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Abstract
Respiratory particles containing infectious pathogens are responsible for a large
number of diseases. To define health politics and save lives, it is important to study
their transmission mechanisms, namely the path of particles once expelled. This path
depends on several driving factors as intrinsic properties of particles, environmental
aspects and morphology of the scenario. Following physical arguments and taking
into account the results of experimental works, we consider a mathematical drift
model for the mixture composed by two phases: air and particles. The relative motion
between the two phases is described by a kinematic constitutive relation. We prove
the stability of the model for fixed times and establish an a priori estimate for the total
number of infectious particles. The upper bound of this estimate exhibits sound
physical dependencies on the driving factors, in agreement with the experimental
literature and mounting epidemiological evidences. Namely, we establish that the
amount of particles expelled and their emission rate can explain why some people
are superspreaders. Several numerical simulations illustrate the theoretical results.

Keywords: Respiratory particles; Evaporation; Settling; Partial differential equations;
Drift model; Estimates; Numerical simulation

1 Introduction
Biological motivation A large number of diseases are spread by respiratory particles, due
to the possible presence of infectious pathogens, virus, bacteria or fungi, in their nuclei.
These particles can be exhaled by all kind of respiratory events from breathing and talking,
to the most violent ones as coughing and sneezing. In the last decades, the problem of
air quality and airborne diseases transmission - as for example influenza, tuberculosis,
measles and Covid-19 - drew the attention of a very large number of researchers working
in different applied and experimental areas [5–28].

During Covid-19 pandemy applied researchers have produced a large number of works
[4–18] on airborne disease transmission and this had an important role in health politics
and into saving lives. Our objective in this paper is to establish analytically experimen-
tal results of the above mentioned works and conclusions from epidemiological findings.
With this goal we propose a model based on a system of ordinary differential equations,
ODEs, for the particle velocity and a system of partial differential equations, PDEs, for the
particle concentration. The steady state of the system of ODEs gives the settling velocity,
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that is used as the relative velocity of particles with respect to air flow. The PDEs system
is composed by a Navier-Stokes equation and a convection-diffusion-reaction equation.
The convection field in this last equation is represented by the sum of the settling velocity
with the air flow velocity given by the numerical solution of Navier-Stokes equation. An
expression for the settling velocity can be deduced analitically from the steady solution of
the system of ODEs.

To establish the model we must understand what happens to respiratory droplets once
exhaled. After exhalation, the space-time evolution of respiratory droplets depends on
several driving factors (Fig. 1): properties of droplets, environmental factors and mor-
phology of the scenario. Regarding these driving factors, we find several references in the
literature as for example:

(i) Properties of droplets: amount, size, emission rate and viral load of exhaled
particles ([3, 4, 27]);

(ii) Environmental factors: relative humidity (RH), temperature and ventilation ([4, 20]);
(iii) Morphology of the scenario: obstacles and materials ([1, 13, 28]).
In what follows we present some comments on the influence of these factors. The droplet

radii, measured in different experimental works (for example [27]), are reported to be in
the range 0.5 - 1000 micrometers (μm). However around 95% have radii in the interval
[1, 60]. This size distribution appears largely independent of the type of respiratory event.
On the contrary, the number of exhaled droplets depends mainly on the type of respira-
tory event: a few thousand for a cough, up to a million for a sneeze. The fate of respiratory
droplets, emitted by an infected person during a respiratory event, is different for “large”
and “small” particles. The definition of “small” and “large” is based on experimental results
and the radius size cut-off has variations from study to study. Currently the World Health
Organization guidelines define this cut-off at 5 μm. “Large” particles fall on available de-
position surfaces, within a short time, and can produce contamination by direct contact;
“small” particles stay suspended in the air for longer periods and can be inhaled by other
people in the same space ([3]). This type of contamination is called airborne transmission.
The two environmental properties that influence the fate of respiratory particles, once ex-
pelled from the respiratory tract, are humidity and temperature. Regarding humidity the
concept used in the present paper is relative humidity (RH), which quantifies the amount
of moisture the air can hold. RH depends on absolute humidity and temperature. As the
temperature increases, the air can hold more moisture and the relative humidity increases.
Consequently, when the concept of RH is used the influence of temperature on evapora-
tion is also taken into account. In fact RH influences the fate of respiratory particles for
two different reasons. Firstly, low RH accelerates evaporation, reduces the radius of par-
ticles and consequently their weight, what makes them stay suspended in the air longer.
Secondly, RH governs the survival of pathogens inside the droplets. The relation between
RH and virus inactivation rate is a complex one and it is represented by an U-shaped
function, for a large number of virus ([1]). Regarding the direct role of temperature in the
virus viability, there are different conclusions in the literature. As mentioned in [4] and
the references therein, “there is little scientific evidence to suggest that lower winter tem-
peratures are important direct drivers of wintertime seasonality of respiratory infections.
In particular, in indoor environments, where people spend 90% of their time and where
most infections occur, temperature does not vary much since buildings are heated as it
gets cooler outdoors”. It was following these arguments that we chose not to consider the



Ferreira et al. Journal of Mathematics in Industry            (2024) 14:1 Page 3 of 22

Figure 1 The space-time evolution of respiratory particles depends on several driving factors

direct effect of temperature on the viability of the virus. However, future developments of
the mathematical model should include the influence of temperature on the inactivation
rate of virus ([29]).

As what concerns ventilation, different systems can be considered from passive to forced
ventilation. With reference to the morphology of the scenario, several aspects can be ex-
amined as deposition on the vertical walls, on the floor, or on the furniture. To keep the
model as simple as possible, while taking into account the main phenomena involved, we
will use a simplified description of deposition based on a global deposition rate ([1]). Fig-
ure 1 shows a diagram of the main factors governing the trajectory of respiratory particles.

Which is the interplay between these factors? Particles are expelled from the respira-
tory system, dispersed in the air and the water vapour flow. Once expelled, particles enter
unsaturated air, travel under the action of convection, diffusion and gravity. They start
to evaporate and their radii decrease: the largest particles are deposed on available sur-
faces and the smallest particles stay suspended in the air. The amount by which a particle
radius decreases depends on its initial radius, the fraction of non volatile matter in the
droplet nuclei-including pathogens, sugars, proteins, lipids - and on the relative humidity
in the domain ([4]). As the radius shrinks, the droplet loses water vapour, and its density
increases because nuclei are denser than the water vapour where they are entrapped: the
higher RH, the lower is the evaporation rate (Fig. 2).

Mathematical models in the literature The flow of respiratory droplets suspended in the
air can be considered a two-phase disperse flow. To model disperse flows, two main ap-
proaches can be found in the literature: trajectory models and two-fluid models. In the tra-
jectory models, the motion of the disperse phase - the particles - is governed by Newton’s
second law, taking into account gravity, buoyancy, drag force and the force responsible for
the momentum destruction of vapour due to evaporation. The models based on this phys-
ical description, are described by two coupled ordinary differential equations (ODEs) for
each particle. One of the equations is used to compute the velocity and the other to define
the position occupied by the particle ([3, 6, 23–25]). The ODEs systems for the velocity up

and the position s of a particle, with a certain initial radius, are of the form

⎧
⎨

⎩

d (mpup)
dt = Fg + Fb + Fd + Fs,

ds
dt = up,

(1)
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Figure 2 Evaporation process in particles with non volatile nuclei. The higher is the relative humidity, the
lower is the evaporation rate

where mp represents the time-dependent mass of the particle, Fg stands for the gravity
force, Fb represents the buoyancy, Fd the drag force and Fs represents the force respon-
sible for the momentum destruction of vapour due to evaporation. In system (1) and the
following, t represents the time measured in seconds. System (1) is closed with initial con-
ditions for up and s. Regarding trajectory models, we mention without being exhaustive,
a number of formulations based on system (1), found in the literature and progressively
more realistic:

(i) The simplest formulation considers that the respiratory droplets move in a static air
following a ballistic trajectory after leaving the exhaled flow ([6]). The path of large
droplets is dominated by gravity while the trajectories of small droplets can remain
longer suspended in the air, leading to a greater dissemination. This means that
large droplets tend to fall in seconds, depositing on surfaces and small droplets can
travel for a longer period, being eventually inhaled by someone else. The
conclusions are qualitatively in agreement with experimental results.

(ii) The experimental set up in [3] and [25] suggests that the path of particles is
influenced by the respiratory flow. Following this rationale, system (1) was modified
by including in the drag force Fd a velocity for the expelled air: an empiric velocity
([25]), or a velocity described by Navier-Stokes equations ([21, 23]).

(iii) In a third type of trajectory models found in the literature, the fluid flow behavior of
droplets is modelled using two different systems, one for large and the other for
small droplets. For large droplets it is used Newton’s Law, where the velocity of the
expelled air is computed by Navier-Stokes equations as in (ii); however the path of
single small particles is omitted and is described by the fluid flow governed by
Navier-Stokes and mass transfer equations ([16, 21]).

In the second approach for dispersed flows called two fluid model, the discrete nature
of particles is overlooked and the dispersed phase is treated as a continuous phase. In this
approach, conservation equations are developed for the two flows, which presents many
difficulties related to the interactions between the two phases ([12]). A simplified version
of two fluid model is the drift flux model where the mixture is considered as a whole,
rather than composed by two separate phases. The formulation involves two mass con-
servation equations, one for each phase, and one momentum equation for the mixture.
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The mass conservation of the dispersed phase is modelled by using a drift equation, that
includes the relative velocity between the phases. Approximations of this relative veloc-
ity,can be computed iteratively from the steady state solution of the ODEs system. The no
need of interface terms between the phases, the well-posedness, and the reduced number
of transport equations represent some of the main advantages of the drift flux model. A
theoretical framework in which these two formulations - two fluid model and drift flux
model - are unified has been presented in [8]. Drift flux models have been used to simu-
late the quality of air ([5, 28, 31]). In some of these works the numerical results have been
validated by experimental results ([5, 28]).

The present contribution In the present paper, we are interested in indoor propagation
of respiratory particles, possibly leading to airborne contamination. We follow the general
principles of drift flux models, as detailed in Sect. 2.3: one equation for the momentum
of mixture, two equations for mass conservation, taking into account the drift velocity of
particles relatively to the fluid. The evaporation of particles is considered in the present
model which implies that their radii and densities are time depending. Our focus is the
study of mathematical aspects related to theoretical estimates. Namely, we want to analyse
if, from these theoretical estimates, it is possible to conclude the type of dependence on
the driving factors, established by experimentalists.

The topic of airborne contamination has always attracted the attention of a very large
number of researchers from applied areas, contributing with laboratorial results or nu-
merical simulations. We believe that our approach represents an original contribution as
it shows that the mathematical analysis of a priori estimates exhibits sound physical prop-
erties, leading to results in line with experimental work or mounting epidemiological ev-
idence. We mention specifically the role of superspreaders as main drivers of respiratory
infections outbreaks ([14]); the influence of RH in seasonality infections ([4]); the rec-
ommendations of health authorities concerning social distance and ventilation of indoor
spaces.

The paper is structured as follows. In Sect. 2 we establish the equations, following the
principles of drift flux models for disperse flows. The stability of the mathematical model is
then deduced in Sect. 3. An a priori estimate of the total number of particles highlights the
relative weight of the different driving factors, and supports a number of health guidelines
adopted to block disease spread. The estimates are numerically illustrated and compared
with results in the experimental literature. In Sect. 4 several numerical experiments are
presented. In Sect. 5 some conclusions are addressed.

2 Mathematical model
In this section we present a mathematical model that describes the evolution of the num-
ber density of respiratory droplets exhaled indoors, during a violent respiratory event -
coughing or sneezing. It is assumed that particles are laden with virus and that evapora-
tion takes place after expulsion. Moreover we assume that ventilation is guaranteed by a
passive system.

We consider a drift flux model ([5, 8, 10, 12]) where the mixture composed by two phases
- air and particles - is viewed as a whole and the relative motion between the two phases
is described by a kinematic constitutive relation.
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Figure 3 A vertical slice of the domain. In the numerical illustrations the domain is two-dimensional with 4 m
wide and 2.5 m high

2.1 Convection-diffusion-reaction equation for the dispersed phase
Let � ⊂ R

n, n = 2, 3, represents the physical domain where the evolution of respiratory
droplets is studied. Let the boundary ∂� be decomposed in

∂� = ∂�W ∪ ∂�D ∪ ∂�F ∪ ∂�wa ∪ ∂�Mf ∪ ∂�Mb

as represented in Fig. 3. The boundaries ∂�W and ∂�D represent two openings of a passive
ventilation system, a window and a door respectively; ∂�F stands for the floor of the room.
�M stands for the location of the emission source and its boundary satisfies ∂�M = ∂�Mf ∪
∂�Mb , where ∂�Mf represents the entry of the respiratory flow in �. �M stands for the
head of an issuer that stands in the domain and is represented by an ellipse. Finally ∂�wa

represents the remaining boundaries. We note that the theoretical estimates in Sect. 3
hold for n = 2, 3.

The respiratory particles are assumed spherical with radius R(t) and density ρp(t). We
suppose that evaporation takes place as the particles are expelled, which explains that
radius and density are time dependent. We also assume that particles, while evaporat-
ing, keep their spherical shape. To guarantee that the particles can be considered in the
continuum regime and that the usual equations of continuum mechanics can be applied,
we assume that the Knudsen number, kn = λ

R(t) � 1, where λ is the mean free path of air
molecules. The inequality is satisfied for an initial radius R0 � 0.0651μm ([9]) and con-
sequently the continuum regime can be used for particles with radii exceeding this value.

Let C(x, t) stand for the number of particles per unit volume, designated by the number
density of respiratory particles. We assume all the particles have infectious nuclei and an
initial radius R0. The total mass of particles, with infectious nuclei and with initial radius
R0, in A is given by

M(t) =
∫

A
mp(t) C(x, t) dx, (2)

where A ⊂ � represents an arbitrary reference domain and mp(t) represents the mass of a
particle, that is defined by mp(t) = 4

3πR3(t)ρp(t). We assume that the density ρp(t), the mass
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Figure 4 Inactivation rate of SARS-CoV-2 as a function of RH under a temperature of T = 20◦C ([1])

mp(t) and the radius R(t) are the same for all the particles at time t, changing only with
time. We postpone the theoretical measurement of ρp to Sect. 2.2. The variation of M(t)
in A is due to the flux J that crosses its boundary ∂A, to the deposition, to the inactivation
of pathogens and the loss of mass by evaporation. J is a particle flux associated to C(x, t),
that will be defined in Sect. 2.4. To take into account these phenomena we write

dM
dt

(t) = –
∫

∂A
mp(t)J(s, t) · η ds –

∫

A
mp(t)KC(x, t) dx

–
∫

A
mp(t)VC(x, t) dx –

∫

A
mp(t)L(t)C(x, t) dx. (3)

The sinks of the model, K and V , stand for the deposition of particles and the inacti-
vation rate of the pathogens, respectively. The deposition of particles K , defined later in
this section, is represented by a global deposition rate depending on a certain number of
parameters ([1]). Regarding the inactivation rate V , it depends on several parameters, as
defined in Sect. 4. It is represented, for most virus, by an U-shaped function. In Fig. 4 it
is exhibited a plot of the inactivation rate of SARS-CoV-2 as a function of RH. The plot
results from experimental works under a temperature of T = 20◦C ([1]). In equation (3), η
stands for the exterior unit normal to ∂A.

As already mentioned in Sect. 1, we assume that, indoors, the inactivation rate depends
essentially on relative humidity ([1, 4, 20]). The study presented in Sect. 3, follows the
same lines that it would follow in the case the inativation rate V also depended directly on
temperature. In the last term of the second member of equation (3), that quantifies mass
loss by evaporation, the time function L = L(t) stands for the rate of evaporation.

From equation (2) and equation (3) we have

mp
∂C
∂t

+
dmp

dt
C = –mp∇ · J – mpKC – mpV (RH)C – mpLC, (4)

where we omitted the time and space variables. We recall that C and J are space-time
functions, mp and L are time functions, K and V are constants depending on several pa-
rameters.
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Let us assume that the droplets don’t evaporate completely up to the time Te, that is
mp(t) �= 0, ∀t ∈ [0, Te] where [0, Te] represents the time interval we are interested in. This
is justified in the next paragraph.

As dmp
dt < 0, the rate of evaporation L can be defined by

L = –
dmp

dt
mp

(5)

and we deduce from equations (4) and (5) that the number density of particles with infec-
tious nuclei satisfies

∂C
∂t

= –∇ · J – (K + V )C in � × (0, Te]. (6)

The emission of virus laden particles is represented by a boundary condition active on
∂�Mf as the respiratory event lasts (Fig. 3).

2.2 Particle radius and density: the effect of evaporation
Let us justify that it is an acceptable physical assumption to consider mp(t) �= 0, ∀t ∈ [0, Te].

Following for example [4, 19] and [28], the evolution of R(t) can be described, in a sim-
plified form, by

R(t) =

⎧
⎨

⎩

R0(1 – θ (1–RH)t
R2

0
) 1

2 , t ≤ tev,

R0( φ0
1–RH ) 1

3 , t > tev.
(7)

In (7) R0 > 0 is the initial radius of the particles, θ is a physical parameter, RH represents
relative humidity, φ0 is the volume proportion of non-volatile content and tev is the evap-
oration time with tev � Te. The parameter θ has a constant value, θ = 1.1 × 10–9 m2/s
([4]). Respiratory particles are liquid droplets that contain non-volatile nuclei, composed
by sugars, proteins, lipids and pathogens. The typical volume proportion of the non-
volatile content, φ0, satisfies

1% ≤ φ0 ≤ 10%.

The previous arguments justify that R(t) is a decreasing function of t but R(t) �= 0, for
every t and consequently that mp(t) �= 0 in [0, Te]. The evaporation time, tev, is obtained
from equations (7) by assuming continuity of R(t), that is by equaling the values of R(tev)
given by the two expression in (7).

As the radius R(t) shrinks, the density of the particles, ρp(t), increases because the nuclei
are denser than the evaporating water (Fig. 2 and Fig. 5). Assuming that particles keep a
spherical shape, while evaporating, we have

ρp(t) =

⎧
⎨

⎩

1 + (ρn
p – 1) R3

0φ0
R3(t)(1–RH) , t ≤ tev

ρn
p , t > tev,

(8)
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Figure 5 Plots of R, ρp andmp during 12 seconds

where ρn
p is the density of the non-volatile nuclei, that is the final density of the particle.

The expression for ρp(t) for t ≤ tev is deduced from (8)

ρp(t) =
(R3(t) – R3

0φ
∗
0 ) + R3

0φ
∗
0ρn

p

R3(t)
, (9)

where φ∗
0 = φ0/(1 – RH). Values for ρn

p depend on the nuclei composition and can be found
in experimental studies. For example for Sars-Cov-2 a density of 1.3 g/ml is suggested in
the experimental study [24].

We illustrate the time behaviour of R, ρp and mp in Fig. 5 for R0 = 60 μm and RH = 0.5.
It can be observed that R and mp are time decreasing and ρp is an increasing function of
time.

2.3 The drift flux model
In the present paper we use a drift flux model. Drift flux models have been addressed by
several authors from a theoretical point of view or from an applied viewpoint. We mention
without being exhaustive ([5, 8, 10, 12, 28]). The principles underlying this class of models
are the following:

1. Conservation of momentum is established for the mixture: air and particles;
2. Conservation of mass is established for the two phases separately;
3. Relative motion of the particles, with respect to airflow, is essentially due to the

gravitational settling of the dispersed phase.
The mixture momentum equation and the mass conservation are given by ([17])

⎧
⎨

⎩

ρf
∂uf
∂t + ρf (uf · ∇)uf = ∇ · (μeff ∇uf ) – ∇p

∇ · (ρf uf ) = 0, in � × (0, Te],
(10)

where uf is the air flow velocity, ρf stands for air density, μeff represents the effective
diffusion and p represents the atmospheric pressure. We observe that a simplification is
made when considering that ρf represents air density and not the mixture density. The
approximation is justified by the small volume of respiratory particles when compared
with the air volume in �. This simplification implies that ρf is assumed constant in time.
Equation (10) describes the mixture and not the two phases, using a momentum and mass
conservation for the airflow with the hypothesis ρf = ρ .
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Following principle 3, of the drift flux models, the velocity field, that represents the ve-
locity of particles travelling in the airflow, is defined as uf +us, where uf is given by equation
(10) and us is the relative velocity of particles with respect to airflow. It is defined as the
settling velocity, us ([28, 31]). The settling velocity us, which equation we will deduce in
what follows, is given by the steady state solution of system (1).

From equation (6) and defining the flux J = –D∇C + (uf + us)C, where D stands for
the diffusion coefficient we can conclude that mass conservation of evaporating particles,
with non-volatile nuclei is equivalent to a convection-diffusion-reaction equation for the
density number of particles that reads

∂C
∂t

+ ∇ · ((uf + us)C
)

= ∇ · (D∇C) – (K + V )C in � × (0, Te]. (11)

For high Reynolds number of the flow, Re, D = DB + ε, where DB is the Brownian diffusion
and ε is the eddy diffusivity ([28]).

To compute the settling velocity of the particle, us, let us now return to system (1). As
Fs, the force responsible for the momentum destruction of vapour due to evaporation, is
defined by – dmp

dt up ([6]), we have from (1)

mp
dup

dt
= Fg + Fb + Fd, (12)

where the gravity force, Fg , the buoyancy, Fb, and the drag force, Fd , are defined respec-
tively by

⎧
⎪⎪⎨

⎪⎪⎩

Fg = 4
3πR3gρp,

Fb = – 4
3πR3gρf ,

Fd = 1
2 Cdρf πR2‖uf – up‖(uf – up).

(13)

In (13), ‖.‖ denotes the L2(�) norm (for scalar and vector functions) defined as ‖u‖ =
(∫

�
|u|2 dx

) 1
2 , where |u|2 = u · u denotes the Euclidean inner product; R and ρp are time

functions that represent the particle’s radius and density defined in (7) and (9) respectively.
As the theoretical results presented in the present paper hold for two and three dimensions
the gravitational acceleration is represented by g = (0, –9.8) or g = (0, 0, –9.8) respectively.
Cd stands for the drag coefficient defined in [6] as

Cd =
21.12
Rep

+
6.3

√
Rep

+ 0.25. (14)

The behavior of Cd as a function of Rep is represented in Fig. 6, where Rep stands for the
Reynolds number of the particle.

Equation (14) represents an empirical relation that holds for particles with Reynolds
number, Rep, such that 0.2 < Rep < 2 × 103. We define Rep as in [25] by

Rep =
2ρf R‖uf – up‖

υ
, (15)

where υ is the kinematic viscosity of air and n = 2, 3. As Rep is not constant, because radius
and velocity are time dependent, we illustrate in Table 1, the maximum value of the particle



Ferreira et al. Journal of Mathematics in Industry            (2024) 14:1 Page 11 of 22

Figure 6 The behaviour of the drag coefficient Cd as a function of Rep for smooth and rough spheres. Image
retrieved August 31, 2023, from
https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/drag-of-a-sphere/

Table 1 Maximum value of particle’s Reynolds number (Rep)

R0 (μm) Max Rep

2 2.688
60 80.6

Reynolds number for initial radii R0 = 1 μm and R0 = 60 μm. The values are computed
from equation (15). We select these two values of R0 as representative of expelled particles
because around 95% of these particles have radii that stay in the interval [1, 60].

The settling velocity, us, is the steady solution of (12), (13) under quiescent conditions,
that is when uf = 0 ([31]). As the settling velocity has the same direction as gravity - it
points downward, perpendicularly - only its second or third component is not zero. We
represent this component by ūs. Assuming that the steady state is achieved for t > tev, we
have from (7)

|ūs| =

√
√
√
√8|g|R0( φ0

1–RH ) 1
3 (ρn

p – ρf )
3C∗

dρf
. (16)

In (16), |g| = 9.8 and C∗
d is the steady state value for the drag coefficient Cd given in (14).

As the particle Reynolds number at the steady state is defined by

2ρf R0
(
φ0/(1 – RH)

)1/3|ūs|/v,

the settling velocity can be calculated only iteratively from (15) and (16). For the purposes
of the theoretical estimates presented in Sect. 3, we circumvent such difficulty, by using
superior and inferior bounds for C∗

d , computed from the previous assumption that the
particle Reynolds number satisfies 0.2 < Rep < 2 × 103. In this case we have Cd(0.2) < C∗

d <
Cd(2 × 103), where Cd(·) is the drag coefficient defined in (14).

2.4 Initial and boundary conditions
The boundary conditions of the model are defined by:

https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/drag-of-a-sphere/
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• for the velocity uf (defined by (10))

⎧
⎨

⎩

uf · η = –uw on ∂�W × (0, Te],

uf · η = –ufin on ∂�Mf × (0, Te],
(17)

where η stands for the exterior unitary normal to each boundary. A no-slip boundary
condition for uf , that is uf = 0, is imposed on (∂� \ (∂�W ∪ ∂�Mf )) × (0, Te]. In
equation (17), uw is related to a passive ventilation velocity coming from the windows
and ufin is associated to the velocity of the respiratory airflow.

In the framework of the theoretical model no restrictions are made on uw and ufin .
• for the number density of respiratory particles C

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J · η = αW C on ∂�W × (0, Te],

J · η = αDC on∂�D × (0, Te],

J · η = 0 on ∂�F × (0, Te],

J · η = 0 on (∂�wa ∪ ∂�Mb ) × (0, Te],

J · η = – E(t)
|∂�Mf | on ∂�Mf × (0, td],

J · η = 0 on ∂�Mf × (td, Te],

(18)

where J = –D∇C + (uf + us)C, td is the duration of the respiratory event (td < Te), E(t)
represents the number of particles emitted by time unit and |∂�Mf | stands for the
measure of ∂�Mf . We observe that there are a number of techniques used to measure
E(t) as laser scattering particle spectrometers and aerodynamic particle sizers ([30]).
The permeability constants αW and αD are positive, which means that the particles
can fly outwards from the door and the window.

Null initial conditions are assumed for the velocity uf , for the pressure and for the num-
ber density of particles C.

3 Qualitative behaviour
An energy estimate that proves the stability of the model for finite times is presented in
this section. An expression for the total number of particles is also established. The upper
bound of this expression depends on a number of parameters that characterize the driving
factors (Fig. 1). The qualitative behaviour of this estimate leads to results in agreement
with experimental literature.

We begin by establishing an energy estimate for the concentration C. We omit the space
and time independent variables. Multiplying equation (11) by C and taking the integral in
� we have

1
2

d
dt

‖C‖2 +
∫

�

∇ · ((uf + us)C
)
C dx =

∫

�

∇ · (D∇C)C dx – S‖C‖2, (19)

where the sink S is defined by

S = K + V , (20)
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and ‖ · ‖ denotes the usual norm in L2(�). In (20), we recall that V represents the inacti-
vation rate of the pathogen and that K represents a global deposition rate, defined in ([1])
by

K =
|ūs|
H

, (21)

where ūs stands for the last component of the perpendicular settling velocity, given in (16),
and H is the height of the emission source. From (16), (20) and (21) we deduce that S is
defined by

S = S(RH , R0) =
[

8
3

R0

C∗
D

(
φ0

1 – RH

)1/3

|g|ρ
n
p – ρf

ρf

] 1
2 1

H
+ V , (22)

where the dependence of S on RH and R0 is explicited.
As

∫

�

∇ · ((uf + us)C
)
C dx = –

∫

�

(uf + us)C · ∇C dx +
∫

∂�

(uf + us) · ηC2 dω,

and
∫

�

∇ · (D∇C)C dx = –
∫

�

D‖∇C‖2 dx +
∫

∂�

DC∇C · η dω,

from (19) we have

1
2

d
dt

‖C‖2 = –D‖∇C‖2 +
∫

�

(uf + us)C · ∇C dx –
∫

∂�

CJ · η dw – S‖C‖2. (23)

We note that us does not depend on t. Assuming that uf + us ∈ L∞(�), we have from (23)

d
dt

‖C‖2 +
(
2D – β2)‖∇C‖2 – h(t)‖C‖2 + 2

∑

i=W ,D

αi‖C‖2
L2(∂�i)

– 2
∫

∂�Mf

E(t)
|∂�Mf |

C dω < 0, t ∈ (0, Te], (24)

where β �= 0 is an arbitrary constant. In equation (24), h(t) =
‖uf +us‖2

L∞(�)
β2 – 2S(RH , R0) and

E(t) = 0, t > td .
The last integral term in the first member of (24) satisfies

2
∫

∂�Mf

E(t)
|∂�Mf |

C dω ≤ 1
δ2

1
|∂�Mf |

E2(t) + δ2‖C‖2
L2(∂�Mf ), (25)

where δ �= 0.
Replacing (25) in (24) we obtain

d
dt

‖C‖2 +
(
2D – β2 – δ2)‖∇C‖2 –

(
h(t) + δ2KT

)‖C‖2

≤ –2
∑

i=W ,D

αi‖C‖2
L2(∂�i)

+
1
δ2

1
|∂�Mf |

E2(t), (26)



Ferreira et al. Journal of Mathematics in Industry            (2024) 14:1 Page 14 of 22

where KT is a constant resulting from the application of a Trace Theorem ([7]) to
‖C‖2

L2(∂�Mf ). Selecting β and δ such that 2D – β2 – δ2KT > 0 we establish

‖C‖2 ≤
∫ t

0
e
∫ t

s (h(μ)+δ2KT ) dμ 1
δ2

1
|∂�Mf |

E2(s) ds, t ∈ [0, Te], (27)

and using the definition of h(t) we finally have

‖C‖2 ≤
∫ t

0
e–2S(RH,R0)(t–s)e

∫ t
s (

‖uf (μ)+us‖2
L∞(�)

β2 +δ2KT ) dμ 1
δ2

1
|∂�Mf |

E2(s) ds. (28)

Inequality (28) proves the stability, for fixed time Te, of the initial boundary value prob-
lem defined by equation (11) with the boundary conditions (18).

Let us now estimate the total number of respiratory particles in the room.
The total number of respiratory particles suspended in the air, N , with initial radius R0,

is represented by
∫

�
C dx. Integrating the two members of equation (11) in �, we have

dN
dt

(t) =
∫

∂�

–J · η dω – S(RH , R0)N(t). (29)

Computing then a solution of (29) we have

N(t) =
∫ t

0
e–S(RH,R0)(t–s)

[

E(s) –
∑

i=W ,D

αi

∫

∂�i

C(s) dω

]

ds. (30)

As αi ≥ 0, i = W , D, from (30) we conclude

N(t) ≤
∫ t

0
e–S(RH,R0)(t–s)E(s) ds, (31)

assuming that the concentration C is positive. In (31) C∗
d is replaced by Cd,max in the defi-

nition (22) of S(RH , R0).
From the previous results we can establish the conclusions that follow.

1. N(t) is a decreasing function of the initial radius of the particle, R0. The conclusion
has a sound physical meaning because large droplets deposit first and consequently
remain suspended in the air for less time ([6]). The plots in Figs. 8, 9 and 10
computed numerically, as detailed in Sect. 4, illustrate the theoretical result.

2. N(t) is a decreasing function of RH , the relative humidity. The higher the relative
humidity, the lower the evaporation rate. Therefore under the action of high
humidity particles fall first to the floor, and consequently remain suspended in the
air for less time ([4]). This result is illustrated in the plot of Fig. 10, computed
numerically from the model.

3. The total number of particles N(t) increases with Ê, defined as the total number of
particles emitted during the event. The numerical result in Fig. 12 illustrates why
large emissions characterize super-spreader’s events.

4. The increase of N(t) with the rate of exhalation, defined in (17), can be established
from (28). However, for the parameters used in the numerical simulations, the
influence of ufin is not meaningful (Fig. 13).
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Table 2 Variables and parameters used in the simulations

Variable/Parameter Value Unit Description

mp g mass of a particle
C n/m3 number density of particles
K 1/s deposition rate
V 0.01, 0.028 1/s inactivation rate ([1])
J n/(m2s) convection diffusion flux
R0 2, 60 μm initial radius ([27])
φ0 0.1 - percent of non volatile content ([4])
RH 0.5, 0.8 - relative humidity ([1])
tev 5 s evaporation time
td 0.5 s duration of the respiratory event
Te 10 s observation time
ρn
p 998.6 Kg/m3 nucleus density ([6])

D 1.8× 10–5 m2/s diffusion coefficient ([23])
ρf 1.2077 Kg/m3 fluid density ([6])
μ 1.8× 10–5 m2/s effective viscosity ([23])
p Pa atmospheric pressure
|g| 9.8 m/s2 gravity acceleration
Cd drag coefficient
us m/s settling velocity of the particles
ufin m/s inlet velocity profile ([11]) - cough event
uw 0.1, 2 m/s last component of an horizontal ventilation velocity
αW , αD 1 m/s transfer coefficient - particle’s flux

4 Numerical illustrations
The theoretical results of Sect. 3 have been established in R

n, n = 2, 3. In Sect. 4 we illus-
trate numerically these results for n = 2. We also exhibit plots illustrating the behaviour
of N(t) with ufin and uw (equation (17)). The problem is solved in the two-dimensional
geometry �, with 4 m wide and 2.5 m high, represented in Fig. 3 using Comsol Multi-
physics software (version 5.1), using the laminar flow and the transport of diluted species
modules. A quadratic piecewise finite element for the concentration equation and a piece-
wise linear finite element for the velocity are considered. A triangular mesh automatically
generated with 40,957 elements is used to obtain a consistent mesh. In the region of the
inlet velocity profile for a cough event, ∂�Mf , the mesh is highly refined. We note that
for the conditions considered in the numerical simulations presented in this section, the
Reynolds number of the airflow does not exceed 2600. The time integration is performed
with a backward difference method, with variable order ranging between 1 and 2 and an
adaptative time step. The system of algebraic equations generated from the matrix assem-
bly is solved using an affine invariant form of the damped Newton method. To compute
the numerical solutions of the Navier-Stokes equation and of the concentration equation,
(10) and (11), streamline diffusion and crosswind diffusion stabilizers were used in both
equations.

The values used for the parameters in the numerical simulations are presented in Table 2.
Convergence tests have been carried out with meshes of decreasing size to verify that

the solution is mesh independent. In Table 3 we present the relative errors for the con-
centrations considering a reference solution obtained with a mesh composed of 51,997
elements in �. We observe that an increase in the number of elements leads to a decreas-
ing of the relative error. An increase of 3.75 times of the number of elements leads to a
decrease in the relative error of 68 times at t = 5, of 132 times at t = 7 and of 325 times at
t = 10.
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Table 3 Relative error for the concentration with respect to the maximum norm at t = 5, 7 and 10

Number of elements t = 5 t = 7 t = 10

10,931 0.34 0.66 1.30
22,417 0.13 0.25 0.46
30,799 0.127 0.22 0.37
40,957 0.005 0.005 0.004

Figure 7 Inlet velocity profile ufin , for a cough event, defined on the boundary of ∂�Mf
(adapted from [11])

The problem is solved for small and large particles with two initial representative radius
of 2 and 60 μm, respectively. To simulate a respiratory event of cough, the velocity profile
ufin presented in Fig. 7 is considered ([11]). The maximum velocity considered is 10 m/s
and the event lasts for 0.5 seconds.

In order to study the differences between the paths of large and small particles, we ex-
hibit in Fig. 8 the space-time evolution of particle distribution C for R0 = 2, 60 μm at
t = 0.5, 1, 3. A slight ventilation rate is considered (0.1 m/s) and relative humidity RH is
fixed at 0.5. We note that, as expected, deposition is more significant for large particles. In
addition large particles hit the floor up to 0.5 m; instead small particles remain essentially
suspended in the air. In fact we observe that, at t = 3, large particles were deposited up
to a distance of about 1 m from the horizontal projection of the emitter. Small particles
behave differently. At t = 3 all particles remain suspended in the air and there is no visible
deposition on the floor. At a distance of 2.5 a child can breathe in infected particles. These
simulations suggest that for large particles the guidelines for a two meters social distanc-
ing, adopted by the World Health Organization, during Sars-Cov-2 pandemic, prevents
the spread of disease. However, for small particles this social distancing is not enough.

To get a clearer view of the dependence of N(t) on R0, when a slight horizontal ventila-
tion rate is considered (0.1 m/s), we exhibit in Fig. 9 the dependence of the total number
of particles N(t), on the initial radius R0, during 10 seconds. More precisely the number
of large particles (R0 = 60) falls abruptly from t = 2, the number of small particles (R0 = 2)
remains constant during the observation period, [0, 10].

We note that N(t) is a decreasing function of R0: large particles deposit first and have a
smaller contribution to airborne dissemination. This conclusion can be established from
Sect. 3.

To better understand the evolution of small particles in the room over time, the prob-
lem is solved under the same conditions as the results presented in Figs. 8 and 9 but for
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Figure 8 Concentration distribution C at t = 0.5, 1, 3 s: small particles R0 = 2 - left, large particles R0 = 60 -
right (uw = 0.1, RH = 0.5)

Figure 9 The dependence of N(t) on R0 during 10 seconds with RH = 0.5 and uw = 0.1

a larger time, Te = 20. The result is presented in Fig. 10. The number of small particles
decreases after 10 seconds, instead of 2 seconds, for large particles. We observe that after
20 s, there are about 45% of small particles and practically no large particles. The result is
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Figure 10 Behavior of the number of small and large particles (R0 = 2, R = 60), during 20 seconds with
RH = 0.5 and uw = 0.1

physically sound because large respiratory particles fall to the ground more quickly than
small particles.

The plots in Figs. 8, 9 and 10, computed from the numerical solution of the model, illus-
trate the theoretical results deduced from estimate (31), related to the behaviour of N(t)
with R0. The reference values considered for the fixed parameters are R0 = 60, uw = 0.1,
RH = 0.5 and E(t) = 4000, where E(t) stands for a constant number of emitted particles per
unit time. The global number of particles emitted, Ê, during an event that lasts td = 0.5,
is 2000 as represented in the plots. We note that there are several techniques to measure
the number of particles, of different radius, emitted during respiratory events, but its de-
scription falls outside the scope of the present paper.

In what follows the dependence of N(t) on the relative humidity RH, the total emis-
sion of particles, Ê, and the velocity of an horizontal room passive ventilation (0, uw) are
illustrated.

In Fig. 11 the influence of relative humidity for small (R0 = 2) and large particles (R0 = 60)
is illustrated without ventilation. We observe that an increase in the relative humidity im-
plies a decrease in the number of suspended particles in the room. The difference is mean-
ingful for heavy particles (at t = 4 the increase in RH from 0.5 to 0.8 implies a 20% decrease
in N(t) - there are 1000 particles for RH = 0.5 and about 800 particles for RH = 0.8), for
small particles the influence of RH obeys the same principle but is not so significant.

The effect on N(t) of the total number of particles emitted is plotted in Fig. 12 during
10 seconds, for E(t) = 4000, E(t) = 8000 and td = 0.5. A slight horizontal ventilation rate
(uw = 0.1 m/s) and RH = 0.5 are considered. As expected, the larger the emitting source,
the greater the number of particles in the room.

In some indoors respiratory events a single infected person, called a super-spreader, is
more likely to infect other people. Different reasons are invoked to explain these super-
spreader events. We begin by mentioning biological reasons as a greater number of ex-
pelled particles, Ê, and higher rates of emission E(t) ([2]). The theoretical results in Sect. 3,
illustrated by Fig. 12, confirm this hypothesis.

In Fig. 13 it is illustrated the influence of ufin , defined on the boundary of ∂�Mf such
that uf · η = –ufin . An increase in the expiration rate leads to a very slight increase of N(t)
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Figure 11 Influence of RH on N(t) for small (R0 = 2) and large (R0 = 60) particles during 20 seconds, without
ventilation

Figure 12 Influence of the total number of particles emitted, on N(t) during 10 seconds (R0 = 60, RH = 0.5,
td = 0.5, uw = 0.1)

during the two first seconds. We observe that the expiration velocity acts only during the
duration of the event, td = 0.5, what can explain the very slight influence.

Another common feature of indoor super-spreader events is poor ventilation ([26]). The
dependence of N(t) on the ventilation, for small and large particles, is illustrated in Fig. 14
for uw = 0.1, 2 over 10 seconds, for R0 = 2 on the left and R0 = 60 on the right (RH = 0.5).
Ventilation keeps small particles suspended, preventing them from deposition; the larger
is uw the longer they stay suspended. After an initial period, the particles arrive at the
door and leave the room. As particles transported by an horizontal ventilation with uw = 2
arrive first than in a quiescent air, this can explain why after 10 seconds, in a well venti-
lated room, there are no more particles. Regarding large particles, deposition is dominant;
consequently as it does not depend on uw, the difference is less significant. The plots in
Fig. 14 confirm the recommendations by health authorities, for an efficient natural ventila-
tion. The dependence of N(t) on ventilation is not deduced from the theoretical estimates.
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Figure 13 The influence of the inlet velocity on N(t) (R0 = 60, RH = 0.5, td = 0.5, uw = 0.1)

Figure 14 The effect of ventilation (uw = 0.1, 2) on N(t) over 10 seconds (R0 = 2 on the left; R0 = 60 on the
right)

5 Final remarks
Inhaling indoor air is the primary mean by which people is exposed to respiratory parti-
cles. Knowledge of the trajectory of respiratory particles is essential to support the def-
inition of guidelines that minimize airborne transmission of diseases. The study of the
trajectory of respiratory particles is complex because it depends on a large number of
phenomena and factors. As with all mathematical models, it is important to keep the de-
scription of phenomena as simple as possible, but exhibiting the main properties estab-
lished by physical laws. Based on experimental studies we focus on a limited number of
factors, related to intrinsic particle properties (the total number of particles emitted, the
number of particles emitted by time unit, the initial radius, the expelling velocity) and to
environmental properties (relative humidity).

We summarize in what follows the main conclusions established from the estimates,
regarding the total number of airborne particles:

• The total number of airborne particles is a decreasing function of the initial radius R0.
The conclusion, established from the theoretical estimate (31), has a sound physical
meaning because large droplets deposit first and consequently remain suspended in
the air for less time ([3, 6]). Moreover, the plots in Figs. 8, 9 and 10, computed from
the numerical solution of the model, illustrate the result. We observe that the plots in
Fig. 8 suggest that, in the conditions of our simulations, for large particles the two
meters social distancing, adopted by the World Health Organization, during
Sars-Cov-2 pandemic, prevents the spread of disease for large particles. On the
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contrary the plots in Fig. 8 (left) suggest that for small particles this social distancing is
not enough. These last observations concerning social distance cannot be established
from the theoretical estimates.

• The total number of airborne particles decreases with RH . This conclusion is in
agreement with a number of experimental studies ([4, 20]) and suggests an
explanation for the seasonality of respiratory infections. The rationale under this
explanation is that in winter people spends more time indoor, with warmer
temperatures, that dry the air coming from outdoors, which leads to a drop in RH .
This causes a large evaporation rate and consequently a higher number of suspended
respiratory particles. The numerical plots in Fig. 11 illustrate the influence of RH and
suggests that its influence is more significant for large particles.

• The total number of airborne particles increases with the number of particles emitted
per time unit, E(t), and with the total number of particles emitted, Ê. This conclusion
is in agreement with the hypothesis of some researchers, that a small percent of
people are responsible for a large number of infections ([14]). In fact researchers
believe that, among other biological causes, this could be a consequence of individuals
- the superspreaders - that emit a higher number of particles per time unit. The plots
in Fig. 12 illustrate this influence.

Equation (31) does not allow us to draw conclusions about the behavior of N(t) with
ventilation. However the plot in Fig. 14, computed numerically from the model, confirm,
in the conditions of the simulations, the recommendations of health authorities regard-
ing ventilation. As mentioned in Sect. 1 future developments of the mathematical model
should include the direct influence of temperature on the inactivation rate of virus ([29]).

Despite its simplicity, the model allows establishing a number of results in accordance
with mounting epidemiological evidences and research work produced by different groups
(for example [3, 21] and [22]).
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