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Abstract
In this paper we build a methodology for pricing of insurance-linked securities which
are tied to multiple natural catastrophe perils. As a representative example, we
construct a multi-peril catastrophe (CAT) bond which can be linked to the industry
loss indices or actual losses incurred by an insurer. We provide pricing formulas for
such CAT bonds. We illustrate the introduced methodology on the US natural
catastrophe data obtained from Property Claim Services (PCS). Within this dataset, we
specifically examine two types of risks: losses associated with wind and thunderstorm
events, and those linked to winter storm events. Then, we fit and validate the
underlying compound non-homogeneous Poisson processes taking into account the
fact that the data are left-truncated. The best fitted loss distributions appear to be
Burr and Generalised Extreme Value and for the first peril and log-normal for the
second. Finally, we visualise the zero-coupon CAT bond prices for the selected
best-fitted models.
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1 Introduction
Insured losses have been elevated over the last five years due to recurring high-loss sec-
ondary peril events such as severe convective storms, floods and wildfires. Coming after
a dip in 2012–2016, the higher insured losses of 2017–2021 signal a return to a long-term
growth trend of 5–7%. Insurance covered USD 119 billion of 2021 economic losses, the
fourth highest on record, of which USD 111 billion was compensation for damage result-
ing from natural catastrophes [51].

To date, the majority of losses resulting from natural catastrophes have been due to the
increasing accumulation of insured exposure (from human and physical assets) that has
arisen with economic growth and urbanisation. In the coming decades, climate change
will be one of the many factors that will contribute markedly to the increase in economic
and, as a consequence, insured losses. In particular, as world temperatures rise, and hu-
mans continue to expand mankind’s urban footprints, the frequency and severity of losses
resulting from severe natural catastrophe events will increase [50].

Discussions with practitioners, especially those in the global reinsurance industry, have
consistently highlighted that the top region-perils impacting yearly insured losses are: US
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earthquakes, US hurricanes, EU windstorms, EU floods and US convective storms. Dire
warnings about devastating hurricanes were a hot topic at the COP21 climate talks in
Paris.

Up to 2013, US convective storm has accounted for, on average, one-third of average an-
nual losses [46]. However, US earthquake and US hurricane perils remain the top contrib-
utors. Each year, Swiss Re publishes a list of the 40 most costly industry insured natural-
catastrophe related losses - apart from the Japanese earthquake and tsunami of 2011, the
most notable largest losses have comprised three US hurricanes (i.e. Katrina in 2005, Sandy
in 2012 and Andrew in 1992) and a US earthquake (the Northridge earthquake of 1992).
It is important to bear in mind that these losses impacted not only a single US state, but
multiple ones instead [50].

Windstorms are the peak weather-related natural catastrophe risk in Europe. There has
been a lull in large-scale storm disasters in recent years, but the 1999 storm series of Lothar
and Martin, and the North Sea storm surge in 1953, remain significant tail risk events. The
risk is dominated by strong natural variability: the history of European windstorms shows
a strong multi-decadal pattern.

Flood risk in Europe has changed in the last 50 years. Climate change and urbanisation
make the flood risk landscape dynamic. Flood is another peak risk in Europe. The central
European floods of 2002 and 2013 serve as important reminders of the loss potential of this
peril. Natural variability is an important aspect, but studies also confirm that a changing
climate has had a notable impact on the seasonality as well as on the severity and frequency
of flood events in Europe, with clear regional patterns being noted [50]. A 2019 system-
atic analysis of a comprehensive dataset of flood observations detected both increasing
and decreasing trends, by region, over the last five decades [5]. According to this study,
large parts of central and north western Europe experienced an increase of up to 11% per
decade in annual river-flood discharge, while the Mediterranean area and eastern Europe
showed significant decreases. Flood severity depends not only on precipitation levels and
the extent of surface sealing but also on soil moisture, snow-melt and the occurrence of
persistent weather patterns, all of which are influenced by warming temperatures. More-
over, a flood risk management paper by [40] with an analysis of global data that spans over
the last 100 years shows the heavy-tailed characteristic of flood losses.

There is a need to dynamically track the effects of a warming climate, adapting models
to an ever-evolving risk landscape. New understandings into risk assessment need to be
embedded, and novel ways of risk transfer (accessible to larger pools of investors) need to
be continually considered and developed.

Against this backdrop, it is clear that there is a greater need for novel risk manage-
ment instruments in the economic and financial system, with the view that these instru-
ments will further benefit the social and political systems as well. In this regard, insurance-
linked securities (ILS) solutions have been at the fore. ILS are investment assets linked to
insurance-related, non-financial risks such as natural disasters, life and health insurance
risks including mortality or longevity. To date, most ILS issues have been collateralized
reinsurance and catastrophe bonds (CAT bonds).

In view of the discussion above, we present the structure of this paper. In Sect. 2 we
present pricing approaches for ILS with a special emphasis on pricing catastrophe (CAT)
bonds. In Sect. 3 we introduce a multi-peril CAT bond model. Here we consider two payoff
structures for CAT bonds, namely the zero-coupon (ZC) and coupon-paying (CP). For
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the analysed CAT bonds, we provide pricing formulas. In Sect. 4 we fit the model to wind
and thunderstorm, and winter storm natural catastrophe data obtained from PCS. The
analysis incorporates the calibration and validation of statistical processes within the two-
peril framework by taking into account the left-truncated nature of the data. Finally, we
illustrate the calculated prices of a two-peril ZC CAT bond for the best fitted models.
Section 5 summarises the main findings of the paper.

2 Insurance-linked securities. Literature review
ILS are an innovative way to increase insurance capacity. They are a means of ceding
insurance-related risks to the capital markets. ILS are collateralized to eliminate credit
risk for investors. Investors benefit from a low correlation with other asset classes and
higher interest rates than for government bonds. There is no counterparty risk as with
traditional reinsurance. Funds are held in a safe, bankruptcy-remote Special Purpose Ve-
hicle (SPV). An SPV has two functions; it provides reinsurance for insurance companies
and issues securities to investors.

The most prominent type of such products are catastrophe bonds (CAT) [1] so they will
be of our primary interest. If there is no catastrophic event, or trigger event, before the
maturity date of the contract, investors receive back their principal investment at maturity
on top of the interest payments they have received. If a catastrophic event occurs, investors
may sacrifice their principal and interest.

The creation of CAT bonds, along with allied financial products such as catastrophe
insurance options, was motivated in part by the need to cover the massive property insur-
ance industry payouts of the early- to mid-1990s. They also represent a ‘new asset class’ in
that they provide a mechanism for hedging against natural disasters, a risk that is essen-
tially uncorrelated with the capital market indices [21]. Subsequent to the development of
the CAT bond, the class of referenced disasters has grown considerably.

The record pace of issuance in 2021 continued during the third quarter, as 25 tranches
of notes combined brought more than USD 2.7 billion of new risk capital to the market,
beating the prior year period by more than USD 1 billion. 2021 is the first time Q3 issuance
has exceeded USD 2.5 billion [1].

CAT bonds have been loosely classified into three main types: indemnity-linked (in-
volves the actual losses of the bond-issuing insurer), index-linked (involves, in the US,
for example, an index created from PCS loss estimates) and parametric (is based on, for
example, the Richter scale readings of the magnitude of an earthquake at specified data
stations), see [19]. Such a classification is based on the ‘trigger’ of the bond, that is the event
(or set or even sequence thereof ) that causes the bond to release the capital to the issuer.
In this paper, we focus on index-linked and indemnity CAT bonds, which have the largest
outstanding issuance in the CAT bond market [1].

Most CAT bonds are based on a single trigger. However, in some cases, multiple triggers
are used. CAT bonds are often divided into two tranches that exhibit different risk-return
profiles or vary in terms of trigger, reference peril, and covered territory. An average ma-
turity of traded CAT bonds is three years. Outstanding market volume is almost evenly
split between per-occurrence and annual-aggregate CAT bonds.

Most of the research devoted to the modelling of natural catastrophes and then pricing
the respective risk securitization solution deals with the problem of arbitrage-free valua-
tion and the aspects of completeness of the market. The first works that addressed the
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problem of pricing included relatively simple models [16, 23]. The literature was then
further developed by including stochastic interest rate scenarios in both discrete and
continuous-time frameworks, as well as the contingent claim approach [12, 27, 37, 41,
42, 53]. Recently, we have also observed an increasing interest in developing and pric-
ing more sophisticated financial instruments, such as catastrophe options, catastrophe
futures, contingent convertible catastrophic bonds, and catastrophe risk swaps [7, 10, 38].

In practice, issuance of a catastrophe bond typically requires the engagement of a spe-
cialised modelling firm to quantify the catastrophe risk. The risk modeller estimates the
probability of first loss (PFL) and provides an estimate of the expected loss (EL) for in-
vestors. The risk modelling companies include AIR Worldwide (Verisk), Risk Management
Solutions (RMS) and EQECAT (CoreLogic).

The relationship between price spreads and EL has been studied by several authors.
[33] analysed a simple model, where the spread was a function of EL, PFL and conditional
expected loss. The regression approach with a single explanatory variable being EL was
investigated by [32]. Twenty years of data (2001-2020), 757 individual ILS were used to
fit the model, resulting in R2 = 0.58. The regression approach with different explanatory
variables related to the financial environment, the CAT market, and other factors was
studied by [8]. The analysis covered the period from 1997 to the end of 2012 and uses a
data set, compiled from many sources, that contained 466 tranches issued to the primary
market during that period. The adjusted R2 for this model was 0.89. We finally note on the
works on implied Poisson intensities from regularly observed prices [4], machine learn-
ing approach investigated by [26, 31], Fréchet–Wasserstein mean utility functionals found
useful for designing and pricing a CAT bond [43], and pricing the catastrophe bonds on
earthquake risk with the help of extreme value theory [55].

It is also noticed that some of the existing literature already raised the problem of multi-
peril ILS, see for example the pioneering work by Lane [34], where the author explored
“arbitrage-equivalent” pricing in which covers can be either bought or sold. In [44] the
author addresses pricing of an insurance-linked security that derived its value based on
two underlying processes: catastrophic insured property losses and catastrophic mortality.
In [29], based on seismic zones, the Italian territory was divided into three zones and
three CAT bonds with different levels of default risk were priced. Furthermore, in [47]
an empirical study of California earthquake data within the multi-peril risk model was
conducted. Very recently, in [52], the authors analysed a three-event rainstorm CAT bond
based on the resulting losses due to rainstorms in China during 2006–2020.

3 Multi-peril CAT bonds
In this part, we first present the pricing framework for a single-peril CAT bond and then
construct a multi-peril CAT bond for which we build a pricing methodology. The ultimate
goal is to present general pricing formulas for the ZC CAT bonds and CP CAT bonds in
single- and multi-peril frameworks.

For both single- and multi-peril cases, we assume that the trigger of respective CAT
bonds is index-linked or is related to actual losses of an insurer, which is in line with many
of the CAT bonds (see, for instance, [17, 28, 37] and [24]). One of the most commonly
issued index-linked CAT bonds is the bond that is tied to the PCS industry index. The
bond is triggered, for most of such CAT bonds, if the PCS index representing the aggregate
natural catastrophe losses exceeds some contractually-specified threshold level.
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The general pricing technique in this work is based on the incomplete market framework
of [39]. This is a typical approach to pricing of financial products with payoff dependent
on natural disaster events; see, for example, [3, 30, 35–37, 41, 53] and [13]. The key to
effective pricing is based on the following assumption.

Assumption 1 Investors are risk-neutral towards the jump risk posed by the natural
catastrophe-risk variables.

Assumption 1 can be understood as a statement that natural catastrophes are treated as
idiosyncratic risks that can be diversified almost completely in financial markets. There-
fore, the risk-neutral probability measure Q (also known as an associated martingale mea-
sure) for the catastrophe-risk variables will coincide with the respective real-world proba-
bility measure P. This means that the usual way of pricing the asset using the risk-neutral
measure Q, that can be obtained via appropriate change of probability measure, is simply
completed using the real-world measure P. Therefore, the stochastic jump processes de-
scribing aggregated losses will not change their distributional characteristics as it happens
usually when changing from P to Q (see, for example, [18, 20] and [15] for a discussion
of the above-mentioned approach). To conclude, we use real-world data associated with
probability measure P and due to the Assumption 1 we apply the measure P further to the
pricing.

Let us consider a probability space (�,F ,P) and assume the constant interest rate, then
the general pricing formula at time t in the arbitrage-free framework for CAT bonds can
be written as (see, e.g., [9]):

Vt = e–r(T–t)EP [P(T)|Ft] , (1)

where P(T) denotes the payoff at the maturity date T of the bond, EP denotes the expec-
tation under the real-world measure, r is the constant interest rate over [0, T] and Ft is
the associated filtration up until time t.

3.1 Single-peril bond pricing
Let us start by defining the basic stochastic process necessary for the construction of CAT
bonds. The aggregate loss process (ALP) L = {L(t), t > 0} that describes the total amount
of losses in time is defined as:

L(t) =
N(t)∑

k=1

Xk , (2)

where the process N = {N(t), t > 0} is a loss counting process, the loss amounts are positive
i.i.d. random variables {Xk , k ∈ N} with E[Xk] = μ < ∞. We also assume that N and {Xk ,
k ∈N} are independent.

Given the ALP for a certain risk, the payoff of a ZC CAT bond per unit nominal (a
principal amount) with constant recovery rate ρ (0 ≤ ρ ≤ 1) of the bond, should it be
triggered, is given by

PZC(T) =

{
1 if L(T) < D,
ρ if L(T) ≥ D,

(3)
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where L(T) denotes the aggregate amount of insured losses at T , which is the term of the
bond and D is the bond’s contractually-specified threshold level triggering the bond.

An arbitrage-free price at the time of issue of the ZC CAT bond with the payoff (3) can
be obtained using the formula (1):

V0 = e–rTEP

[
IL(T)<D + ρIL(T)≥D

]
= e–rT [ρ + (1 – ρ)P(L(T) < D)] ,

where L(T) is the ALP value at T and IA denotes the indicator of a given event A ∈F .
In the case of a CP CAT bond, having maturity time T , constant coupon rate c > 0

and coupon-paying dates t ∈ {t1, t2, . . . , tk = T} (k ∈ N), for each coupon paying date
t ∈ {t1, t2, . . . , tk = T}, the payoff PCP(t) per unit nominal is:

PCP(t) =

{
c + I{t=T} if L(t) < DCOUPON,
ρ

(
c + I{t=T}

)
if L(t) ≥ DCOUPON,

where 0 ≤ ρ ≤ 1 is the recovery rate defined as in the case of the ZC CAT bond and
DCOUPON is the predefined threshold level of the CP CAT bond.

Since a CP CAT bond can be considered as a combination of single ZC CAT bonds, its
arbitrage-free price at the issue date is:

V0 =
k∑

i=1

e–rtiEP

[(
c + I{ti=T}

)
IL(ti)<DCOUPON +(ρc + ρI) IL(ti)≥DCOUPON

]

=
k∑

i=1

ce–rti [ρ + (1 – ρ)P(L(ti) < DCOUPON)]

+ e–rT [ρ + (1 – ρ)P(L(T) ≥ DCOUPON)] ,

where L(ti) is the ALP value at ti, DCOUPON is the bond’s contractually-specified threshold
level.

3.2 Multi-peril bond pricing
We construct here a multi-peril CAT bond and propose a pricing methodology for that
bond. To this end, we generalise the single-peril approach presented above to the multidi-
mensional case. Let us consider a multidimensional ALP process L = (L1, L2, . . . , Ln), where
Li = {Li(t), t > 0} denotes the ALP resulting from the i-th peril given by (2) for i = 1, . . . , n.

Firstly, we propose a simple construction of a payoff for a multi-peril zero-coupon
(MPZC) CAT bond with a constant recovery rate ρ , 0 ≤ ρ ≤ 1. The main idea is that the
investor receives the principal of the bond if none of the ALPs Li exceeded its triggering
level Di (i = 1, . . . , n) during its term and receives a recovery fraction of the principal if any
of the ALPs exceeds its threshold level. Namely, the payoff of the MPZC CAT bond per
unit nominal is given by the formula:

PMP
ZC (T) =

{
1 if ∩n

i=1 {Li(T) < Di}
ρ if ∪n

i=1 {Li(T) ≥ Di}, (4)

where D1, D2, . . . , Dn are the bond threshold levels for the corresponding ALPs L1, L2, . . . ,
Ln. Here, in Eq. (4), the intersection of events ∩n

i=1{Li(T) < Di} corresponds to the event
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that jointly none of the respective ALPs at the maturity L1(T), L2(T), . . . , Ln(T) exceeds re-
spective triggers D1, D2, . . . , Dn, while the union of events ∪n

i=1{Li(T) < Di} corresponds to
the event that at least one of ALPs at the maturity L1(T), L2(T), . . . , Ln(T) exceeds respec-
tive triggers D1, D2, . . . , Dn.

By using Assumption 1, the MPZC CAT bond can be priced using the expected value of
the payoff under the risk-neutral measure that coincides with the real-world probability
measure:

V0 = e–rTEP

[
I∩n

i=1{Li(T)<Di} + ρI∪n
i=1{Li(T)≥Di}

]
, (5)

where L1(T), . . . , Ln(T) are the ALP values at T , and D1, . . . , Dn are the bond’s contractually-
specified threshold levels triggering its payoff.

In the case of a multi-peril coupon-paying (MPCP) CAT bond, having maturity time
T > 0, constant coupon rate c > 0 and coupon-paying dates {t1, t2, . . . , tk = T} (k ∈ N), for
each coupon paying date t ∈ {t1, t2, . . . , tk = T}, we introduce the following payoff PMP

CP (t)
per unit nominal:

PMP
CP (t) =

{
c + I{t=T} if ∩n

i=1 {Li(t) < Di,COUPON},
ρ

(
c + I{t=T}

)
if ∪n

i=1 {Li(t) ≥ Di,COUPON},

where 0 ≤ ρ ≤ 1 is defined as in the ZC CAT bond case and Di,COUPON is the MPCP CAT
bond’s pre-defined threshold level for i-th peril, and the meaning of events is analogous as
in zero-coupon CAT bond, see (4). Similarly, the arbitrage-free price of the bond has the
following form:

V0 =
k∑

i=1

e–rtiEP

[(
c + I{ti=T}

)
I∩n

j=1{Lj(ti)<Dj,COUPON}

+ρ
(
c + I{ti=T}

)
I∪n

j=1{Lj(ti)≥Dj,COUPON}
]

,

where Lj(ti) is the value of L’s j-th marginal process at ti and Dj,COUPON is the bond’s
contractually-specified threshold level triggering its payoff for j-th risk.

4 PCS data analysis
In this section, we present a statistical procedure to fit a two-peril CAT bond model intro-
duced in Sect. 3 to natural catastrophe data obtained from PCS. We calibrate and validate
two compound non-homogeneous Poisson processes for two distinct perils, namely num-
ber of losses related to wind and thunderstorm, and winter storm events. Next, we price a
MPZC CAT bond that is triggered if losses caused by at least one of two specified catas-
trophes exceed given thresholds.

We analyse losses resulting from natural catastrophic events that occurred in the US
from 1985 to 2011. Estimates of such losses were provided by PCS. PCS loss index is not
an index in the usual financial sense. It is a time series of total insured losses, exceeding
USD 25 million, resulting from classified natural catastrophes.

The analysed data set contains information on 807 distinct catastrophes such as wind
and thunderstorm events, winter storms, hurricanes, tropical storms, earthquakes, and
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Figure 1 (a) Adjusted losses of wind and thunderstorm, (b) winter storm events

Figure 2 Box plots for adjusted losses of (a) wind and thunderstorm, (b) winter storm events

fires. For our purposes, we chose the two largest subsets of the PCS data set, including
602 cases of wind and thunderstorm losses, see Fig. 1(a), and 96 cases of winter storm
losses, see Fig. 1(b). Loss amounts were adjusted using the US customer price index. Basic
descriptive statistics of the analysed data sets are presented in Table 1, box plots of the
adjusted losses are presented in Fig. 2. For both data sets, we observe positive skewness
and the kurtosis values indicate heavy tails of the distributions (for wind and thunderstorm
the values are really high).

4.1 Loss amount distributions
The initial stage of the analysis involves fitting a model for the loss amount distribution for
wind and thunderstorm events. We must bear in mind that the loss data are left-truncated,
as only losses above USD 25 million are reported in the PCS index. Following the statis-
tical procedure described in [25], we fitted six distributions: log-normal, Weibull, Burr,
Generalised Pareto (GP), Inverse Gaussian (IG) and Generalised Extreme Value (GEV) by
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Table 1 Descriptive statistics of the analysed losses, losses were expressed in USD billion

Peril Min Max Mean Std Q1 Q3 Skewness Kurtosis

Wind and thunderstorm 0.025 8.652 0.348 0.638 0.088 0.338 6.918 70.988
Winter storm 0.026 3.609 0.447 0.542 0.120 0.546 3.061 15.655

Table 2 Loss amount distributions considered to model the PCS losses, defined on the positive reals

Distribution Density Constraints

Log-normal 1
xσ

√
2π

exp
{
–(log x–μ)2

2σ2

}
μ ∈ R,σ ≥ 0

Weibull b
a

( x
a

)b–1 exp
{
–( xa )

b
}

a > 0,b > 0

Burr
kc

( x
α

)c–1

α
(
1+( xα )c

)k+1 α > 0, c > 0, k > 0

GP 1
σ

(
1 + k(x–θ )

σ

)–
(
1+ 1

k

)

σ > 0, k ∈ R,θ ∈ R, x > θ

IG
√

λ

2πx3
exp

{
– λ

2μ2x
(x –μ)2

}
μ > 0,λ > 0

GEV 1
σ exp

{
–
(
1 + k(x–μ)

σ

)– 1k
}

× 1 + k(x–μ)
σ > 0,

(
1 + k(x–μ)

σ

)–
(
1+ 1

k

)

σ > 0, k ∈ R\{0},μ ∈ R

Table 3 Parameters of fitted distributions and corresponding test statistics for the wind and
thunderstorm losses. The p-values calculated on the basis of 1000 simulated samples are presented
in parentheses

Distribution Parameters D V W2 A2

Log-normal μ = –1.807, 0.915 1.451 0.746 0.114
σ = 1.142 (0.061) (0.050) (0.262) (0.159)

Weibull a = 0.180,b = 0.629 1.192 2.178 5.085 0.777
(0.174) (0.012) (0.153) (0.133)

Burr α = 0.175, c = 1.452, 0.498 0.964 0.272 0.038
k = 1.104 (0.827) (0.563) (0.857) (0.815)

GP k = 0.418,σ = 0.175, 0.858 1.574 1.586 0.227
θ = –0.001 (0.062) (0.012) (0.045) (0.017)

IG μ = 0.342,λ = 0.160 1.289 2.002 1.408 0.248
(0.000) (0.001) (0.009) (0.006)

GEV k = 0.594,σ = 0.117, 0.494 0.962 0.283 0.041
μ = 0.103 (0.928) (0.803) (0.946) (0.942)

the maximum likelihood estimation method. The considered distributions are presented
in Table 2 and the parameters of the fitted distribution are given in Table 3.

In Table 3 we can also see the Kolmogorov-Smirnov (D), Kuiper (V ), Cramér-von-Mises
(W 2), and Anderson and Darling (A2) test statistic values with the corresponding p-values
obtained by Monte Carlo simulations. To this end we closely followed the simulation ap-
proach presented in [45]. To calculate the values of the A2 statistic we used the corrected
formulas of [48, 49], which were explicitly presented in [11]. For the truncated case, to
account for missing data, the corresponding statistics were computed and the simulations
were carried out according to [14].

We can see that the GP and IG distributions are clearly rejected. Of the distributions
that are not rejected by the considered statistical tests, the Burr and GEV distributions
give the best fit to the considered data.

To confirm our findings, we present in Fig. 3 comparison of the tails of the fitted distri-
butions. We can observe that the Burr and GEV distributions describe the tail behaviour
well (surprisingly along with the GP distribution).
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Figure 3 Right tail of the empirical distribution function for the wind and thunderstorm losses, and tails of
the fitted distributions in the log-log scale

Figure 4 The empirical MEF (blue dots) for the wind and thunderstorm losses compared with MEF’s of the
fitted distributions (black dotted lines): (a) GEV, (b) Burr. Grey areas represent the 95% confidence intervals
corresponding to the fitted distributions

Finally, to confirm the usefulness of the fit, we analyse the mean excess function (MEF).
The MEF e(x) is the expected payment per loss X on a policy with a fixed amount de-
ductible of x, where losses with amounts less than or equal to x are completely ignored:

e(x) = E(X – x|X > x). (6)

The empirical counterpart ên based on a representative sample x1, . . . , xn is defined as:

ên(x) =
∑

xi>x xi

#{i : xi > x} – x. (7)

If the loss amount distribution is heavier-tailed than the exponential, the MEF ultimately
increases, and when it is lighter-tailed, the MEF ultimately decreases. Hence, the shape of
e(x) or its empirical counterpart provides important information on the sub-exponential
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Figure 5 (a) Right tail of the empirical distribution function for the winter storm losses and of the fitted
log-normal distribution in the log-log scale. (b) The empirical MEF (blue dots) for the winter storm losses
compared with the MEF of the fitted log-normal distribution (dotted black line) presented with the grey area
describing the fitted distribution 95% confidence interval

or super-exponential nature of the tail (for more information about the MEF and its prop-
erties, we refer to [11]).

In Fig. 4 we can see the comparison of the empirical MEF with the MEFs corresponding
to the two best-fitted distributions. The latter was obtained by Monte Carlo simulations.
We also added 95% confidence regions for MEFs of the fitted distributions (calculated on
the basis of 10K simulated samples of the same size as the original data) to see if the empir-
ical MEF is included in that region. First, we can clearly see that the empirical function is
a strictly increasing function, which is common to the heavy-tailed distributions. Second,
in both cases, the sample MEF fits within the interval.

The second data set is significantly smaller than the first one, as it contains only 96 obser-
vations about winter storm-related losses. Thus, we propose a quite flexible distribution,
with only two parameters, often used in the modelling of heavy-tailed insurance losses,
namely the log-normal distribution. The fitted parameters μ = –1.410 and σ = 1.129. Sim-
ilarly, as before, we checked the goodness-of-fit by performing the statistical tests. The
p values of the Kolmogorov-Smirnov, Kuiper, Cramér-von-Mises and Anderson and Dar-
ling test were equal to 0.909, 0.825, 0.795 and 0.744, respectively. This indicates that the
log-normal distribution gives a good fit to our data.

We also compared the right tail of the empirical and fitted distribution functions, see
Fig. 5 (a). Finally, in Fig. 5(b), we also compare the sample MEF with the MEF of the fitted
distribution and the corresponding confidence interval. We can observe that the empirical
MEF fits the region well, which confirms the goodness-of-fit.

4.2 Intensity functions
The second part of the modelling is related to finding an appropriate counting process
that will describe the moments when natural catastrophes occur, see formula (2). For that
purpose, we choose the non-homogeneous Poisson process N(t) with a non-negative, de-
terministic, time-varying intensity λ(t).
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Figure 6 (a) The aggregate number of wind and thunderstorm, (b) winter storm events, and mean value
functions corresponding to the fitted intensity functions

An intensity function based on sine functions allows us to capture the apparent season-
ality of considered wind and thunderstorm events:

λ1(t) = a1 + b1 sin (2π(t + c1)) + d1 sin

(
2π

ω
(t + e1)

)
, (8)

where a1 describes the average number of events per year, the first sine function with am-
plitude b1, shift of c1 years and period of one year captures the yearly fluctuations in the
number of events and the second sine function with amplitude d1, shift of e1 years and pe-
riod of ω years describers the long-term seasonality. The parameters of the intensity func-
tion λ(t) were fitted using the least-squares method by comparing the mean value function
EN(t) =

∫ t
0 λ(s) ds with the aggregate number of losses. We obtained the following param-

eters of the intensity function: a1 = 22.89, b1 = 15.26, c1 = –6.09, d1 = 7.53, e1 = –2.62 and
ω = 20.76. The mean-squared error (MSE) is equal to 10.1851, the mean absolute error
(MAE) is 2.5193 and mean average percentage error (MAPE) is equal to 1.96%. The fitted
intensity function is illustrated in Fig. 6(a). We can see that the mean value function fits
the aggregate number of losses quite well. Finally, we note that we also considered other
combinations of polynomial and sine functions but they did not lead to better results.

While winds and thunderstorms strike the country throughout the year, winter storms
occur only from October to April, with the majority occurring between December and
February. Knowing that the intensity of events should be equal to zero for almost half of
the year, we propose the following intensity function to describe the winter storm occur-
rences:

λ2(t) = max {a2 + b2t + c2 cos (2πx) ; 0} . (9)

The parameters fitted to the PCS data are a2 = –1.08, b2 = 12.08 and c2 = 0.07. The MSE
is equal to 4.6947, MAE equal to 1.8848 and MAPE equal to 10.21%. The mean value
function corresponding to the fitted intensity function is presented in Fig. 6(b) and the fit
result is quite acceptable.
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4.3 Illustration of the prices of a two-peril ZC CAT bond
To illustrate the dynamics of the prices of MPZC CAT bonds we consider two perils that
were studied before: wind and thunderstorm, and winter storm events. We assume that
the bond is triggered if one of the aggregate loss processes exceeds a specified threshold.

For simplicity, we assume the recovery rate ρ = 0. Since the two considered perils appear
independent, the arbitrage-free pricing formula presented in Sect. 3.2 reduces to:

V0 = e–rTEP

[
I{L1(T)<D1}∩{L2(T)<D2}

]
= e–rTEP

[
I{L1(T)<D1}I{L2(T)<D2}

]

= e–rTP(L1(T) < D1)P(L2(T) < D2),

where L1 and L2 are ALPs corresponding to wind and thunderstorm events and winter
storm events, respectively. Moreover, as we use non-homogeneous Poisson processes for
modelling the occurrence of the losses, we can also express the probabilities of not ex-
ceeding thresholds D1 and D2 by L1 and L2 in the following way

P (Li(T) < Di) =
∞∑

n=0

e–
∫ T

0 λi(u)du

(∫ T
0 λi(u)du

)n

n!
Fn∗

Xi
(Di),

where FXi denotes the cumulative density function of the losses caused by i-th risk and
Fn∗

Xi
denotes the n-fold convolution of FXi with itself, for i = 1, 2.

We assume that r = 3% and the maturity time of the bond is T = 2 years. The threshold
D1 for wind and thunderstorm losses changes from 25 to 40 USD billion, while the thresh-
old D2 for winter storm losses varies from 6 to 10 billion USD. We calculate the prices on
the basis of the 20 000 Monte Carlo simulations and present the results in Fig. 7, separately
for the Burr and GEV distributions, as they were best fitted for wind and thunderstorm
losses. We can see that the two-peril ZC CAT bond prices clearly decrease as the thresh-
old levels D1 or D2 drop and the prices obtained with the use of the Burr distribution are
lower than those obtained with the GEV. Based on the results depicted in Fig. 7 one can
propose a fair price of two-peril ZC CAT bonds related to wind and thunderstorm losses,
and winter storm losses for respective threshold levels. The choice of a lower threshold
level value D1 (or/and D2) leads to a lower price of the two-peril ZC CAT bond, but is as-
sociated with a higher chance and higher risk of exceeding the threshold by the associated
ALP and therefore loosing a 1 – ρ of the principal by the investor. On the other hand, by
increasing the parameter D1 (or/and D2) of the two-peril ZC CAT bond lead to a higher
price of the bond, which is associated with lower chances of loosing the principal by the
investor. In Fig. 8 we can also see the differences between the Burr and GEV prices for
wide ranges of D1 and D2. We can observe that the absolute maximum difference in the
investigated region reaches 0.006 per 100 of the principal. Therefore, the choice between
the two respective distributions of underlying losses for wind and thunderstorm losses
results in very small differences in prices.

5 Conclusions
Insurers typically deal with natural catastrophe risk by either transferring it to the reinsur-
ance market or securitising this risk in the capital markets. Until fairly recently, property
reinsurance was a relatively well-understood market with efficient pricing. We also note
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Figure 7 Two-peril ZC CAT bond prices with GEV (lines without markers) and Burr (lines with markers)
distributions used for wind and thunderstorm losses with (a) fixed D2, with respect to D1, and (b) fixed D1,
with respect to D2

Figure 8 Contour plot of differences between the two-peril ZC CAT bond prices obtained with the use of the
Burr and GEV distributions

structured reinsurance deals whose indemnification scheme is contingent upon the per-
formance of the insurer buying it, for instance measured in terms of his loss ratio relative
to the average loss ratio of the market [54], or optimal risk sharing arrangements with
multiple risk environments [2].

However, natural disasters, such as earthquakes and hurricanes, are increasingly exert-
ing a dominant impact on the industry. In part, this is due to the rapidly changing het-
erogeneous distribution of high-value property in vulnerable areas. A consequence of this
has been an increased need for a primary and secondary market in catastrophe-related
insurance derivatives.

Since capital markets have access to larger, more diversified and more liquid pools of
capital, as opposed to the equity of reinsurers, such capital markets possess a notable ad-
vantage over reinsurance markets when it comes to financing catastrophe risk [22]. The
search for ways of accessing alternative, rich and robust sources of capital has led to a wave
of innovative financial products.
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The relative attractiveness of ILS, especially to large pension funds, compared to traded
equity and corporate debt, stems from the fact that they are less correlated with the fi-
nancial markets and often attract higher yields compared to traded corporate debt. For
governments, having a source of disaster risk financing and insurance provided by catas-
trophe bonds can help the government borrow more on the capital markets, improve its
standing with debtors and ultimately provide welfare gains to the population [6].

Adequate pricing of ILS instruments can help to better inform pricing decisions for in-
surance and reinsurance companies, structuring banks, dealers and institutional investors
at issue. In this paper, we focused on CAT bonds being a prominent example of ILS [17].
Although most CAT bonds rely on a single trigger, in some cases multiple triggers are
used. CAT bonds can be separated into several tranches that vary in terms of the trigger,
reference peril, and covered territory. Thus, we strongly believe that there is a need for the
development of multi-region and multi-peril ILS pricing techniques.

In this paper, we addressed the issue of modelling and pricing of multi-peril CAT bonds
which are triggered if the losses corresponding to one of the perils exceed a certain thresh-
old specific to the peril. We constructed ZC and CP multi-peril CAT bonds and presented
their arbitrage-free prices. We also performed a fitting and validation procedure for the US
natural catastrophe data from the years 1985-2011 provided by PCS taking into account
the fact that the data are left-truncated. For the analysis we selected two perils, namely
wind and thunderstorm, and winter storm events. We believe that the procedure is quite
universal and can be applied to various catastrophe data.

We considered the case when two perils are independent. We would like to emphasise
that the price of the multi-peril bond for the independent case is much lower than the
sum of prices for two separate bonds. As explained in [34], the coverage for an either/or
event with a binary payout is the functional equivalent of covering the first event of the
two covered perils. Then the issuer is left with a residual exposure of the second event.
Hence, the issuer will suffer a retained loss if there is loss for both perils.

As a result, we obtained a two-dimensional model with two aggregate non-
homogeneous Poisson processes describing the flow of losses. The model was validated
with the use of visual tools and rigorous statistical tests that confirmed that Burr and
GEV distributions are appropriate for the wind and thunderstorm losses and log-normal
distribution for the winter storm losses.

Finally, we illustrated the two-peril ZC CAT bonds prices with the use of Monte Carlo
simulations for the best-fitted models by assuming the zero recovery rate and by consid-
ering different threshold levels for the two perils. We addressed the pricing of multi-peril
ILS tied to industry loss indices or actual losses of an insurer. The work can be further
generalised to multi-peril and multi-region ILS also taking into account the data where
the driving loss processes exhibit dependence.
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