=1

(ciA + riByi)
∫ ∞

0

1
ψ(ri)

(
exp

(
ψ(ri)�Vi(zi)

)
– 1
)
v(dzi) = 0.

(33)

Based on the Markovian control ansatz (e.g., [14]), we guess that the maximizer of (23) is
obtained through V as follows:

φ∗
t ≡ {

φ∗
i
(
z, Xt , Y (ri)

t , . . . , Y (rn)
t
)}

i=1,2,...,n

= arg max
φ={φi}=1,2,...,n

{ n∑
i=1

∫ ∞

0

(
�Vi(zi)φi(z) –

1
ψ(ri)

(
φi(z) lnφi(z) – φi(z) + 1

))
v(dzi)

}

=
{
exp

(
ψ(ri)�Vi(zi)

)}
i=1,2,...,n, (34)

where the last line is evaluated at (Xt , Y (ri)
t , . . . , Y (rn)

t ).

3.2 Solution and optimality
We explicitly solve the HJBE (33) and justify (34) under an assumption of the ambiguity-
aversion coefficient ψ . The solution obtained below has a simple form, while its existence
is nontrivial.

Proposition 2 The HJBE admits a solution (h, V ) of the affine form

V (x, y1, . . . , yn) = c + ax +
n∑

i=1

(bi – a)yi, (35)

h = ρaX + A
n∑

i=1

ci

ψ(ri)

∫ ∞

0

(
exp

(
ψ(ri)bizi

)
– 1
)
v(dzi) (36)

if each element of {ψ(ri)}i=1,2,...,n and B are sufficiently small, where c ∈ R is an arbitrary
constant, a = 1

ρ–ω
> 0, and bi > 0 (1 ≤ i ≤ n), represented by some function b(·) as bi = b(ri),

is a unique positive solution in (0, β

ψ(ri)
) of

b = Fi(b) ≡ ρa
ri

+
B

ψ(ri)

∫ ∞

0

(
exp

(
ψ(ri)bzi

)
– 1
)
v(dzi), 1 ≤ i ≤ n. (37)

Proof of Proposition 2 The representation (35) and (36) are obtained by substituting (35)
into (33). Specifically, we obtain

–h + x +

{
–(ρ – ω)x + ρX +

n∑
i=1

(ρ – ri)yi

}
a –

n∑
i=1

riyi(bi – a)

+
n∑

i=1

(ciA + riByi)
∫ ∞

0

1
ψ(ri)

(
exp

(
ψ(ri)bizi

)
– 1
)
v(dzi) = 0

(38)
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by �Vi(zi) = az + (bi – a)z = biz, 1 ≤ i ≤ n. Comparing each coefficient multiplied by
x, y1, . . . , yn yields (35)–(37).

What remains to be proven is the statement that there exists a small {ψ(ri)}i=1,2,...,n such
that (37) admits a unique positive solution. Fix i ∈ {1, 2, . . . , n}, we have

Fi(0) =
ρa
ri

> 0, (39)

dFi(b)
db

= B
∫ ∞

0
zi exp

(
ψ(ri)bizi

)
v(dzi) > 0,

dFi(0)
db

= B
∫ ∞

0
ziv(dzi) = BM1 ∈ (0, 1),

(40)

d2Fi(b)
db2 = Bψ(ri)

∫ ∞

0
z2

i exp
(
ψ(ri)bizi

)
v(dzi) > 0. (41)

Therefore, Fi(·) is strictly increasing and convex. By the classical intermediate value theo-
rem and (39), owing to assuming a tempered stable type v, (37) admits a unique solution
in (0, β

ψ(ri)
) if

Fi

(
β

ψ(ri)

)
<

β

ψ(ri)
, (42)

or equivalently if

ρa
ri

ψ(ri) + B
∫ ∞

0

(
exp(βzi) – 1

)
v(dzi) =

ρa
ri

ψ(ri) + B
(
–�(–α)

)
βα

=
ρa
ri

ψ(ri) + Bβα–1�(1 – α)β
–�(–α)
�(1 – α)

=
ρa
ri

ψ(ri) +
β

α
BM1

< β , (43)

namely, if

ρa
ri

ψ(ri) +
β

α
BM1 < β (44)

with the Gamma function �(·), which is possible if we choose a sufficiently small ψ(ri) > 0
for all i and B > 0. The proof is completed because the equation to find bi is decoupled
with each other. �

As a byproduct of Proof of Proposition 2, we understand how the parameter dependence
of ψ plays a role. The inequality (44) implies that in the constant case ψ(·) ≡ ψ̄ common
in the classical ambiguity model [27], it is impossible to choose a small ψ̄ uniformly with
respect to n, namely, uniformly with respect to the degree of Markovian embedding. This
is because the term ρa

r1
diverges to +∞ as n increases for generic π . The coefficient ψ

must be parameter-dependent such that ρa
ri

ψ(ri) < +∞ independent of n. The reasonable
choice is

ψ(r) ≡ ψ̄r (45)
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with a constant ψ̄ > 0. In this case, (43) reduces to

ρaψ̄ + B
∫ ∞

0

(
exp(βz) – 1

)
v(dz) < β , (46)

which is satisfied independent of n if B, ψ̄ > 0 are small. The present choice (45) means
that the ambiguity aversion is stronger for a larger reversion speed r corresponding to the
high-frequency components of the discharge. In the other words, the ambiguity aversion
against small reversion speed r (i.e., base flow) that would critically affect the long-term
dynamics should not be critically large as the state dynamics become unbounded. Notably,
any other monomial scaling cannot yield an r-independent condition (46), suggesting that
the correct scaling is essential for our problem.

From Proposition 2 and (34), we guess the worst-case ambiguity

φ∗
i
(
z, Xt , Y (r1)

t , . . . , Y (rn)
t
)

= exp
(
ψ(ri)bizi

)
. (47)

The next proposition shows that this φ∗ is indeed optimal.

Proposition 3 Under the assumption of Proposition 2 with (45), there are sufficiently small
B and ψ̄ independent of n such that the admissibility conditions (18) and (19) are satisfied
by (47). In addition, φ∗ is the worst-case ambiguity and h = H .

Proof of Proposition 3 The first statement is already proven above. The main tasks of the
proof are the verification of the admissibility by a direct substitution and the verification
of the optimality by exploiting the smoothness of the guessed solution.

We need to check that this φ∗ satisfies both (18) and (19). This is done as follows. For
(18), with φ = φ∗, we have

EP

[∫ +∞

0

∫ t

0

∫ +∞

0

∫ c(r)A+rBY (r)
s

0

(
φ∗

t (z) – 1 – lnφ∗
t (z)

)
duv(dz) dsln(dr)

]

= EP

[∫ +∞

0

∫ +∞

0

(
exp

(
ψ(ri)b(ri)z

)
– 1 – ψ(ri)b(ri)z

)
v(dz)

×
∫ t

0

(
c(r)A + rBY (r)

s
)

dsln(dr)
]

=
n∑

i=1

∫ +∞

0

(
exp

(
ψ(ri)b(ri)z

)
– 1 – ψ(ri)b(ri)z

)
v(dz)

×EP

[∫ t

0

(
ciA + riBY (ri)

s
)

ds
]

, t > 0. (48)

For i = 1, 2, . . . , n, we obtain the existence of the integral

∫ +∞

0

(
exp

(
ψ(ri)biz

)
– 1 – ψ(ri)biz

)
v(dz)

=
∫ +∞

0

(
exp

(
ψ(ri)biz

)
– 1
)
v(dz) – M1ψ(ri)bi. (49)
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We also have the estimate

EP

[∫ t

0

(
ciA + riBY (ri)

s
)

ds
]

= ciAt + riBEP

[∫ t

0
Y (ri)

s ds
]

= ciAt + riB
∫ t

0
EP

[
Y (ri)

s
]

ds < +∞, t > 0. (50)

Because of bi ∈ (0, β

ψ(ri)
),
∫∞

0 z exp(ψ(ri)biz)v(dz) < +∞; hence, (50) follows. Consequently,
(18) is satisfied by the mutual independence of each Y (ri) with the specified φ = φ∗.

For (19), we have

EP

[
exp

{∫ +∞

0

∫ t

0

∫ +∞

0

∫ c(r)A+rBY (r)
s

0

(
1 – φs(z) + φs(z) lnφs(z)

)
duv(dz) dsln(dr)

}]

= EP

⎡
⎢⎣exp

⎧⎪⎨
⎪⎩

n∑
i=1

⎛
⎜⎝

∫ +∞
0 (1 – exp(ψ(ri)biz)

+ ψ(ri)biz exp(ψ(ri)biz))v(dz)
× ∫ t

0 (ciA + riBY (ri)
s ) ds

⎞
⎟⎠
⎫⎪⎬
⎪⎭

⎤
⎥⎦ , t > 0. (51)

As in the previous case, we have

∫ +∞

0

(
1 – exp

(
ψ(ri)biz

)
+ ψ(ri)biz exp

(
ψ(ri)biz

))
v(dz) ≤ C (52)

with a constant C > 0 independent of i, n. So, (51) yields

EP

[
exp

{∫ +∞

0

∫ t

0

∫ +∞

0

∫ c(r)A+rBY (r)
s

0

(
1 – φs(z) + φs(z) lnφs(z)

)
duv(dz) dsln(dr)

}]

≤ EP

[
exp

{
C

n∑
i=1

∫ t

0

(
ciA + riBY (ri)

s
)

ds

}]

=
n∏

i=1

EP

[
exp

{
C
∫ t

0

(
ciA + riBY (ri)

s
)

ds
}]

=
n∏

i=1

EP

[
exp

{
ciCAt + riCB

∫ t

0
Y (ri)

s ds
}]

= exp(CAt)
n∏

i=1

EP

[
exp

(
riCB

∫ t

0
Y (ri)

s ds
)]

, t > 0. (53)

Here, we again used the mutual independence of each Y (ri). We must show the existence of
each expectation at the bottom of (53). However, this is possible with a small B (Appendix
of Yoshioka and Tsujimura [33]). Consequently, both (18) and (19) are satisfied by the
guessed control.

Once the admissibility of φ∗ is obtained, it remains to prove h = H . As φ∗ is independent
of the state variables, the optimality, namely, h equals the maximum value of (23) follows.
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Below, we exploit the affine functional form of V in (35). More specifically, we have

n∑
i=1

∑
0<τi,j<T

(
V
(
Xτi,j– + �Ni,j,

{
δi,k
(
Y (ri)

τk,j– + �Nk,j
)}

k=1,2,...,n

)

– V
(
Xτi,j–,

{
δi,kY (ri)

τk,j–
}

k=1,2,...,n

))

=
n∑

i=1

∑
0<τi,j<T

(
a(Xτi,j– + �Ni,j) + (bi – a)

(
Y (ri)

τi,j– + �Ni,j
)

– aXτi,j– – (bi – a)Y (ri)
τi,j–
)

=
n∑

i=1

∑
0<τi,j<T

bi�Ni,j, (54)

where δ·,· is the Kronecker’s delta, {τi,j}j=1,2,3,... is an increasing sequence representing the
jth jump of Nri and the summation

∑
0<τi,j<T is with respect to all j satisfying 0 < τi,j < T ,

and �Ni,j is the jump of Nri at τi,j. Because each Nri has a bounded variation and hence∑
0<τi,j<T �Ni,j is bounded a.s. and its compensator is

∫ T
0 (ciA + riBY (ri)

s )
∫∞

0 φi,s(z)v(dzi) ds,
the expectation of this summation under EQ(φ) is given by

EQ(φ)

[ n∑
i=1

∑
0<τi,j<T

bi�Ni,j

]

= EQ(φ)

[ n∑
i=1

bi
∑

0<τi,j<T

�Ni,j

]

=
n∑

i=1

biEQ(φ)

[ ∑
0<τi,j<T

�Ni,j

]

=
n∑

i=1

biEQ(φ)

[∫ T

0

(
ciA + riBY (ri)

s
)∫ ∞

0
φi,s(z)v(dzi) ds

]

= EQ(φ)

[ n∑
i=1

∫ T

0

(
ciA + riBY (ri)

s
)∫ ∞

0
biφi,s(z)v(dzi) ds

]

= EQ(φ)

[ n∑
i=1

∫ T

0

(
ciA + riBY (ri)

s
)∫ ∞

0
�Vi(zi)φi,s(z)v(dzi) ds

]
. (55)

By Dynkin’s formula and (30) with any solution (h, V ) in Proposition 2, we have (inte-
grands are evaluated at (Xs, {Y (ri)

s }i=1,2,...,n))

EQ(φ)
[
V
(
XT ,

{
Y (ri)

T
}

i=1,2,...,n

)]
– V

(
x, {yi}i=1,2,...,n

)

= EQ(φ)

[∫ T

0

({–(ρ – ω)Xs + ρX +
∑n

i=1(ρ – ri)Y (ri)
s } ∂V

∂x –
∑n

i=1 riY
(ri)
s

∂V
∂yi

+
∑n

i=1(ciA + riBY (ri)
s )

∫∞
0 �Vi(zi)φi,s(z)v(dzi)

)
ds

]

= Th – EQ(φ)

[∫ T

0
Xs ds

]
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+ EQ(φ)

⎡
⎢⎢⎢⎣
∫ T

0

⎛
⎜⎜⎜⎝

∑n
i=1(ciA + riBY (ri)

s )
∫∞

0 �Vi(zi)φi,s(z)v(dzi)

– sup{φi}=1,2,...,n{
∑n

i=1(ciA + riBY (ri)
s )

× ∫∞
0
( �Vi(zi)φi,s(z)

– 1
ψ(ri) (φi,s(z) lnφi,s(z)–φi,s(z)+1)

)
v(dzi)}

⎞
⎟⎟⎟⎠ ds

⎤
⎥⎥⎥⎦ , (56)

for T > 0, from which we obtain

h =
EQ(φ)[V (XT , {Y (ri)

T }i=1,2,...,n)] – V (x, {yi}i=1,2,...,n)
T

+
1
T
EQ(φ)

[∫ T

0
Xs ds

]

+
1
T
EQ(φ)

⎡
⎢⎢⎢⎣
∫ T

0

⎛
⎜⎜⎜⎝

–
∑n

i=1(ciA + riBY (ri)
s )

∫∞
0 �Vi(zi)φi,s(z)v(dzi)

+ sup{φi}=1,2,...,n{
∑n

i=1(ciA + riBY (ri)
s )

× ∫∞
0
( �Vi(zi)φi,s(z)

– 1
ψ(ri) (φi,s(z) lnφi,s(z)–φi,s(z)+1)

)
v(dzi)}

⎞
⎟⎟⎟⎠ ds

⎤
⎥⎥⎥⎦ . (57)

Because φ ∈A is arbitrary, the linear growth condition (32), and Proposition 1, we obtain

h ≥ lim sup
T→+∞

1
T

⎧⎪⎨
⎪⎩

EQ(φ)
[ ∫ T

0 Xs ds
]

– EQ(φ)
[ ∫ T

0
∑n

i=1
(
ciA + riBY (ri)

s
)

× ∫∞
0

1
ψ(ri)

(
φi,s(z) lnφi,s(z) – φi,s(z) + 1

)
v(dzi) ds

]

⎫⎪⎬
⎪⎭

= lim sup
T→+∞

1
T

{
EQ(φ)

[∫ T

0
Xs ds

]
– A(T ,φ)

}
. (58)

Hence, we obtain h ≥ H and the equality h = H follows with φ = φ∗ of (47), proving the
optimality. �

Remark 6 If (ρ,ω) satisfies (14), H depends on them only through ρa = ρ

ρ–ω
= constant.

4 EBSDE formulation
4.1 Derivation
We provide another view of the control problem (23) from the perspective of EBSDE.
The key relationship is the duality between the HJBE and EBSDE [47, 50], which is used
here as well. We will use the finite-dimensional supCBI process. In this subsection, we
heuristically derive the EBSDE. Its optimality is verified in the next subsection.

EBSDE characterizes the problem differently from HJBE as it depends on a Martingale
representation of auxiliary stochastic processes. Our BSDE is categorized as an EBSDE
whose solution involves some adapted processes and a real constant. This constant is
expected to be identified as the maximized objective H . Given an admissible φ, set the
BSDE whose solution is the triplet (W , U ,η): an adapted square-integrable scalar process
W = (Wt)t≥0, a predictable process U(·, ·) = (Ut(·, ·))t≥0, such that

EQ(φ)

[∫ +∞

0

∫ T

t

∫ +∞

0

∫ c(r)A+rBY (r)
s–

0

{
Us(r, z)

}2
φs(z) duv(dz) dsln(dr)

]

< +∞, 0 ≤ t ≤ T (59)

and a constant η ∈R:

–dWt =
(
�(Xt , Yt , Ut) – η

)
dt
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–
∫ +∞

0

∫ +∞

0

∫ c(r)A+rBY (r)
t–

0
Ut(r, z)

(
NP,r(du, dz, dt)

– duv(dz) dt
)
ln(dr) (UnderP)

=
(

�(Xt , Yt , Ut) – η

–
∫ +∞

0

(
c(r)A + rBY (r)

t
)∫ +∞

0
Ut(r, z)

(
φt(z) – 1

)
v(dz)ln(dr)

)
dt

–
∫ +∞

0

∫ +∞

0

∫ c(r)A+rBY (r)
t–

0
Ut(r, z)

(
NQ(φ),r(du, dz, dt) – duφt(z)v(dz) dt

)

× ln(dr)
(
UnderQ(φ)

)
, t > 0, (60)

�(Xt , Yt , Ut) = �(Xt , {Y (ri)
t }1≤i≤n, {U (ri)

t }1≤i≤n) with some � : R2n+1 → R determined later.
From (60), we obtain

W0 – WT = –Tη +
∫ T

0

(
�(Xt , Yt , Ut) –

∫ +∞

0

(
c(r)A + rBY (r)

t
)∫ +∞

0
Ut(r, z)

(
φt(z) – 1

)

× v(dz)ln(dr)
)

dt

–
∫ +∞

0

∫ T

0

∫ +∞

0

∫ c(r)A+rBY (r)
t–

0
Ut(r, z)

(
NQ(φ),r(du, dz, dt)

– duφt(z)v(dz) dt
)
ln(dr). (61)

Then, we deduce

η =
1
T
EQ(φ)[WT – W0]

+
1
T
EQ(φ)

[∫ T

0

(
�(Xt , Yt , Ut)

–
∫ +∞

0

(
c(r)A + rBY (r)

t
)∫ +∞

0
Ut(r, z)

(
φt(z) – 1

)
v(dz)ln(dr)

)
dt
]

=
1
T
EQ(φ)[WT – W0]

+
1
T
EQ(φ)

⎡
⎢⎣
∫ T

0

⎛
⎜⎝

�(Xt , Yt , Ut)
–
∫ +∞

0 (c(r)A + rBY (r)
t )

∫ +∞
0 Ut(r, z)(φt(z) – 1)v(dz)ln(dr)

– L(Xt , Yt ,φt)

⎞
⎟⎠ dt

⎤
⎥⎦

+
1
T
EQ(φ)

[∫ T

0
L(Xt , Yt ,φt) dt

]
(62)

with the choices

L(Xt , Yt ,φt) = Xt –
∫ ∞

0

(
c(r)A + rBY (r)

t
) 1
ψ(r)

×
∫ +∞

0

(
φt(z) lnφt(z) – φt(z) + 1

)
v(dz)ln(dr) (63)
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and

�(Xt , Yt , Ut) = sup
φt (·)>0

{∫ +∞

0

(
c(r)A + rBY (r)

t
)

×
∫ +∞

0
Ut(r, z)

(
φt(z) – 1

)
v(dz)ln(dr) + L(Xt , Yt ,φt)

}
. (64)

With these L and � , we may expect the representation

H = sup
φ∈A

lim sup
T→+∞

1
T
EQ(φ)

[∫ T

0
L(Xt , Yt , Ut ,φt) dt

]
. (65)

If

lim sup
T→+∞

1
T
EQ(φ)[WT – W0] = 0, (66)

we obtain the inequality

η = lim sup
T→+∞

1
T

⎛
⎜⎝EQ(φ)

[∫ T
0

( �(Xt ,Yt ,Ut )
–
∫ +∞

0 (c(r)A+rBY (r)
t )

∫ +∞
0 Ut (r,z)(φt (z)–1)v(dz)ln(dr)

–L(Xt ,Yt ,φt )

)
dt
]

+ EQ(φ)[
∫ T

0 L(Xt , Yt ,φt) dt]

⎞
⎟⎠

≥ lim sup
T→+∞

1
T

(
EQ(φ)[

∫ T
0 (�(Xt , Yt , Ut) – �(Xt , Yt , Ut)) dt]
+ EQ(φ)[

∫ T
0 L(Xt , Yt ,φt) dt]

)

= lim sup
T→+∞

1
T
EQ(φ)

[∫ T

0
L(Xt , Yt ,φt) dt

]
(67)

and hence

η ≥ sup
φ∈A

lim sup
T→+∞

1
T
EQ(φ)

[∫ T

0
L(Xt , Yt , Ut ,φt) dt

]
= H . (68)

The right-hand side of (64) is rewritten as

sup
φt (·)>0

{ ∫ +∞
0
(
c(r)A + rBY (r)

t
) ∫ +∞

0 Ut(r, z)
(
φt(z) – 1

)
v(dz)ln(dr)

+ Xt –
(
c(r)A + rBY (r)

t
) ∫∞

0
1

ψ(r)
∫ +∞

0
(
φt(z) lnφt(z) – φt(z) + 1

)
v(dz)ln(dr)

}

= Xt +
(
c(r)A + rBY (r)

t
)∫ +∞

0

∫ +∞

0
sup

φt (·)>0

(
Ut(r, z)

(
φt(z) – 1

)

–
φt(z) lnφt(z) – φt(z) + 1

ψ(r)

)
v(dz)ln(dr), (69)

for which we have

sup
φt (·)>0

(
Ut(r, z)

(
φt(z) – 1

)
–

φt(z) lnφt(z) – φt(z) + 1
ψ(r)

)

= Ut(r, z)
(
eψ(r)Ut (r,z) – 1

)
–

ψ(r)Ut(r, z)eψ(r)Ut (r,z) – eψ(r)Ut (r,z) + 1
ψ(r)

=
eψ(r)Ut (r,z) – ψ(r)Ut(r, z) – 1

ψ(r)

(70)
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with the maximizer of the “sup” term given by φt = φ̃t = eψ(r)Ut (r,z). Consequently, we obtain
the equality

η =
1
T
EQ(φ̃)

[∫ T

0
L(Xt , Yt , Ut , φ̃t) dt

]
≥ H (71)

and hence η = H and φ̃ = φ∗ by (68) if this φ = φ̃ is admissible.
From (64) and (69), our EBSDE on P should have the form

–dWt =
(
�(Xt , Yt , Ut) – η

)
dt

–
∫ +∞

0

∫ +∞

0

∫ c(r)A+rBY (r)
t–

0
Ut(r, z)

× (
NP,r(du, dz, dt) – duv(dz) dt

)
ln(dr), t > 0 (72)

with � given by

�(Xt , Yt , Ut) = Xt +
∫ +∞

0

(
c(r)A + rBY (r)

t
)

×
∫ +∞

0

eψ(r)Ut (r,z) – ψ(r)Ut(r, z) – 1
ψ(r)

v(dz)ln(dr). (73)

4.2 Optimality
We verify the optimality of the EBSDE (73) using a guessed-solution technique. We guess
the affine form

Wt = pXt +
∫ +∞

0

(
ϕ(r) – p

)
Y (r)

t ln(dr) and

Ut(ri, z) = κ(ri)z (i = 1, 2, . . . , n), t > 0
(74)

with some constant p and fields ϕ(·), κ(·). A straightforward calculation shows

–dWt = –p dXt –
∫ +∞

0
ϕ(r) dY (r)

t ln(dr)

= –p
{

–(ρ – ω)Xt + ρX +
∫ +∞

0
(ρ – r)Y (r)

t ln(dr)
}

dt

– p
∫ +∞

0

∫ +∞

0

∫ c(r)A+rBY (r)
t–

0
zNP,r(du, dz, dt)ln(dr)

–
{

–
∫ +∞

0

(
ϕ(r) – p

)
rY (r)

t ln(dr) dt

+
∫ +∞

0

(
ϕ(r) – p

)∫ +∞

0

∫ c(r)A+riBY (r)
t–

0
zNP,r(du, dz, dt)ln(dr)

}

=
{

p(ρ – ω)Xt – pρX +
∫ +∞

0

{
ϕ(r)r – pρ

}
Y (r)

t ln(dr)
}

dt

–
∫ +∞

0
ϕ(r)

∫ +∞

0

∫ c(r)A+riBY (r)
t–

0
zNP,r(du, dz, dt)ln(dr). (75)
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Substituting (74) and (75) into (72) yields

{
p(ρ – ω)Xt – pρX +

∫ +∞

0

{
ϕ(r)r – pρ

}
Y (r)

t ln(dr)(dr)
}

dt

–
∫ +∞

0
ϕ(r)

∫ +∞

0

∫ c(r)A+riBY (r)
t–

0
zNP,r(du, dz, dt)π (dr)

=
(

Xt +
∫ +∞

0

(
c(r)A + rBY (r)

t
)∫ +∞

0

eψ(r)κ(r)z – 1
ψ(r)

v(dz)ln(dr) – η

)
dt

–
∫ +∞

0

∫ +∞

0

∫ c(r)A+rBY (r)
t–

0
κ(r)zNP,r(du, dz, dt)ln(dr).

(76)

From this identity, we obtain

p(ρ – ω) = 1 or equivalently p =
1

ρ – ω
, (77)

∫ +∞

0

{
ϕ(r)r – pρ – rB

∫ +∞

0

eψ(r)κ(r)z – 1
ψ(r)

v(dz)
}

Y (r)
t ln(dr) = 0, (78)

∫ +∞

0

(
ϕ(r) – κ(r)

)
ln(dr) = 0, (79)

and

η = pρX + A
∫ +∞

0
c(r)

∫ +∞

0

eψ(r)κ(r)z – 1
ψ(r)

v(dz)ln(dr)

= pρX + A
∫ +∞

0

∫ +∞

0

eψ(r)κ(r)z – 1
ψ(r)

v(dz)πn(dr).

(80)

Considering the discreteness of the measure πn(dr), from (79), we obtain ϕ = κ a.e. on πn.
Then, from (78), we have

ϕ(r) =
pρ

r
+ B

∫ +∞

0

eψ(r)ϕ(r)z – 1
ψ(r)

v(dz) a.e. on πn. (81)

From Proposition 2, we find the equivalence

p = a, ϕ(ri) = κ(ri) = bi (1 ≤ i ≤ n), and η = h = H . (82)

As we already know h = H . In summary, the EBSDE (72) admits a solution (74) whose
coefficients are determined uniquely from (77)–(80) provided that B and ψ̄ are sufficiently
small. Notably, the condition (66) is satisfied in this case as Wt is a linear combination of
Xt , Y (ri)

t (Proposition 1) and their expectations on Q(φ) are bounded by a positive constant
independent from T .

In summary, by Proposition 2, we obtain Proposition 4 on the optimality of the EBSDE.

Proposition 4 Under the assumption of Proposition 2, with (45), there are sufficiently
small B and ψ̄ independent of n, such that the EBSD (72)–(73) admits a solution (W , U ,η)
given in (74) and (82). In this case, φt = φ̃t = eψ(r)Ut (r,z) is the worst-case ambiguity, i.e.,
φt = φ∗

t as a maximizer of (23).



Yoshioka and Yoshioka Journal of Mathematics in Industry            (2023) 13:7 Page 22 of 28

5 Application and implications to the infinite-dimensional case
5.1 Worst-case discharge and relative entropy
Owing to the affine nature of the proposed model, each term of the optimized objective
(23) is computable in a closed-form. The explanation below is based on the EBSDE, while
the same follows if one uses the HJBE due to their equivalence proven in the previous
sections.

Assume that the assumption of Proposition 2 is satisfied. As in (13), we have

X∗ = lim sup
T→+∞

1
T
EQ(φ∗)

[∫ T

0
Xs ds

]
=

ρ

ρ – ω

(
X +

∫ +∞

0

AM∗
1(r)

1 – BM∗
1(r)

1
r
πn(dr)

)
(83)

with M∗
1 =

∫ +∞
0 eψ(r)κ(r)zzv(dz). Then, we obtain the relative entropy in the worst case as

R∗ = ψ̄ lim sup
T→+∞

1
T
A
(
T ,φ∗) = ψ̄

{
lim sup
T→+∞

1
T
EQ(φ∗)

[∫ T

0
Xs ds

]
– H

}
(84)

using (83) and (36) with the fact that h = H . Note the normalization by ψ̄ in (84).

5.2 Infinite-dimensional case
The optimality results obtained so far suggest under the limit n → +∞ we arrive at the
integral representation of H as

H = ρaX + A
∫ +∞

0

1
ψ(r)

∫ ∞

0

(
exp

(
ψ(r)κ(r)z

)
– 1
)
v(dz)π (dr) (85)

if it exists. Guessing this limit is not so difficult and its existence follows if ψ(r) = ψ̄r as
ψ(r)κ(r) < β for r > 0 in this case. Indeed, the right-hand side of (85) is finite due to

∫ +∞

0

1
ψ̄r

∫ ∞

0

(
exp

(
ψ̄ru(r)z

)
– 1
)
v(dz)π (dr)

≤
∫ +∞

0

1
ψ̄r

∫ ∞

0

(
exp(βz) – 1

)
v(dz)π (dr)

=
1
ψ̄

·
∫ +∞

0

1
r
π (dr) · (–α)�(–α)βα

< +∞

. (86)

Therefore, the integral representation (85) is well-defined. However, reformulating the
entire process of the control problem from the dynamics to the optimality equations needs
to introduce the theory of stochastic control in an infinite dimension. We will further
analyze the topic by focusing on generic affine jump-diffusion processes. The convergence
under the limit n → +∞ is examined numerically below.

5.3 Application
The obtained worst-case ambiguity φ∗, worst-case objective H , corresponding long-run
discharge X∗, and relative entropy R∗ are computed with a real dataset. We apply the mo-
ment matching method [38, 42] to the data in the midstream station of Hii River, Japan,
where the four-year hourly discharge data of a dam site is available since April 2016 [62].
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In the downstream reach of this station, we have been analyzing the discharge dynamics
as well as habitat suitability of fishery resources [63], where the water abstraction for the
agriculture and the water addition from the bypassing water from an upstream branch of
the river exist. Therefore, this study area has been chosen as a potential application site of
the proposed model.

We assume the Gamma-type density π (dr) ∼ rαr–1 exp(–r/βr) dr with αr > 1 and
βr > 0, with which we obtain the sub-exponential autocorrelation Cor(s) = (1 + (1 –
BM1)βrs)–(αr–1), s ≥ 0. We identified the parameter values of the supCBI process as fol-
lows using the data from the four water years from June 1, 2016, to May 31, 2020: α = 0.90
(-), β = 0.0113 (s/m3), A = 0.0109 (m3α/sα/h), B = 0.0621 (m3(α–1)/s(α–1)/h), X = 1.0 (m3/s),
αr = 2.97 (-), and βr = 0.0201 (1/h). We then verify (2) due to 1–BM1 = 0.08. The identified
model reproduces the key statistics (average (m3/s), standard deviation (m3/s), skewness
(-), kurtosis (-)) as follows; average: 5.131 (data) and 5.096 (model), standard deviation
15.45 (data) and 15.53 (model), skewness 11.85 (data) and 11.20 (model), and kurtosis
195.0 (data) and 199.4 (model). The empirical and modeled statistics agree reasonably
well.

The worst-case objective H is numerically computed against different values of the co-
efficient ψ̄ , where the ambiguity-aversion coefficient of the form ψ(r) = ψ̄r suggested in
the theoretical analysis is employed. We have set ρ = 0.10 (1/h), and ω (1/h) is chosen so
that the target value X̂ becomes 10 (m3/s) as a demonstrative example.

Figure 2 shows the computed H for both the worst-case overestimation and under-
estimation with the discrete measure πn determined by the sequence ηi = �ηi/nγ (i =
0, 1, 2, . . . , n) with η̄ = 0.50 (1/h) and γ = 0.25, satisfying the convergence condition of Yosh-
ioka [42]. As shown in Fig. 2, the three curves in each case (n = 800 (Blue), 1600 (Magenta),
3200 (Red)) are difficult to distinguish from each other, demonstrating that the computed
H are already sufficiently accurate at n = 800.

The convergence rate of H with respect to the resolution is n is further discussed quan-
titatively. Table 1 shows the computed H and its error Er = HRef – H with respect to the

Figure 2 Computed H for both the worst-case
overestimation (upper-half panel) and underestimation
(lower-half panel) with different values of the
discretization parameter values n = 800 (Blue), 1600
(Magenta), 3200 (Red)

Table 1 Computed H and its error Er = HRef – H with respect to the reference HRef (H with n = 6400)
for different values of n. HRef is 5.8968 (m3/s) in the overestimation case and is 4.9057 (m3/s) in the
underestimation case. The convergence rate “Conv” at each n is log2(Er|n/2/Er|n)
n Overestimation case Underestimation case

H Er Conv H Er Conv

3200 5.8966 1.832.E–04 1.49.E+00 4.9056 1.370.E–04 1.49.E+00
1600 5.8963 5.143.E–04 1.11.E+00 4.9053 3.848.E–04 1.11.E+00
800 5.8957 1.108.E–03 9.64.E–01 4.9049 8.287.E–04 9.64.E–01
400 5.8947 2.161.E–03 9.22.E–01 4.9041 1.617.E–03 9.22.E–01
200 5.8927 4.095.E–03 4.9027 3.064.E–03
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reference value HRef (H with n = 6400 as we do not have any analytical solutions) for dif-
ferent values of n for both the overestimation and underestimation cases. The parameter
ψ̄ of ambiguity-aversion is set as ψ̄ = 0.0004 (s/m3), but similar results follow for not too
large ψ̄ around which H of the overestimation case becomes ill-defined. The table shows
that the convergence rate is at a first order with respect to n in both cases, and the errors
are sufficiently small with a relatively high resolution. Hereinafter, we use the resolution
n = 3200 based on this numerical experiment.

Then, we analyze the quantities H , D∗ ≡ X∗/X̂, and R∗ to evaluate the worst-case op-
timization results. Here, D∗ is the ratio between the expected and target discharges, and
the deviation between them becomes larger as they deviate from each other. Figs. 3–5
show the computed H , D∗, and R∗ as a two-variable function of the target discharge X̂
and coefficient ψ̄ . Each panel (a) in these figures demonstrates that there is a connected
region in which the overestimation problem is ill-defined, as expected from the proof of
Proposition 2. Each of the quantities H , D∗, and R∗ smoothly depends on X̂ and ψ̄ , and the
effects of overestimation and underestimation become more negligible as ψ̄ gets closer to
0, which is consistent with our intuition. Conversely, the degree of overestimation and
underestimation becomes more significant as ψ̄ increases with which the worst-case am-
biguity φ∗ exponentially increases and decreases with respect to z, respectively. Note an
interesting qualitative difference between the overestimation and underestimation cases

Figure 3 Computed H as a two-variable function of the target discharge X̂ and the ambiguity-aversion
coefficient ψ̄ : (a) overestimation case and (b) underestimation case. The contour lines divide the maximum
and minimum values into 10 intervals. The white area shows that the problem becomes ill-posed (the positive
solution to (37) was not found)

Figure 4 Computed ratio D∗ = X∗/X̂ as a two-variable function of the target discharge X̂ and the
ambiguity-aversion coefficient ψ̄ : (a) overestimation case and (b) underestimation case. The same legends
with Fig. 3
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Figure 5 Computed relative entropy R∗ as a two-variable function of the target discharge X̂ and the
ambiguity-aversion coefficient ψ̄ : (a) overestimation case and (b) underestimation case. The same legends
with Fig. 3

Figure 6 The relationship between the DSi load F (g/s) and discharge X (m3/s). Circles are measured values
and the line is the least-squares fitting (F = 5.486X + 0.3344, R2 value is 0.943)

that the computed quantities change rapidly for large (resp., small) X̂, ψ̄ in the former
(resp., latter).

The computational results suggest that once given the target discharge and ambiguity
aversion, both of which will be chosen by an environmental manager, the worst-case dis-
charge X∗ and related quantities, such as H and R∗, can be evaluated numerically. Finally,
we emphasize that the finite H was obtained due to the parameter-dependent ψ , even for
the fine resolution, as theoretically expected from the discussion below Proposition 2. As
we demonstrated, one can predict the worst-case discharges and the associated amount
of the relative entropy considering the level of ambiguity aversion.

Remark 7 With our framework, we can also evaluate the worst-case optimization problem
of an affine functional of the discharge. Indeed, we found an affine relationship between
the discharge and DSi load F (g/s) measured in Si. This is a key water quality variable for
assessing river environments, particularly for assessing eutrophication. A least-squares
fitting with the DSi data (67 sampling data collected from March 26 2019 to December 1
2022) collected at 1.7 km downstream of the discharge station gives the linear relationship
between the DSi load F and discharge X as

F = f0X + f1 (87)

gives f0 = 5.486 (g/m3) and f1 = 0.3344 (g/s) with the R2 value 0.943 (Fig. 6). Considering
this affine relationship, the worst-case upper and lower bounds of L as a continuous-time
scalar stochastic process can be evaluated similarly as the discharge X.
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6 Conclusion
We proposed a novel model for the worst-case evaluations of the streamflow discharge
under the model ambiguity using the supCBI process. We demonstrated that the opti-
mization results obtained from the HJBE and EBSDE are equivalent to each other. We
provided an application example of the proposed model with an existing record of the
discharge to show its applicability in a realistic case.

This study thus serves as a case study concerning both optimality equations, simulta-
neously deepening their understandings. Owing to the affine property of the stochastic
process model, a similar methodology can be applied to other affine processes, such as
the Hawkes [64] and Volterra processes [65]. The proposed model can also be applied at
least formally to nonaffine cases where the HJBE and EBSDE will not be solvable analyti-
cally. Some numerical approximation will be necessary in such a case where a Markovian
embedding would play a pivotal role, as in this study. Currently, an application of an ex-
tended model based on the proposed SDE formulation to a quadratic control problem
under incomplete information is under investigation.
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