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Abstract
As the number one building material, concrete is of fundamental importance in civil
engineering. Understanding its failure mechanisms is essential for designing
sustainable buildings and infrastructure. Micro-computed tomography (μCT) is a
well-established tool for virtually assessing crack initiation and propagation in
concrete. The reconstructed 3d images can be examined via techniques from the
fields of classical image processing and machine learning. Ground truths are a
prerequisite for an objective evaluation of crack segmentation methods. Furthermore,
they are necessary for training machine learning models. However, manual
annotation of large 3d concrete images is not feasible. To tackle the problem of data
scarcity, the image pairs of cracked concrete and corresponding ground truth can be
synthesized. In this work we propose a novel approach to stochastically model crack
structures via Voronoi diagrams. The method is based on minimum-weight surfaces,
an extension of shortest paths to 3d. Within a dedicated image processing pipeline,
the surfaces are then discretized and embedded into real μCT images of concrete.
The method is flexible and fast, such that a variety of different crack structures can be
generated in a short amount of time.

Keywords: Fracture modeling; Tessellations; Data synthesis; 3d image processing;
Adaptive dilation

1 Introduction
The segmentation of cracks in images of concrete is a broad field of research that finds
application in the design and monitoring of civil engineering structures. There are many
causes for the emergence of cracks in concrete, for example physical stress [23, 24], chem-
ical reactions [36, 37], corrosion [29, 35] or heat exposure [28]. As a result, segmentation
methods need to be robust with respect to different types of concrete and cracking. A large
variety of segmentation methods have been studied for 2d and 3d images. Comprehensive
overviews and comparison studies can be found in [9] (2d) and [4] (3d).

In image segmentation, ground truths are necessary for an objective output evaluation.
Furthermore, they are prerequisite for training machine learning models such as convo-
lutional neural networks [10] and random forests [8]. To assure an accurate and robust
performance, these models need to be trained on a lot of image data. In 2d, annotated
crack data is abundantly available, for example SDNET2018 [13]. For 3d images, manual
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annotation is not feasible due to the large amount of data. Therefore, 3d ground truth im-
ages are scarce and one has to rely on synthetic data that models crack structures. The
synthesized cracks need to mimic the observed characteristics of real cracks, for example
their grayvalue distributions, shapes and scales.

In this paper we introduce a novel technique for synthesizing crack structures. It is
based on minimum-weight surfaces which extend the concept of shortest paths to 3d. The
method is flexible such that the resulting cracks have the desired characteristics. More-
over, the method is able to generate large data sets in a short amount of time.

1.1 Minimum-weight surfaces
The shortest path problem (SPP) is formulated on a planar (directed) graph consisting of
vertices and weighted arcs. Given a start and an end vertex, one is interested in finding a
path of minimal weight connecting these vertices. Shortest paths represent a useful tool
in 2d image processing in several contexts including image quilting [30] and image seg-
mentation. In particular, shortest paths have been used to segment linear, 1d structures
such as cracks in 2d images [2].

Minimum-weight surfaces were introduced in [33] and [18] as an extension of short-
est paths to 3d. The minimum-weight surface problem (MSP) is formulated on a cellular
complex consisting of vertices, arcs, weighted facets and cells. Here, the goal is to find a
set of facets of minimal weight that is bounded by an input cycle. The voxel lattice in a 3d
image can be interpreted as a cellular complex. In this context, minimum-weight surfaces
have been used to segment flat structures in medical 3d images [18]. In this paper, the
approach is reversed and minimum-weight surfaces are used to model crack structures.

1.2 Related work
Deformable modeling deals with physical objects changing shape under applied forces.
The modeling of cracks in solid objects can be considered a typical problem. Reviews on
that topic such as [26] usually differentiate between three kinds of methods.

Physically-based methods such as finite element methods (FEM) subdivide the object
into a set of disjoint elements. Each element is characterized by functions describing its
behaviour under external influences. The functions are then put into a system of differen-
tial equations that describe the physical laws governing crack initiation and propagation.
Solutions are usually obtained numerically.

Solving these numerical problems is often computationally expensive. Thus, geometry-
based (or procedural) methods do not rely on the physical assumptions, but focus on pro-
ducing structures that are visually similar to those of the observed structure. The under-
lying objects are usually characterized in terms of simple geometries such as polyhedra.
A set of algorithms with adjustable parameters then defines the modeling pipeline.

Lastly, example-based methods are based on actual observations of a structure. These
are usually given by digital images. The aim is either to embed these images into models
or even an exact reproduction of the observed structure.

Voronoi diagrams have been used previously for simulating crack propagation, in par-
ticular in the context of physically-based and procedural methods.

In [16], the authors model brittle rocks via Voronoi tessellations whose faces are con-
sidered potential sites of fracture. Crack initiation and propagation is then computed by
means of FEMs. The approach is extended in [19] where Voronoi cells are used to model
the aggregates inside concrete.
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Procedural tessellation-based crack modeling techniques often find application in the
computer graphics and animation community. A classical problem is simulating the dam-
age or destruction of solid objects [11, 22, 27, 32]. Typically, the outputs of these methods
are meshes. Proper discretization procedures are rarely reported.

In general, previous works on image-based methods are scarce and mostly cover only
2d images [25]. Approaches for 3d are often either computationally too expensive or too
limited regarding the resulting geometries. For example, the generation of synthetic cracks
in 3d images has been realized via fractional Brownian surfaces [1, 4]. However, the Hurst
index - a measure of roughness - is the only parameter that can be used to control the
shape of the surface.

1.3 Our contribution
In this work, we propose a novel method to synthesize crack structures in 3d images us-
ing Voronoi diagrams generated from random point processes. The method includes two
aspects:

First, we use minimum-weight surfaces as a tool to model the macrostructure of cracks.
Bounded 3d Voronoi diagrams serve as the underlying cell complexes. This leaves several
degrees of freedom such as the choice of the generating point processes, bounding cycles
and the facet weights.

Second, the computed surfaces are discretized to 3d binary images. The rough mi-
crostructure of cracks is modeled via a second Voronoi diagram on a finer scale. Then,
the cracks are embedded into patches of real micro-computed tomography (μCT) images
of concrete.

The main advantage of our method is the stochastic nature of the underlying random
point processes from which the tessellations are computed. First, it allows for a fast gen-
eration of many synthetic data sets that are necessary for studying crack segmentation
methods thoroughly. Second, a whole variety of crack structures is obtained, depending
on the type of the underlying point processes. Our method is not restricted to only model
crack structures in concrete, but may also be used for cracks in other materials such as
glass, rocks or ceramics.

This paper is structured as follows. In Sect. 2, we outline the concept of shortest paths.
Their extension to minimum-weight surfaces is described in Sect. 3. Section 4 comprises
our crack modeling pipeline using Voronoi diagrams. It includes a description of our ap-
proach for macro- and microstructure modeling. Section 5 serves as conclusion and out-
look to possible future research.

2 Shortest paths
Let G = (V , A) be a directed graph consisting of a set of vertices V and directed arcs
A ⊆ V × V . We use the notation α(a) for the start vertex and ω(a) for the end vertex of an
arc a ∈ A.

Furthermore, let c : A →R>0 be a function assigning a positive weight to every arc in A.
A path in G is a finite sequence of vertices and arcs, P = (v0, a0, v1, a1, . . . , ak–1, vk), k ≥ 0,
with vi ∈ V and ai ∈ A with α(ai) = vi and ω(ai) = vi+1 for i = 0, . . . , k – 1. It is called a cycle
(or closed contour) if no arc and no vertex is included more than once except for v0 = vk .
The weight of a path P is given as c(P) =

∑k–1
i=0 c(ai).
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Given two vertices s, t ∈ V , the SPP is looking for a path of minimum weight from s to
t. Many algorithms for solving the SPP exist, for example Dijkstra’s [12] or Bellman’s and
Ford’s algorithm [6].

SPPs can also be formulated as binary integer programs [20, 34]. Note that this approach
is less efficient than the ones described in [12] or [6]. However, it gives a good intuition for
an analogue approach to compute minimum-weight surfaces which we describe in Sect. 3.

Let s and t be, respectively, the start and end vertices of the path and let x be a vector of
binary variables xi ∈ {0, 1} assigned to each arc ai. The SPP can then be formulated as

minimize
∑

i:ai∈A

c(ai)xi (1)

subject to Bx = p (2)

xi ∈ {0, 1}. (3)

The vertex-arc incidence matrix B and the vector p in constraints (2) are given as

Bj,i =

⎧
⎪⎪⎨

⎪⎪⎩

1 if vj = α(ai),

–1 if vj = ω(ai),

0 else

and pj =

⎧
⎪⎪⎨

⎪⎪⎩

1 if vj = s,

–1 if vj = t,

0 else.

The constraints (2) are flow-conservation constraints. They ensure that every vertex that
is part of the path is incident to exactly one incoming and one outgoing arc, except for the
start and end vertices. This results in the fact that any feasible solution must contain a
path from s to t and, by the assumption that all costs are strictly positive, this ensures that
the optimal solution is in fact a path without repeated vertices. The variables xi are binary
by constraint (3) and indicate whether arc ai belongs to the path (xi = 1) or not (xi = 0).
Finally, the objective in (1) is to minimize the weight over all paths from s to t.

Note that, in case of negative arc costs, the problem of finding a shortest path without
repeated vertices becomes NP-hard (which can be seen by a reduction from the Hamil-
tonian Path Problem [15]). Thus, additional constraints become necessary and, hence, we
assume that all arc costs are strictly positive.

3 Minimum-weight surfaces
Minimum-weight surfaces have been presented in [33] and [18] as an extension of shortest
paths to 3d.

For our purposes, let K = (V , A, F , C) be a cellular complex consisting of a set of vertices
V , directed arcs A ⊆ V × V , facets F ⊆ A × · · · × A and cells C ⊆ F × · · · × F . Further, let
w : F →R>0 be a function assigning a positive weight to every facet in F .

Note that (V , A) defines a (directed) graph. Given a cycle H on (V , A), the MSP is looking
for a connected set of facets in K of mimimum weight that is bounded by H .

To this end, arc directions may be assigned arbitrarily. Every facet is considered twice,
once in clockwise and once in counterclockwise orientation. The orientation of H must
be chosen to be either clockwise or counterclockwise. If the direction of arc a coincides
with the direction of its counterpart in an incident facet f (or cycle H), we call a and f (or
a and H) coherent. If it does not coincide, we call them anti-coherent.
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The MSP can be formulated as a binary integer program analogously to the one in Sect. 2.
It is given as

minimize
∑

i:fi∈F

w(fi)yi (4)

subject to Dy = q (5)

yi ∈ {0, 1}. (6)

The arc-facet incidence matrix D and the vector q in constraints (5) are given as

Dj,i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if aj and fi are incident

and coherent,

–1 if aj and fi are incident

and anti-coherent,

0 else

and

qj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if aj is part of H

and coherent to H ,

–1 if aj is part of H

and anti-coherent to H ,

0 else.

Similarly to the flow-conservation constraints in (2), constraints (5) ensure that we ob-
tain a connected set of facets that is bounded by H . The variables yi are binary by constraint
(6) and indicate whether facet fi belongs to the surface (yi = 1) or not (yi = 0). Finally, the
objective in (4) is to minimize the weight over all possible surfaces that are bounded by H .

We always assume positive costs to ensure that the output is indeed a connected surface.

4 Crack modeling
Minimum-weight surfaces have been used for 3d image segmentation with the 3d grid be-
ing the underlying cell complex [18]. Reversing this approach, minimum-weight surfaces
can also be used to model surface-like, connected structures such as cracks on a macro-
scopic level.

Here, we focus on minimum-weight surfaces in bounded 3d Voronoi diagrams. Our goal
is to develop an approach for modeling 2d crack structures to generate semi-synthetic
3d images of cracked concrete. Using this approach in combination with various point
process models allows us to control the geometry of the resulting crack structure.

The most striking geometric characteristics of cracks in 3d μCT images of concrete have
been identified and discussed in [21]. In particular, we observe the following:

1. Crack widths are varying and cracks may appear on multiple scales.
2. Crack surfaces are not totally smooth but rather rough due to the granularity of the

concrete’s cement matrix.
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Figure 1 2d slice of a 3d μCT image of cracked concrete of size 1000× 550× 880 voxels with a voxel edge
length of 22.7μm. The image stems from a normal-strength concrete sample that was exposed to a tensile
test. Sample: Department of Civil Engineering, University of Kaiserslautern, Imaging: Fraunhofer ITWM,
Kaiserslautern

3. When propagating through concrete, cracks may branch.
An example is given in Fig. 1. These observations are used in the discretization proce-

dure for modeling the cracks’ microstructure.

4.1 Voronoi diagrams
Given a set of points R = {p1, . . . , pn} ⊂R

d with 2 ≤ n < ∞, the Voronoi diagram generated
by R is given as W = {C1, . . . , Cn} with

Ci =
{

x ∈R
d | ‖x – pi‖ ≤ ‖x – pj‖ ∀ pj ∈ R

}

where ‖·‖ denotes the Euclidean norm. The Ci are called the cells of the Voronoi diagram.
Note that, since R

d is not bounded, the Voronoi diagram contains cells of infinite size.
In practice, it is often convenient to only consider bounded cells. Therefore, we restrict
our attention to the bounded Voronoi diagram given by W ∩ Q = {C1 ∩ Q, . . . , Cn ∩ Q} for
some bounded region Q ⊂R

d . Note that this operation yields additional vertices, arcs and
facets on the boundary of Q that belong to the bounded Voronoi diagram.

4.2 Minimum-weight Voronoi surfaces
Bounded Voronoi diagrams in 3d can be considered as a cellular complex. Therefore, given
a cycle on the arcs of the cell complex induced by a 3d Voronoi diagram and weighted
facets, we are able to compute a minimum-weight surface by solving the optimization
problem given in Sect. 3. As a result, we obtain a connected set of facets that we call a
minimum-weight Voronoi surface.

4.3 Crack generation
We propose the following method to simulate crack structures via minimum-weight
Voronoi surfaces.

1. Define a cuboid Q = [0, d1] × [0, d2] × [0, d3] ⊂ R
3≥0.

2. Compute a random point pattern R ⊂ Q as a realization of some point process
model.
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Figure 2 Minimum-weight surface generation. Left: Poisson-Voronoi diagram bounded by a cube, middle:
cycle on the boundary of the Voronoi diagram, right: minimum-weight surface

Figure 3 Examples of minimum-weight surfaces in the same Voronoi diagram but with different choices of
input cycles

3. Compute the Voronoi diagram generated by R, bounded by Q.
4. Define functions c, w assigning a non-negative weight to each of the arcs and facets,

respectively.
5. Choose a vertex on each of the four vertical edges of Q. Denote them by u1, u2, u3,

u4. Compute shortest paths from u1 to u2, u2 to u3, u3 to u4 and u4 to u1, via
Dijkstra’s algorithm, only using arcs that lie on the boundary of Q. Denote the paths
by P1, P2, P3, P4. Then, H = ∪4

i=1Pi is a cycle on the boundary of Q.
6. Compute a minimum-weight surface bounded by P by solving the integer program

from Sect. 3.
The concept is illustrated in Fig. 2. It shows a minimum-weight surface in a Voronoi

diagram bounded by Q = [0, 1] × [0, 1] × [0, 1]. Its generators are a realization of a Poisson
point process in Q of intensity 500. Arcs and facets are both assigned unit weights.

The approach above leaves us several degrees of freedom. Facet shape and variability
can be controlled by choice of the underlying point process model, while the intensity of
the generator process influences the mean facet size. Additionally, the size of the bounding
cuboid, the input cycle and the weighting functions c and w can be varied.

Minimum-weight surfaces for the same realization of a Poisson point process but dif-
ferent choices of input cycles are given in Fig. 3. Note that the input cycle is not restricted
to lie on the boundary of a cube but may be chosen arbitrarily.

Moreover, Fig. 4 shows minimum-weight surfaces in Voronoi diagrams generated by
Poisson point processes, Matérn cluster processes and regular processes obtained by a
force-biased sphere packing [3, 7] with a volume fraction of 60%. Arcs and facets were
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Figure 4 Minimum-weight surfaces in Voronoi diagrams bounded by Q = [0, 1]× [0, 1]× [0, 1]. The
generators are realizations of Poisson point processes (first column) with intensity λ, Matern cluster processes
(second column) with parent and daughter point process intensities λ and μ, respectively, and cluster radius
r, and hardcore processes (third column) with constant radii, intensity λ and 60% volume fraction

weighted by their lengths and areas, respectively. For the cluster process, we observe a
bimodal distribution of the facet areas. The surfaces resulting from the regular model are
far more homogeneous in facet size and shape than those obtained from Poisson point
processes.

For the Voronoi diagram generation we use the C++ library voro++ [31] and for solving
the integer program we use the C++ library GLPK [17].
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The runtime for computing a minimum-weight surface depends mainly on the size of
the arc-facet incidence matrix, that is, on the number of facets in the cell complex. For a
Poisson Voronoi diagram in [0, 1] × [0, 1] × [0, 1] with intensity 500 the expected runtime
is around 12 seconds. It is obtained on a Red Hat Enterprise Linux Workstation 7.9 with
an Intel(R) Xeon(R) CPU E5-2680 v2 2.8 GHz (10 cores) and 125 gigabytes of RAM.

4.4 Discretization
The method described in Sect. 4.3 outputs a set of vertices of convex facets. In this section,
we describe a method to transfer this representation to a discrete image.

Let I denote a 3d label image and J a 3d binary image, both of size d1 × d2 × d3. The
discretization procedure is given as follows.

1. Compute a minimum-weight Voronoi surface in a cuboid of size d1 × d2 × d3.
2. Discretize the Voronoi diagram. For every voxel (p, q, r) do: Set I(p, q, r) = l if (p, q, r)

is contained in cell l.
3. Discretize the minimum-weight surface. For every two neighboring voxels (p, q, r),

(p′, q′, r′) (with respect to the 26-neighborhood) do: Set J(p, q, r) = 1 if I(p, q, r) = j
and I(p′, q′, r′) = k for generators j, k whose cells share a facet that is part of the
minimum-weight surface. Output J .

The procedure is visualized in Fig. 5. It yields a binary image whose foreground is a
piecewise planar structure of constant width. However, real crack structures usually are far
more complex as has been pointed out in Sect. 4. In the following, we propose techniques
to account for these observations.

4.4.1 Adaptive dilation
Our goal is to model cracks of varying thickness. We propose a procedure to dilate the
foreground of image J : Every x-slice of J is dilated separately and iteratively. We choose a
quadratic structuring element of size 2×2. The number of iterations depends on a random
walk with Bernoulli-distributed increments and index set {0, 1, . . . , d1}. The increments
are either 1 with probability p or 0 with probability 1 – p. Thus, the crack thickness can
be controlled via parameter p. The procedure is visualized in Fig. 6 for different choices
of p. Note that the random walk can be substituted by any suitable stochastic process, for
example to produce decreasing crack widths.

Figure 5 Slice view visualizing the discretization procedure. Left: Label image obtained from discretizing the
Voronoi diagram. Red voxels indicate facets that are part of the minimum-weight surface. Right: Output
binary image
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Figure 6 Adaptive dilation applied to the input image with p = 0.02 (left) and p = 0.05 (right)

Figure 7 Microstructure generation. Left: Discretized Poisson-Voronoi diagram and input crack (red). Right:
Set of Voronoi cells (white) that are intersected by the input crack

4.4.2 Microstructure modeling
In order to model the rough microstructure on the boundary of cracks, we compute a
second (Poisson-) Voronoi diagram with a higher intensity than the one used for the com-
putation of the minimum-weight surface. Then, for every foreground voxel in the dilated
crack image J , we identify the Voronoi cell it is contained in. The whole cell is then dis-
cretized with voxel value 1 according to the approach described in Sect. 4.4. The procedure
is visualized in Fig. 7. Afterwards, we apply a median filter to the resulting image.

4.4.3 Crack branching
Crack branches emerge when a crack splits into two or more cracks. Often, the thickness
of these branches lies in a range of 1-2 voxels.

Branching cracks can be modeled by combining two minimum-weight surfaces obtained
from different cycles on the cuboid. If the underlying set of generators for the Voronoi
diagram is identical, the surfaces may share several facets, see Fig. 8.

4.4.4 Crack embedding
An approach for embedding crack structures in real 3d concrete images has been pro-
posed in [4]. We extract image patches of the same size as the ground truth images from
the real μCT images. These patches are multiplied voxelwise with the inverse ground
truth images. This leads to crack voxels having grayvalue 0 while the background does
not change. Cracks and air pores both consist of air. Therefore, they should possess the
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Figure 8 Crack embedding. Left: Ground truth image after applying a median filter, right: synthesized crack
image

Figure 9 3d volume rendering of the simulated crack structure

same grayvalue distribution. We assume these grayvalues to be independent and identi-
cally normally distributed. Mean and standard deviation are estimated via sample mean
and sample standard deviation of the empirical distribution of air pore grayvalues. Then
the crack voxels are simulated according to that distribution. To smooth the transition be-
tween background and crack, we apply a Gaussian filter to crack voxels and all voxels in
their 26-neighborhood. The final image together with its ground truth is given in Fig. 8.
A corresponding 3d rendering is given in Fig. 9.

5 Conclusion
In this work, we have presented a novel method to generate synthetic crack images. It in-
cludes the generation of a macrostructure via minimum-weight surfaces and a discretiza-
tion procedure for generating its microstructure.

The shape and size of the output can be controlled by several parameters. Thus it allows
for the generation of a wide range of surface structures.

Single synthetically generated images have already been used for assessing the perfor-
mance of machine learning-based crack segmentation [5]. Our next steps include the gen-
eration of a full semi-synthetic data set that contains a whole variety of different concrete
types. It will be used for training further machine learning models and studying their ro-
bustness with respect to different concrete types and multiple scales.
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Furthermore, the model may be extended to include the grayvalue information of real
concrete images. We can assume that cracks, when propagating through concrete, take the
path of least resistance. Certain parts of the concrete mixture are less prone to cracking
than other parts. In particular, this holds true for parts with a higher density. Therefore,
facet weights may be derived from the mean voxel grayvalue in their vicinity.

The problem of image data shortage also applies for other industrial materials such as
glass or metals [14]. The proposed method may also be used in the context of these ma-
terials, for example in automatic quality inspection for cracks and defects.
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