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Abstract
In this paper, we model mass running urban races, taking into consideration several
conditioning factors. The main goal is to find ideal configurations of the start of the
race, splitting it into several waves, reducing the density of athletes and the overall
time lost, when comparing the normal race results with a race without density
constraints. This model takes into account distinct realistic runners’ profiles, changes
in slope and width on the race course and its influence on the running pace.
Moreover, density levels, dynamics of the start of the race and time between the
departure of waves are also considered.
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1 Introduction
Urban races with a massive number of participants are common on most major cities
worldwide. The logistics for preparing these events have to take into consideration sev-
eral factors that ensure not only the fast return to the normal functioning of the traffic, but
also the satisfaction of runners, concerning total time spent, race conditions, etc. There are
lots of different race settings: 10 km races, half-marathons, full marathons, or loop races
with a different number of laps for different groups, and the number of participants can
easily reach up to 40,000 for the longer ones. Obviously, the costs associated to security,
traffic management and staff can reach significant values, so the general configuration is
something that concerns organizing teams. On the other hand, it is usual for these events
to be sponsored by companies (sometimes the event even takes the name of the spon-
sor); so, in order to keep financial support, organizers need to maintain high standards of
service quality. This problem was presented as a challenge in an European Study Group
for Industry some years ago by a company that organizes running events, and they were
specifically concerned with 10 km races, in particular, on the split of runners into waves.
The first steps towards the design of the model that we present were taken during that
event.

The fact that on smaller courses the delays associated to density issues have a larger
proportional impact on the final times of runners led us to focus our simulations on 10 km
races instead of longer races. Loop races are also a challenge in terms of evaluating the
best starting points for the different departures and the corresponding timings, and is
something that can be addressed in a future work.
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This paper attempts to reproduce the usual dynamic of an urban race taking into account
several distinct aspects that influence the behaviour of runners. The developed model also
aims at evaluating and comparing different starting configurations that could be adopted
by the organization, and to point in the direction of some strategies that will allow to
reduce jams and congestions during the race, without impacting the competitive environ-
ment, while not increasing significantly the race total time. The company that presented
the challenge was more concerned with the departure configuration, as the data that they
provided showed that the main congestions were during that phase of the race.

On the one hand, to split the race into several waves, has implicitly associated the idea
that to minimize the number of delayed runners, the slower ones should start in the last
wave. But on the other, this has an implication on the total time of the race, since the
slower runners are going to be the last ones to start running. This reasoning implies that a
large number of waves could be counterproductive, since it would take longer to clear the
involved infrastructures. This cost-benefit trade-off has to be quantified and in our model
we consider a metric that penalizes departure delays and also the increase in the total time
of the race.

To make the model more realistic, we also take into consideration the influence of eleva-
tion gain/loss and the presence of slow and fast runners in all waves. The parameters taken
on the metric will be justified mainly with empirical arguments but, whenever possible,
we will try to provide some data validation.

Other parameters, like the weather, or the runners’ tiredness can be taken into ac-
count. Rainy conditions influence a runner’s performance, because a more careful ap-
proach to other runners decreases speed, or clothes getting soaked increases the weight,
slowing runners down. Wind also influences speed (differences can be substantial, but are
transversal to all runners and can be considered as a factor similar to the elevation). On
the other hand, hot and humid conditions will also decrease general performances. Con-
cerning tiredness, the main drive for this work are the congestions at the beginning of the
race, but considering a factor of tiredness for each runner might have a substantial impact
on the final times of runners. The data set analysed only considers final times of athletes,
so when we implement a profile, this factor is already included, but diluted over the whole
race.

We emphasize that the set of parameters used are the ones that better adjust to the
analysed videos and runners data, but the model is easily adapted for other sets, and the
simulations that follow can also be made without any extra effort.

The overall mathematical model is an initial value problem (one dimensional in space),
given by a system of ordinary differential equations (one equation for each runner) re-
lating their position and speed. The speeds change over time in response to the distinct
runner’s profiles and density levels as well as slope and width of the race course. More-
over, we also stress that the time-step based numerical simulations are obtained using
time-integration schemes for the sets of ordinary differential equations that compose the
proposed mathematical model (see, e.g., Lambert [6]). The code is available on the pub-
lic GitHub repository mentioned in the Declarations section and it is possible to change
directly the relevant parameters and to obtain the corresponding simulations.

Concerning the literature on this subject, it is possible to find several papers related,
but the emphasis is different from the one taken in our approach. In Treiber et al. [15], a
traffic model is analysed for cross-country ski marathons, which represents an approach
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to a non-vehicular traffic flow model, with the existence of lanes and taking into account
different fitness levels, gradients, and interactions between the athletes in all traffic situa-
tions. The same author takes another approach in Treiber [14], where running marathons
are evaluated, using a macroscopic model for non-congested flow, which is coupled to a
kinematic-wave model for congested flow (under which all runners behave similarly, un-
like in our model). The performance (i.e., free-flow speed distributions) of the athletes is
taken into account in the different starting groups, and a relatively small number of race
configurations is considered. That paper is mainly concerned in avoiding jams on a bot-
tleneck in the course and the departure procedure is the same for all athletes, considering
only the capacity of the starting section. In our approach, the starting procedure is based
on the speed of each runner and the speed of the slowest runners ahead, on the width of
the course, and we also define a minimum necessary free space ahead of a participant in
order to start moving.

In Farina et al. [2], jams are addressed on a 20 km race, but on the final sector, as this
specific race ends in a stadium. The given strategy relies on separating the finish line in
several lanes, where athletes are directed to different parts of the stadium. On urban races,
it is nowadays standard to place the finish line on relatively open spaces that avoid this
possibility of overcrowding, and participants are often driven through a lane where they
pick participation medals, water, etc.

Though our approach for the departure of the race is based on a microscopic approach,
there are several studies concerning propagation of starting waves (see e.g. Tomoeda et al.
[13]). Also related to running events, but on training strategies management, we also cite
a very interesting recent paper by Roels [11], and from the physiological point of view, see
e.g., Fiorini [3] and Pritchard [10]. In a recent survey (see Peckover et al. [9]) an analysis of
congestion during events from the perspective of runners is made, and it is possible to see
that 97% of runners have experienced congestion during the race start, which also moti-
vates the more thorough analysis of the departure procedure of our model. In Haberman
[4] there is a detailed analysis of the “Lighthill–Whitham–Richards” traffic model with
cars that cannot overtake each other, done from the point of view of partial differential
equations, considering a velocity field, the flow and density of cars (concerning numeri-
cal solution using finite differences methods, see Dazango [1]). This model is not suitable
for our purpose since the velocity field approach does not allow different runners to have
different speeds if they are in the same position of the course at a given instant, but from
the point of view of the influence of density in the speed of runners, we take a similar ap-
proach. In this book there is also a section concerning the behaviour of cars after a traffic
light turns green, which also has a correspondence in our model, when we define the de-
lays and speeds at the race start. In May [7] we can also find the basic features of standard
vehicle traffic models. A more recent approach using clustering analysis in high density
situations is presented in Kerner and Konhäuser [5]. This paper is organized in the fol-
lowing way: in Sect. 2 we explain the details of the mathematical and numerical model; in
Sect. 2.7 we establish a metric that will allow comparing the quality of different starting
configurations; in Sect. 3, we analyse and compare different scenarios and, finally, in Sect. 4
we provide some conclusions based on our simulations and point in some directions in
terms of future work.
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2 Mathematical model
In this section we state the main details of our mathematical model for the speed of each
runner. We consider a one-dimensional model in space, using a density function where
the road width is considered, avoiding the two-dimensional case.

The mathematical model for all the runners is given by the following initial value prob-
lem (IVP):

⎧
⎨

⎩

x(0) = x0,

ẋ(t) = v(t), for t > 0.
(1)

In order to numerically integrate system (1) of N coupled ordinary differential equations
we use a 2nd-order Adams-Bashforth-Moulton method (see, e.g., Lambert [6]). However,
several other methods may be chosen in our computational code. For computational per-
formance reasons, we implemented the model using the C++ language using the odeint
library of the Boost C++ libraries (see, e.g., Schling [12]) where a large group of meth-
ods for IVP systems are available, including the several Adams-Bashforth-Moulton and
Runge-Kutta methods.

Next we explain in more detail the several factors that influence our model.

2.1 Race start
We begin by displaying runners behind the starting line in rows of one person per meter,
with the rows separated by half a meter. For example, if we take 4000 runners on a 10 m
wide track, the starting wave would be spread along 200 m in 400 rows. Setting an initial
velocity of 2.5 ms–1, and considering that a person only starts moving when there is 1 m of
free space available in front, then each row takes about 0.4 s to start moving, which would
imply that the last row would only move after 160 s.

This value of 0.4 s can also be associated to the natural human reaction time to a stimu-
lation (see Nakamura [8]). For example, a typical professional sprinter has a reaction time
to the starting signal between 0.1 s and 0.2 s. Considering that, after start running, all the
runners run at speed 2.5 ms–1 until they cross the starting line, it would take 80 seconds
more for the last runner to cross it, totalizing 240 s for the whole wave to be on course.

Considering a generic wave of N runners on a w meters wide track and an initial speed
v0, then the wave would spread on N/2w meters (on N/w rows), taking N/(wv0) seconds
for the last row to start moving and 1.5N/(wv0) seconds to cross the starting line.

2.2 Density delay
In the normal development of the race, a runner is only going to be delayed by others if the
number of runners in a certain space in front is large. We define vital space as being the
region of the track with length d, starting at the position x of the runner. Here we assume d
as the length in front of the runner that defines where the presence of other runners affects
his speed. In Fig. 1 one can see the sketch of the vital space of the runner at the position
x (represented by the filled black circle). The runners in his vital space are represented by
the red circles.

By the analysed videos, it seems reasonable to consider a rectangle of 1.33 m by 2 m as
the minimum space that a runner needs free to keep his pace unchanged, and two rows
of slower runners in front of someone with this minimum spacing would make it hard for
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Figure 1 Sketch of the vital space of the runner

an overtake to be done smoothly. Considering the case of a constant width w section, the
vital space is a rectangle of dw m2, where the presence of more than 1.5w runners will be
considered as an excessive density situation. Therefore, in our speed formula, we will only
affect the speed of a runner due to density issues if the vital space has more that 1.5w other
runners.

If an untroubled runner has speed v, under density issues his speed will be affected. In
this situation there are at least 1.5w runners in the vital space, and we will consider that the
level of influence of density is directly connected to the speed of the ws slowest runners in
the vital area. In our model we considered ws = 5.

We denote the set of runners on the vital space of a given runner i at time t by Gi(t), and
the average speed of the 5 slowest elements in Gi(t) by vG

i (t). The affected speed of the
runner should be between v and vG

i (t), and though it is expected that vG
i (t) < v, the opposite

can happen (for example if the runner had just been overtaken by several faster athletes).
So, in order to avoid this situation, we consider the speed of the delaying runners as vl

i =
min{v, vG

i (t)}, and the new speed of the runner is given by vd = (1 – ρ)v + ρvl
i, where 0 ≤

ρ ≤ 1. If the density is very large then the density weight ρ will be closer to 1, making the
delayed speed similar to vl

i. In our model, we will consider values of ρ increasing gradually
from 0.4 to 0.8 for a number of runners in Gi(t) between 1.5w and 2.5w, and ρ = 0.8 if that
number is above 2.5w.

For future improvement of the model, a more thorough analysis of the impact of large
densities could be made (possibly changing the maximum value of 0.8, or having a non-
linear growth for mid-range values).

2.3 Probability distribution of runners’ speed
Using the final times of the 10,000 runners in a 10 km race that took place in 2015 in
Lisbon (São Silvestre of Lisbon race), we generate each runner’s normal speed for a race
simulation from the corresponding cumulative relative frequencies graphic (on the left of
Fig. 2), which is obtained from the final times histogram, using a different bin per minute
(on the right of the same Figure).

In order to avoid having many runners with the exactly same running profile, we use
the polygonal line that approximates the corresponding continuous variable distribution
function, instead of using the discrete version. On this continuous framework, to generate
the speed of a runner from this distribution function, we just have to generate a random
number q on the interval [0, 1], find the corresponding inverse through the continuous
distribution function, and setting it as the normal speed of the runner. For example, if
q = 0.4, the corresponding finishing time for 10 km is about 55 minutes, and the speed v =
10,000
55×60 ≈ 3.03 ms–1. With this strategy, we get the speeds of runners in realistic proportions.
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Figure 2 Cumulative relative frequencies (left graph) and final times histogram (right graph). Time in minutes
is represented in the horizontal axis in both graphs

Figure 3 Linear regression of speed deviation by meter of elevation per km for a runner. Each color (from
blue to red) of the scatter data stands for a a race made by the athlete

As stated before, we will assume this normal speed to be constant during the race, but if
we were to consider a tiredness factor, this value would be a function of time instead.

In the following subsection, we adapt this “normal” speed of the runner to the elevation
gain/loss of the track.

2.4 Influence of elevation gain/loss
Analysing a considerable amount of real runners profiles, concerning their time per km
and the accumulated elevation gain and loss per km, we were able to detect the most com-
mon deviations from the averaged race pace in the presence of a track with slope. Making
a (through origin) linear regression between the difference in elevation (in meters) and the
deviation of the pace in percentage, the deviations of the line were small, so we associate
one of these regression lines to each runner. Obviously, this linear regression takes into
consideration that there exists a realistic maximum absolute value of the slope, and we
only consider races with slopes within this range of common slopes. A logistic regression
might be a better approximation, but for the sake of simplicity, we only considered the
linear case. In Fig. 3 one can see an example of such regression line for a given runner.

For this specific runner, each meter in elevation per km represents a decrease of 0.236%

in the pace. For our runners database, we will use decreases in percentage from 0.12% to



Enguiça and Lopes Journal of Mathematics in Industry            (2023) 13:8 Page 7 of 18

0.25% per meter of elevation in each km, in a range of –100 m to 100 m of elevation per
km.

We could have taken a more rigorous model concerning the elevation gain/loss of the
track by analyzing separately the influence of positive and negative slopes (there might be
some slight differences in the total time in a km with constant slope equal to 0 and a km
with 50 m of elevation gain followed by 50 m of elevation loss, or vice-versa).

2.5 Runners separation into several waves
By separating runners into several waves, departing at different times, we will be able to
decrease the occurrences of large density situations. If this split is done taking into consid-
eration the expected final time of the runners, this decrease would be much more evident.
This strategy has been widely implemented, in particular it was applied on the race that
we used as a model.

It is very common that runners are allocated to waves that do not correspond to their
capacities: on one hand because they do not have official records in the previous year
(starting in the last wave), and on the other hand because they managed to get a bib al-
lowing to start in a wave with lower official time. We take this under consideration in our
model, because it is this dynamic that creates more entropy within the waves, and also
when runners of different waves meet more frequently (the slower of the front wave and
the faster in the back wave). In this framework, we assume the existence of a percentage
of runners belonging to a certain wave but that should be allocated to another one. Let
us denote this percentage of runners that should be in wave j but start in wave i by pij.
In order to minimize the values of pij, instead of asking for a proof of recent results on
the type of the race, the organization could implement a strategy where the runners were
driven to make an honest prediction of their final times (for example, a prediction failing
by more that a certain amount of time would imply that in a future race that runner would
have to start on the last wave). This strategy would not only avoid slower runners trying
to start on a wave of faster runners, but would also allow faster runners that didn’t have
official times in the previous year to start in the corresponding wave.

In the configurations analysed ahead, we will be able to see the difference in time lost
per runner if the runners are split randomly or taking into consideration the expected final
times.

A suggestion that could have a positive impact on the degree of satisfaction of the par-
ticipants would be to have a last wave for “charity runners”, that is those that care more
about “atmosphere and course features”. The lost time of runners on this wave would not
have any impact on the metric (influencing only the total time of the race).

2.6 Detailed mathematical model
In Table 1 we summarize the notations used.

The mathematical model given by the initial value problem (1) is such that v(t) is the
speed vector with coordinates vi(t), (i = 1, . . . , N ) defined by:

vi(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, if t < d̄w
i ,

v0,i, if t ≥ d̄w
i and xi(t) < 0,

[1 – ρi(t, x)]vp
i (xi(t)) + ρi(t, x)vl

i(t), otherwise,

(2)
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Table 1 Table of Notations

Notation Description Units

N number of runners in the race
i runner’s identification number (i ∈ {1, . . . ,N})
L course’s length m
t time in seconds (race starts at t = 0) s
x vector of the positions of all runners at time t (x := (x1(t), . . . , xN(t)) mN

x position on the course m
x0,i starting position of runner i (x0,i ≤ 0) m
s(x) slope of the course at position x
w(x) width of the course at position x m
mi deviation of the speed of runner i per unit of slope ms–1

d length (along the course) of the vital space m
δt time step s
Gi(t,x) set of runners in the vital space of runner i at time t
Di(t,x) number of runners per unit of area in the vital space
vGi (t,x) average speed of the 5 slowest runners of Gi(t,x) ms–1

v0,i speed of runner i at departure ms–1

v̄i average speed of runner i (fixed) ms–1

v̄
wi
0 maximum speed at departure for runners in the wave of runner i ms–1

vpi (x) speed profile of runner i evaluated at position x ms–1

vli (t,x) runner i speed component due to density at time t ms–1

d̄wi departure time delay for runner i (depends on wave and starting position) s
ρi(t,x) density weight for runner i at time t

with

v0,i = min
{

v̄i, v̄wi
0

}
, (initial speed), (3)

vp
i (x) = v̄i + mis(x), (speed profile), (4)

vl
i(t, x) = min

{
vi(t – δt), vG

i (t, x)
}

(density speed) (5)

and

ρi(t, x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, Di(t, x) < 0.375,
1

0.625 (Di(t, x) – 0.125), 0.375 ≤ Di(t, x) ≤ 0.625,

0.8, Di(t, x) > 0.625.

(6)

This last formula defines a density weight ρi directly in terms of the density Di, which is
defined by:

Di(t, x) =
#{j ∈ {1, . . . , N} : xi(t) ≤ xj(t) ≤ xi(t) + d}

∫ xi(t)+d
xi(t) w(x)dx

. (7)

Equation (3) sets the speed of runner i before crossing the starting line as the minimum
between his normal speed and the maximum speed of his wave; equation (4) computes the
speed of a runner at a given point x of the course; and finally, equation (5) states that the
speed of the runner i is affected by the speeds of other runners in his vital space. Moreover,
this component of the speed also depends on the speed of runner in the previous time step
(t – δt).
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2.7 Metric for the quality of the split
In order to evaluate the quality of the split of the race into several waves, we use for com-
parison the race with the same runners in the same initial configuration (connecting waves
one after another) without any density delays (that is, removing from the speed model the
impact of density). These delays can be split into the lost time in the departure, and the
lost time after crossing the starting line.

For a race split into several waves, the official final time of each runner is the time taken
between crossing the starting line and crossing the finish line. So when we compare run-
ners’ times with or without density taken into account, it is on the difference of these offi-
cial times that we focus. Though the time that a runner takes until they reach the starting
line is not taken into consideration for the official record, this delay is always a source of
stress, so we also used it in our metric.

Just taking into account the total time lost due to density delays (adding the delays of
all runners) might seem like a reasonable metric, but when a provided service has com-
plaints, the overall impact is not proportional to the degree of dissatisfaction, taking also
into consideration the amount of complaints. To include these two features, we use in our
metric the following weights (wd): for the time lost below tl = 30 s, this value tl is multi-
plied by wd = 2 (we denote the total time lost in these circumstances by T1); for the values
30 ≤ tl < 60, then wd = 1.5 (total time denoted by T2); for 60 ≤ tl < 120, wd = 1.25 (total
time denoted by T3); and for tl ≥ 120, then wd = 1 (total time denoted by T4). So 20 run-
ners with a delay of 25 s each contribute with a total of 20 × 25 × 2 = 1000 units of delay
in our metric, while 10 runners with 20 s of delayed time each contribute with a total of
10 × (30 × 2 + 20 × 1.5) = 900 units and 4 runners with 125 s of delayed time contribute
with 4 × (30 × 2 + 30 × 1.5 + 60 × 1.25 + 5 × 1) = 740 units (note that the total delay in all
three examples is the same, but the metric value is smaller for the cases where less runners
are delayed).

Allocating a runner in a wave other than the first one creates a natural tension associated
to the fact that they know that there are already runners in action. To put this aspect in
our metric, for each runner that doesn’t start in the first wave, we apply an extra delay of
5 s multiplied by the number of waves that start before his one. This penalizes a larger
number of waves.

The general degree of upsetness of a runner starting on a later wave could be tackled
from a different perspective in a future development of this model: other options such as
having a more individualized penalty could be more accurate and can possibly provide a
more realistic metric than the used one.

For the time between the official start of a wave and the moment that each runner crosses
the starting line (as mentioned before, this time is not added to the official time of the
runner), we assigned a smaller impact in the metric, assigning it the weight w = 0.2 (we
denote the total time lost in this situation by T0. For example, if a runner takes 60 seconds
to cross the starting line, then only 12 units are added on the metric.

The total span time of the race is also included as a factor. We define the span time of the
race T as the total time of the race without time gap between waves (in this case, we settle
a gap of 1 second in the data provided in the tables ahead). Considering several waves, let p
represent the proportion of extra time taken due to the splitting runners into waves. Then
the metric value is also increased, but by a factor of 1 + p/2 (since smaller waves will also
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imply a shorter delay in the runners of the last wave, we reduce the impact of this feature
by a half ).

Finally, for the final value of the metric, we rescale the total obtained sum for each runner,
that is, we divide by the total number of runners.

With the notations introduced above, the formula for the metric is the following:

1
N

(

0.2T0 + 2T1 + 1.5T2 + 1.25T3 + T4 +
k∑

i=2

5(i – 1)(#wi)

)(

1 +
p
2

)

, (8)

where #wi is the number or runner on wave i and k is the total number of waves.

3 Numerical tests
Settled the metric, we now pass to the comparison of different scenarios, concerning the
initial disposition of the runners in waves. The objective of our simulations relies on eval-
uating the impact of the course design (namely changes in slope and width), the number
of waves, the unevenness of the wave splitting, the degree of mixture of runners’ perfor-
mance in each wave and the time gap between the start of each wave. Several scenarios will
be simulated and the useful information for the analysis of each of them will be stated in
a corresponding table. In all these scenarios we assume N = 10,000, L = 10,000 and d = 4.

We note that all the simulations in this work were made on a computer running Linux
Ubuntu 18.04 equipped with an AMD Ryzen 9 3950X processor, and each simulation of
a full race took approximately 80 s. Moreover, all the pre and post processing was made
using Python scripting language.

In Tables 2–9 of the following subsections, the first column gives us the time gap (in
seconds) between the last runner of a wave crossing the starting line and the first runner
of the next wave to start running. When this gap is equal to 1, this basically means that
the waves are fictitious and that all the runners start at the same time. The second column
characterizes the first wave and the following have the same information for the other
waves. If the number of waves is equal to 2, the runners are split into two groups according
to their abilities, separated by an associated quantile value. Each column associated to a
wave is split in two columns labeled “mixture” and “wdt”. In the “mixture” column there
is a vector associated to the mixture level. The first value in this vector is the number
of runners of the first group that are assigned to the first wave, the second value is the
number of runners of the second group on the first wave (for the cases with more waves
the reasoning will be the same). In the “wdt” column we show the wave departure time, i.e.,
the time passed since the beginning of the race for the runners of this wave to start running.
Since we evaluate different gap times for the same level of mixture, we just mention the
wdt for the lines corresponding to gaps different than 1. On the top of each column related
to a wave it is also stated the maximum speed (wms) of the runners of this wave before
the starting line.

On the third-to-last column it is stated the average time lost per runner when comparing
with the same race without the density delay factor, on the second-to-last one we have the
total time of the race and on the last, the metric value.

At the end of the section we make a brief description of the procedure to find an ideal
configuration.
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3.1 Course design 1: 10 km wide flat course
We start by analyzing the case of a 10 km course, with constant width of 10 m and without
elevation gain/loss.

In the Tables 2 and 3 we have the information concerning a split into two waves: in
Table 2, two waves of 5000 runners; and in Table 3, a first wave with 2500 runners and a
second with 7500.

Obviously, the best value for the metric is attained when the waves don’t have any mix-
ture and no gap time between then, but this is an unrealistic scenario since it is not possible

Table 2 Scores as function of time gaps and wave mixtures - 10 m wide flat course. wms - wave
maximum speed before the starting line; wdt - wave departure time; tlpr - time lost per runner

Gap [s] Wave 1 (wms = 3.34) Wave 2 (wms = 2.92) tlpr total time metric score

mixture wdt mixture wdt

1 (5000, 0) 0 (0, 5000) 288 82.5 6594 154.3
300 0 587 82.5 6893 157.8

1 (4900, 100) 0 (100, 4900) 319 85.1 6625 157.7
60 0 378 84.0 6684 157.1
180 0 498 84.1 6804 157.8
300 0 618 83.7 6924 159.5

1 (4000, 1000) 0 (1000, 4000) 347 93.6 6653 168.4
60 0 406 89.0 6712 163.8
180 0 526 84.4 6832 159.8
300 0 646 82.6 6952 159.2

1 (3000, 2000) 0 (2000, 3000) 347 128.8 6653 207.5
60 0 406 114.6 6712 193.0
180 0 526 95.1 6832 172.6
300 0 646 87.6 6952 165.0

1 (2500, 2500) 0 (2500, 2500) 347 157.3 6653 237.1
60 0 406 142.8 6712 223.0
180 0 526 112.9 6832 193.1
300 0 646 94.3 6952 177.4

Table 3 Scores as function of time gaps and wave mixtures - 10 m wide flat course. wms - wave
maximum speed before the starting line; wdt - wave departure time; tlpr - time lost per runner

Gap [s] Wave 1 (wms = 3.34) Wave 2 (wms = 2.92) tlpr total time metric score

mixture wdt mixture wdt

1 (2500, 0) 0 (0, 7500) 139 103.8 6611 185.5
300 0 438 103.8 6910 189.7

1 (2475, 25) 0 (25, 7475) 156 104.2 6628 186.0
60 0 215 104.2 6687 186.8
180 0 335 104.5 6807 188.8
300 0 455 104.0 6927 190.0

1 (2000, 500) 0 (500, 7000) 169 113.1 6641 195.9
60 0 228 110.4 6700 183.6
180 0 348 108.3 6820 193.0
300 0 468 106.3 6940 192.5

1 (1500, 1000) 0 (1000, 6500) 169 123.5 6641 208.2
60 0 228 117.4 6700 201.5
180 0 348 110.5 6820 195.5
300 0 468 106.9 6940 193.4

1 (1250, 1250) 0 (1250, 6250) 169 135.7 6641 221.9
60 0 228 124.1 6700 209.2
180 0 348 113.4 6820 198.6
300 0 468 109.4 6940 196.0
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Table 4 Scores as function of time gaps and wave mixtures - flat 10 m wide course. wms - wave
maximum speed before the starting line; wdt - wave departure time; tlpr - time lost per runner

Gap [s] Wave 1 (wms = 3.34) Wave 2 (wms = 2.92) Wave 3 (wms = 2.50) tlpr total time metric score

mixture wdt mixture wdt mixture wdt

1 (3333, 0, 0) 0 (0, 3333, 0) 186 (0, 0, 3334) 384 58.4 6593 117.3
300 0 485 982 58.0 7191 118.7

1 (3000, 166, 167) 0 (166, 3000, 167) 213 (167, 167, 3000) 426 66.9 6635 129.4
60 0 272 544 65.7 6753 128.7
120 0 332 664 63.9 6873 127.7
180 0 392 784 63.1 6993 127.8
300 0 512 1024 61.3 7233 127.7

1 (2333, 500, 500) 0 (500, 2333, 500) 215 (500, 500, 2334) 442 84.2 6651 150.3
60 0 274 560 75.3 6769 140.5
120 0 334 680 69.8 6889 135.0
180 0 394 800 65.9 7009 131.5
300 0 514 1040 60.8 7249 127.3

to control the mixture level of the waves. For example, with only 100 mixed runners, the
best performance is obtained for a gap of 60 s (which corresponds to the departure of the
second wave 378 s after the first), but for a mixture of 2500 runners (this would roughly
match a random selection for the runners in each wave) the lowest result for the metric
is obtained for a gap of 300 s, that corresponds to almost 11 minutes between the start
of both waves. With this random selection mixture, we can see how much time is lost in
average if this factor is not taken into account.

With this, we can say that it is crucial to separate runners by pace with the smallest
possible degree of mixture, as the average time lost can almost double if runners aren’t
separated at all, as we can see at the bottom of both tables.

With the same level of mixture, the longer the gap, the less concentration issues appear,
but it becomes clear that there is a threshold where the impact becomes almost negligible:
for mixtures above 35%, separating waves more than 180 seconds is less effective in terms
of average time lost.

Comparing Tables 2 and 3 shows that uneven waves are obviously more delayed in av-
erage (roughly around 25% on this particular case), but we can also see that the impact of
the degree of mixture is about the same than for the even sized waves case.

In Tables 4 and 5 we present the information for the same flat course for the case of
three waves instead of two, also on both scenarios where the waves are split evenly and
unevenly.

Through a quick analysis of Tables 4 and 5, we can infer that the presence of a third
wave allows the average time lost per runner to decrease about 30%. The fact that the
waves are smaller makes the impact of mixtures slightly more evident on the 3 waves case.
The difference on the total time of the race is also clear, increasing it slightly.

Concerning the influence of the width of the course for the flat race without any wave
splitting, Fig. 4 allows us to evaluate the changes on the total time spent and also on the
metric.

3.2 Course design 2: 10 km with variable width and slope
Next we analyse the influence of having slopes and narrow parts on the course. We used
a course whose properties are sketched on Fig. 5.
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Table 5 Scores as function of time gaps and wave mixtures - flat 10 m wide course. wms - wave
maximum speed before the starting line; wdt - wave departure time; tlpr - time lost per runner

Gap [s] Wave 1 (wms = 3.34) Wave 2 (wms = 2.92) Wave 3 (wms = 2.50) tlpr total time metric score

mixture wdt mixture wdt mixture wdt

1 (2500, 0, 0) 0 (0, 2500, 0) 139 (0, 0, 5000) 284 67.9 6600 132.2
300 0 438 882 67.9 7198 138.2

1 (2200, 100, 200) 0 (100, 2200, 200) 170 (200, 200, 4600) 331 75.5 6647 142.8
60 0 229 449 73.5 6765 141.5
120 0 289 569 72.1 6885 141.0
180 0 349 689 71.0 7005 140.8
300 0 469 929 69.9 7245 141.8

1 (1900, 200, 400) 0 (200, 1900, 400) 170 (400, 400, 4200) 336 80.4 6652 148.8
60 0 229 454 76.2 6770 144.7
120 0 289 574 72.4 6890 141.2
180 0 349 694 70.8 7010 140.3
300 0 469 934 67.9 7250 138.9

Figure 4 Total time lost and metric value as a function
of the width of the course. Total race times in seconds
are also shown for each course width. Flat constant
width courses

Figure 5 Characterization of the course used in the simulations of Tables 6 and 7. Elevation profile of the
course at the left graph and the width profile at the right graph

As we can see, this course has slopes taking values from –4% to 4% and the width varies
from 2 to 11 meters. This width is very narrow on a zone of maximum slope (around
4000 m after the starting line), and this potentiates concentration issues, in order to test
our model under rough conditions.

Table 6 gives us the data for this course with the runners split into 3 even waves.
Comparing the results with the corresponding ones from the flat race, this particular

changes in slope and width imply an increase on the overall time lost of about 50%, and on
Table 7, we can see that this value is slightly less on case of uneven waves. So it is clear that
the design of the course has a determinant impact on the activation of the concentration
delays that the metric uses, implying significant changes on the runners’ performances.
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Table 6 Scores as function of time gaps and wave mixtures - non flat and non constant width
course. wms - wave maximum speed before the starting line; wdt - wave departure time; tlpr - time
lost per runner

Gap [s] Wave 1 (wms = 3.34) Wave 2 (wms = 2.92) Wave 3 (wms = 2.50) tlpr total time metric score

mixture wdt mixture wdt mixture wdt

1 (3333, 0, 0) 0 (0, 3333, 0) 186 (0, 0, 3334) 384 89.9 6655 158.2
300 0 485 982 89.4 7253 165.3

1 (3000, 166, 167) 0 (166, 3000, 167) 213 (167, 167, 3000) 426 110.4 6697 183.6
60 0 272 544 108.5 6815 183.0
120 0 332 664 106.9 6935 182.6
180 0 392 784 105.2 7055 182.1
300 0 512 1024 102.3 7295 181.7

1 (2333, 500, 500) 0 (500, 2333, 500) 215 (500, 500, 2334) 442 146.5 6713 222.4
60 0 274 560 140.4 6831 217.8
120 0 334 680 134.8 6951 213.6
180 0 514 1040 129.2 7071 209.4
300 0 634 1280 119.3 7311 201.8

Figure 6 A snapshot of the last simulation of the Table 6

Table 7 Scores as function of time gap and mixtures - non flat and non constant width course. wms
- wave maximum speed before the starting line; wdt - wave departure time; tlpr - time lost per runner

Gap [s] Wave 1 (wms = 3.34) Wave 2 (wms = 2.92) Wave 3 (wms = 2.50) tlpr total time metric score

mixture wdt mixture wdt mixture wdt

1 (2500, 0, 0) 0 (0, 2500, 0) 139 (0, 0, 5000) 284 102.7 6688 175.7
300 0 438 882 102.8 7286 183.7

1 (2200, 100, 200) 0 (100, 2200, 200) 170 (200, 200, 4600) 331 122.2 6735 199.7
60 0 229 449 120.9 6853 199.8
120 0 289 569 118.7 6973 199.2
180 0 349 689 117.0 7093 198.9
300 0 469 929 114.1 7333 198.6

1 (1900, 200, 400) 0 (200, 1900, 400) 170 (400, 400, 4200) 336 136.5 6740 215.4
60 0 229 454 133.9 6858 214.5
120 0 289 574 130.5 6978 212.5
180 0 349 694 127.7 7098 211.2
300 0 469 934 120.6 7338 206.4

In Fig. 6 we can see a snapshot of the simulation in the last line of in Table 6. This snap-
shot is taken at time 43 min 37 s, and the runners of each wave are sketched with points
of different colors. This shows how the three different waves mix during the race.

In Table 7 we present the results for the uneven waves on this course, where again it
becomes clear that this increases the time lost and the metric values.
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Table 8 Scores as function of time gaps and wave mixtures - São Silvestre course. wms - wave
maximum speed before the starting line; wdt - wave departure time; tlpr - time lost per runner

Gap [s] Wave 1 (wms = 3.34) Wave 2 (wms = 2.92) Wave 3 (wms = 2.50) tlpr total time metric score

mixture wdt mixture wdt mixture wdt

1 (3333, 0, 0) 0 (0, 3333, 0) 117 (0, 0, 3334) 241 64.8 6460 120.3
300 0 416 839 65.0 7058 126.2

1 (3000, 166, 167) 0 (166, 3000, 167) 134 (167, 167, 3000) 268 77.2 6487 136.7
120 0 253 506 72.7 6725 133.4
300 0 433 866 68.9 7085 131.9

1 (2333, 500, 500) 0 (500, 2333, 500) 135 (500, 500, 2334) 277 109.7 6494 174.0
120 0 254 515 94.2 6732 158.4
300 0 434 875 78.1 7092 143.0

Figure 7 A snapshot of the last simulation of the Table 8

3.3 Course design 3: São Silvestre of Lisbon race
An approximate course of the race where we based our model, the São Silvestre of Lisbon
race, is analysed in this subsection.

In Table 8 we have the data for 3 waves, split evenly. The uneven cases in the following
will no longer be considered, since it already became clear that it increases unnecessarily
the race time and delays.

In Fig. 7, as in the previous course, we provide a snapshot of the simulation of this race
at time 33 min 45 s. On this picture we can also see the width of the course and the slope.
This race starts with a 16 meter wide course, with a steep descent, and after 1000 m this
width already decreased to 6 m. There is a long part of the course with zero slope, and on
the final 3500 m, the course has a first part with a steep ascent and a final part with a steep
descent until the finish line.

3.4 Course design 4: inverted São Silvestre of Lisbon race
In order to analyse the possible effect of starting and ending the race ascending instead of
descending, we have also computed the simulated results for the São Silvestre course, but
inverting the direction of the runners.

The obtained results are fairly similar to the ones from the original course. The fact that
the race starts ascending makes the start of the race slower, but since all the runners are
slower on those circumstances, the delays are about the same in average. The total time
of the race is not really affected by the inversion, which makes us believe that it is mostly
the difference between the elevation gain and loss that has an evident impact on the time
lost.
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Table 9 Scores as function of time gaps and wave mixtures - inverted São Silvestre course. wms -
wave maximum speed before the starting line; wdt - wave departure time; tlpr - time lost per runner

Gap [s] Wave 1 (wms = 3.34) Wave 2 (wms = 2.92) Wave 3 (wms = 2.50)

mixture wdt mixture wdt mixture wdt

1 (2500, 0, 0, 0) 0 (0, 2500, 0, 0) 87 (0, 0, 2500, 0) 178
300 0 386 776

1 (2050, 150, 150, 150) 0 (150, 2050, 150, 150) 108 (150, 150, 2050, 150) 208
120 0 227 446
300 0 407 806

1 (2000, 100, 100, 100) 0 (100, 2000, 100, 200) 93 (100, 100, 2000, 100) 188
120 0 212 426
300 0 392 786

Gap [s] Wave 4 (wms = 2.40) tlpr total time metric score

mixture wdt

1 (0, 0, 0, 2500) 274 51.6 6470 102.0
300 1171 51.6 7367 109.1

1 (150, 150, 150, 2050) 317 68.3 6513 122.2
120 674 61.5 6870 116.8
300 1214 55.6 7410 113.6

1 (300, 300, 300, 2100) 281 72.0 6468 126.2
120 638 64.5 6825 120.2
300 1178 57.0 7365 115.6

Figure 8 Inverted course S. Silvestre: A snapshot of the last simulation of Table 9

Finally, in Table 9 we evaluated the case where we split the runners into 4 even waves of
2500 runners (on the inverted São Silvestre course).

The time lost in average by each runner decreases about 20%, but the total time of the
race increases on the same scale. The metric values are smaller, even though the total time
race is significantly larger, so if this is an aspect that should be avoided, we can increase
the penalty for the total time, or simply ask for the total time race to be below a given
threshold, and therefore not allowing the split into to many waves. In Fig. 8 one can see a
snapshot of the last simulation of the previous table at time 34 min 12 s.

3.5 Procedure to find ideal departure configuration
We finish by presenting an algorithm that synthesises the procedure to be taken by race
organizers in order to find an ideal configuration.

1. As initial inputs, the course configuration and a maximum for the total time of the
race (Tmax) should be defined.

2. By running the model for an increasing number of waves separated by 300 seconds
without mixture and comparing Tmax with the simulation total time, find a
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maximum number of waves M (it is not realistic to consider a number of waves
greater than 5).

3. Define the expected levels of mixture between waves for a number of waves
between 2 and M.

4. For the considered mixture levels, run the simulation for several gap values, and for
a number of waves between 2 and M (stopping increasing the gap time when the
total race time exceeds Tmax or if the metric value is evidently increasing).

5. Find the configuration that gives the lowest metric value.

4 Conclusions and future work
With the data provided in the previous section, it became clear that the level of mixture
of runners in different waves is a crucial factor for the metric values. This is not a factor
that can be directly controlled and it should be minimized by the organization by taking
measures in that direction. An ideia that can increase the general degree of satisfaction is to
set a last wave with the assumed non-competitive runners and also to establish conversion
times from races of different lengths made by a runner in the previous year to indicate in
which wave should they start. This would help to decrease the variance on the competitive
waves.

Concerning the number of waves, with the metric that we developed, by taking 4 waves
the results were better, making this split the best alternative. But for different parameters,
a smaller number of waves could become a better solution, for example, if the increase on
the total time of the race is penalized by a larger factor, the ideal number of waves can be
3 or even 2. Also if the value added to the metric associated to a runner being assigned
to a later wave is larger, this could imply that the number of waves should be smaller. The
unevenness of the split should always be avoided, since the best results were obtained for
waves with the same number of runners.

The ideal gap between waves depends significantly on the level of mixture of runners
and also on the number of waves, but for the analysed cases, a gap smaller than 180 s
usually provided worse results.

It also became clear that the course design severely affects the metric performance, and
the delays are much smaller for the more regular courses (without many changes in slope
and course width). Following the results of the “inverted” São Silvestre race, we were also
able to infer that the metric results are only affected by the total amount of elevation
gain/loss, and not by the order in which elevation changes.

Overall, the implemented model replicates the most important dynamics on this type of
races, but in the future, improvements on the set of runners’ profiles can be made, namely
concerning tiredness, the nonlinear influence of slopes or the race momentum. but these
changes would be mainly related to parameter tuning, rather that a significant change in
the model design.

As stated before, loop races also have specific issues that are of interest to study, as the
evaluation of the best starting points and timings, and is something that can be addressed
in a future work. Longer races, like marathons also move thousands of participants around
the world, and the fact that the long distance somehow changes the focus from the orga-
nizing decisions to the runners decisions implies a different type of model.
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