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Abstract
In this paper we propose an algorithm for testing whether the independent
observations come from finite-variance distribution. The preliminary knowledge
about the data properties may be crucial for its further analysis and selection of the
appropriate model. The idea of the testing procedure is based on the simple
observation that the empirical cumulative even moment (ECEM) for data from
finite-moments distribution tends to some constant whereas for data coming from
heavy-tailed distribution, the ECEM exhibits irregular chaotic behavior. Based on this
fact, in this paper we parameterize the regular/irregular behavior of the ECEM and
construct a new test statistic. The efficiency of the testing procedure is verified for
simulated data from three heavy-tailed distributions with possible finite and infinite
variances. The effectiveness is analyzed for data represented in time domain. The
simulation study is supported by analysis of real vibration signals from rotating
machines. Here, the analyses are provided for data in both the time and
time-frequency domains.

Keywords: Testing; Finite variance; Heavy-tailed distribution; Monte Carlo
simulations; Condition monitoring

1 Introduction
In this article, we discuss the problem of detection whether the analyzed data come from
a distribution with a finite variance. Since in some real-world problems the model de-
scribing the data is well-known (and its probabilistic properties are understood), the ap-
pearance of infinite variance distributions can be explained theoretically; see e.g., [5, 7].
However, in many complex systems there are no trustworthy theoretical models that can
adequately explain the existence of heavy-tail behavior. Thus, in such cases information
about specific properties of the corresponding models can only be received based on
an analysis of empirical data. Among these, we list vibration-based machine condition
monitoring being a motivation for our research. In such a case, the measured vibrations
from rotating machines may exhibit impulsive behavior. The impulsiveness may be re-
lated to the local damage and in such a case the impulses are expected to be periodic.
However, one may also observe the non-cyclic impulses in the data. In that case they
are signatures of the heavy-tailed distribution of the background noise. This is the case
considered in this paper. According to our research, sources of impulsive (non-cyclic)
behavior may be related to specific processes performed by machine (cutting, crushing,
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milling, drilling, compression, etc.), to completely random external disturbances, distur-
bances during data transmission, or even to numerical problems during data processing
[25].

The considered problem was previously discussed in the literature from different per-
spectives, see e.g., [31]. Here, we focus on the existence of finite variance of the dis-
tribution corresponding to the analyzed data. We note that the diverging variance is
strictly related to the heavy-tailed property. However, these two notions are not equiv-
alent (not all distributions with heavy-tailed behavior have infinite variance). We mention
that some statistical and signal processing techniques are dedicated only for data com-
ing from finite-variance distributions. The classical examples are methods utilizing the
sample autocorrelation function (ACF), see e.g. [4]. The sample ACF is considered as the
classical statistic used for periodic/cyclic behavior identification. It is used for data rep-
resented in different domains, like time- or time-frequency domain, see e.g. [30]. How-
ever, when applying the sample ACF-based methods, one needs to take into account
that they are properly defined only for finite-variance distributed data. Thus, utilizing
such methods for data coming from diverging-variance distribution may not give ex-
pected results and the final conclusion may be unreliable. This problem was discussed
in our previous research, see e.g., [19, 20] but also other authors highlighted the small
efficiency of the classical ACF-based methods for heavy-tailed distributed data, see e.g.
[1, 2]. We mention that in the literature one can find dedicated techniques for data with
infinite-variance distributions, see e.g. [21, 22]. Thus, the knowledge about the proba-
bilistic properties of the data (expressed in the means of finite- and infinite-variance of its
distribution) can help to avoid inappropriate conclusions resulting from the use of wrong
tools.

In the statistical literature there are proposed techniques that may help to distinguish
the finite- and infinite-variance distribution describing the data. However, most of the
methods test a given specific distribution, see e.g. [9]. In the problem of distinguishing the
finite- and infinite-variance distributed data, one can also apply statistical tests dedicated
for some specific heavy-tailed distributions, like e.g., for α-stable class of distributions
[10, 11]. Although the aforementioned tests are widely used in various applications, their
limitations are also discussed in the literature, see e.g. [16].

The problem considered in this paper is much more general than the classical statis-
tical testing, where the null hypothesis is defined such that the data come from given
theoretical distribution. We highlight that the analyzed problem was also indicated by
some authors, see e.g. [13, 14, 26, 36] where interesting approaches for testing for finite-
variance (and other moments) were proposed. This problem is also discussed from dif-
ferent perspectives, i.e., as the problem of testing a power-law behavior which may be
also a signature of infinite-variance distribution, see e.g. [12]. In our previous research,
we also discussed the issue of heavy-tailed behavior recognition, see e.g. [5, 7]. How-
ever, the introduced algorithms were dedicated for specific classes of distributions (like
α-stable distributions). In this paper, we present a broader perspective and discuss the
problem in the context of any distribution with possible infinite variance. Moreover, the
information we get here (“0-1” for finite-infinite variance distribution, respectively) is easy
to interpret and can be successfully used in practical applications in contrast to [5, 7, 34],
where only visual tests were proposed. We would like to emphasize that the idea of test-



Skowronek et al. Journal of Mathematics in Industry           (2024) 14:19 Page 3 of 22

ing finite-variance distribution is not novel, as in [15] the authors introduced approach
based on converging variance to discriminate between finite and infinite variance distri-
butions.

We propose a methodology based on the observation discussed in [7], where it was in-
dicated that the statistic defined as the empirical cumulative even moment (ECEM) con-
verges to some constant value for sample of observations from distribution with finite
moments, whereas the ECEM exhibits irregular chaotic behavior for data coming from
distributions with infinite moments. In [7] we took advantage of this fact and proposed
a procedure that was effective in the problem of distinguishing between a Gaussian and
close to Gaussian α-stable distribution. In this article, we take a step forward in two as-
pects. First, we parameterize the regular behavior of the ECEM for finite-variance dis-
tributed data and introduce a new statistic (denoted by A) useful in the testing procedure.
Second, we propose a test based on A statistic for finite-variance distribution testing that
is effective for wide class of distributions. Moreover, we show that the ECEM statistic (de-
noted by C) can also be useful for the considered problem. The efficiency (expressed by
the power of the tests) of the testing procedures based on A and C statistics is verified
using Monte Carlo simulations for three classes of distributions (corresponding to alter-
native hypothesis), namely mixture of Gaussian [32], Student’s t [35] and α-stable [33]
distributions that are selected to cover a wide class of distributions with possible finite
and infinite-variance. The results are compared with the known methods presented in
[13, 36]. Finally, the methodology is verified for real vibration signals coming from the
rotating machines. The real signals are analyzed in time- and time-frequency domains.
The obtained results clearly confirm our research [34], where the same data were exam-
ined for condition monitoring purposes. The real-world examples and presented Monte
Carlo studies clearly demonstrate the efficiency and universality of the proposed testing
methodology.

The rest of the paper is organized as follows. In Sect. 2 we describe in details the con-
struction of A and C test statistics and introduce the testing methodology. In Sect. 3 we
discuss the analyzed distributions and demonstrate the behavior of the considered test
statistics for examined cases. Next, in Sect. 4, we present the results of the testing pro-
cedures based on A and C statistics for simulated data. In this section, we also present
a comparison with known methods for finite-variance distribution testing. In Sect. 5 we
analyze real vibration signals in the context of the presented methodology. Here, the anal-
yses are provided for data in both the time and time-frequency (spectrogram) domains.
The last section concludes the paper.

2 Methodology
In this section, we introduce a new methodology for testing whether a given vector of
observations comes from finite-variance distribution. The proposed technique is based on
the approach presented in [5, 7], where the problem of discrimination between Gaussian
and near-Gaussian (with infinite variance) distributions was discussed. First, we define the
statistic called empirical cumulative even moment

C(k, N) =
1
k

k∑

i=1

x2N
i , k = 1, 2, . . . , n, (1)
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where x1, x2, . . . , xn is a sample of independent observations from zero-mean distribution
and N ∈ N = {1, 2, . . .}. In [5, 7] the authors used the statistic C(k, N = 2) - called em-
pirical cumulative fourth moment (ECFM) and highlighted that it converges to a con-
stant when the underlying sample is Gaussian. However, this property is also fulfilled
for any distribution with finite fourth moment. In practice, for given sample of length
n, one observes that ECFM exhibits irregular chaotic behavior only for data from dis-
tributions with infinite fourth moment. Similar property can also be observed for other
values of N and we expect that the statistic C(k, N) will stabilize if the vector of ob-
servations comes from a distribution with finite moment of order 2N . Otherwise, the
statistic will exhibit chaotic behavior. This observation is a starting point for the pro-
posed testing methodology. The specific behavior of the statistic defined in Eq. (1) is also
discussed in [5, 23, 34] for samples from selected finite- and infinite-variance distribu-
tions.

2.1 Construction of the test statistic
In this part, we present how to construct the statistic that may be used to parameterize
the chaotic behavior of the ECEM statistic for a given N for infinite-variance distributed
samples. Let us assume that x1, x2, . . . , xn is a sample of independent observations from
zero-mean distribution. The procedure consists of the following steps:

1. First, we calculate C(k, N) statistic for vector x1, x2, . . . , xn according to Eq. (1) for
the selected value of N and all k = 1, 2 · · · , n.

2. We identify the segments of the ECEM statistic between the jumps. To identify the
segments, first we calculate the increments of the statistic and then identify their
peaks,1 considering them as the points separating the segments.2

3. We select the segments of the ECEM statistic that are long enough. In our analysis,
we selected the segments of minimum 10%n. For further analysis, we take the last
long segment as with increasing value of k for samples from finite variance
distributions the statistic C(k, N) tends to theoretical value, and for samples from
infinite variance distributions statistic C(k, n) diverges to infinity. Thus, the last
segment showcases the limiting behaviour of the statistic. The data in this segment
are denoted as c(t1, N), c(t2, N), . . . , c(tm, N), where m is the length of that segment.
If there are no peaks identified (i.e. there are no identified segments), we take the
last 10% of the points of the C(k, N) statistic.

4. For the vector c(t1, N), c(t2, N), . . . , c(tm, N) we fit the straight line using the
least-squares method. As a consequence we use the linear regression model where
the values c(t1, N), c(t2, N), ·, c(tm, N) are random observations while the points
t1, t2, . . . , tm are covariates. The estimated value of the slope in the linear regression
model we denote as A(N). The A(N) we consider further as a test statistic. Let us
note that C(N) statistic is calculated for the entire dataset, while the slope A(N) is
determined for the selected segment. The rationale for choosing A(N) statistic for
testing whether the vector comes from finite variance distribution is as follows. As
it was previously mentioned, if the distribution generating the data has finite

1To obtain the increments of the statistic, we use MATLAB function diff.
2To identify the peaks, we utilize MATLAB function findpeaks.



Skowronek et al. Journal of Mathematics in Industry           (2024) 14:19 Page 5 of 22

Figure 1 The flowchart of the derivation of statistic A(N)

Figure 2 The procedure presenting derivation of A(1) statistic for Student’s t distribution with ν = 1.5 (infinite
variance case, see Eq. (5)). At first, the trajectory of C(k, 1) statistic is obtained (see panel 1). Next, the
differences between neighbouring values of statistic are calculated (see panel 2). Based on the peaks, we
segment the trajectory of C(k, 1) statistic (see panel 3)- red lines represent points separating segments. Lastly,
we fit straight line (red dashed line) to the last segment (see panel 4) - the obtained slope is our statistic A(1)

variance, we expect that the C(k, N) statistic stabilizes. Thus, in this case, the A(N)

statistic is close to zero. More precisely, the distribution of A(N) is concentrated
around zero. On the other side, if the distribution of the random sample has infinite
variance, then the ECEM statistic exhibits chaotic behavior and A(N) is
significantly lower than zero. In summary, the distribution of A(N) statistic is
significantly different for the finite- and infinite-variance cases.

A flowchart of the above procedure for calculating the statistic A(N) is presented in
Fig. 1. Moreover, we include a step-by-step scheme of the proposed procedure in Fig. 2
(example of infinite variance case) and Fig. 16 (example of finite variance case) for
random samples drawn from Student’s t distribution. The numbers above each sub-
plots correspond to the steps of the above procedure. For infinite-variance case we as-
sumed ν = 1.5 while for finite-variance case - ν = 15, see next section for more de-
tails.

Let us note that similarly as it was proposed in [15], the assumption about zero-mean
sample x1, x2, . . . , xn does not neccesarily need to hold. Namely, one can normalize the
random sample using robust algorithms, such as substracting mean (or median) and di-
viding by the conditional variance (see [29]), thus enabling the application of proposed
methodology in various scenarios when the given data are not centered around 0. This
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procedure was applied in the simulated and real data analysis. See Sects. 4 and 5 for more
details.

2.2 Testing procedure
We assume that the null and alternative hypotheses are defined as follows:

H0 : the given vector of observations comes from finite variance distribution

H1 : the vector of observations comes from infinite variance distribution.

In the testing procedure we use the classical approach based on the acceptance region
calculated for the test statistic under H0 hypothesis. We proceed as follows:

• For sample of observations x1, x2, . . . , xn and given N we calculate the value of A(N)

statistic.
• We calculate the acceptance region

[Qd/2(n, N), Q1–d/2(n, N)] , (2)

where Qp(n, N) is the quantile of order p of the distribution corresponding to the test
statistic A(N) under H0 hypothesis.

• We reject the H0 hypothesis if the test statistic calculated for vector x1, x2, . . . , xn is
extreme, either larger than an upper critical value or smaller than a lower critical
value with a given significance level d (with probability d it is inside the critical region
or equivalently outside the acceptance region). If the value of the statistic A(N)

calculated for vector x1, x2, . . . , xn falls into the acceptance region with a given
significance level d, we may conclude that there is no evidence to reject the H0

hypothesis at this significance level.
Since the theoretical distribution of the test statistic under the H0 hypothesis is not

known, the acceptance region (2) is calculated based on Monte Carlo simulations. Thus,
there is need to assume a specific distribution corresponding to H0 hypothesis. However,
as demonstrated in the next section, the distribution of the A(N) statistic exhibits simi-
lar behavior for finite-variance distributed samples. Therefore, any distribution with this
property can be assumed in the H0 hypothesis. In this paper, we use Monte Carlo sim-
ulated samples of length n from the Gaussian distribution to obtain the empirical distri-
bution of the test statistic and construct the acceptance region (2). Let us note that the
values of statistic A(N) are closer to 0 for samples from finite-variance distributions, and
for infinite-variance case the values of this statistic are significantly lower than 0, thus
it is possible to construct one-sided acceptance region [Qd(n, N),∞] instead of the one
proposed in (2).

Instead of analyzing the A(N) statistic obtained by using the above procedure, one may
also test the finite variance distribution utilizing directly the ECEM statistic for given k and
N . The similar methodology was proposed in [23] to distinguish the Gaussian and close
to Gaussian α-stable processes (with stationary increments). As mentioned, the ECEM
statistic given in (1) exhibits different behavior for samples from finite and infinite variance
distributions, especially for larger values of N , see the next section for more details. Thus,
the ECEM can be also considered as the test statistic for identification of finite variance. In
this paper, the testing methodology is used for k = n and in this case the statistic defined
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in Eq. (1) we denote as C(N). The testing procedure based on ECEM statistic is similar
to that described above. However, in this case the quantiles in (2) are calculated based on
the values of C(N) under H0 hypothesis. In this case under H0 hypothesis we also assume
Gaussian distribution.

3 Analyzed distributions
In this section, we present three distributions that are further analyzed in the context of the
proposed methodology, namely mixture of Gaussian distributions, Student’s t distribution
and the α-stable distribution. A random variable with mixture of Gaussian distributions
has finite variance for any set of parameters. However, depending on the values of the pa-
rameters, this distribution may belong to platykurtic (when excess kurtosis is smaller than
0, for definition of excess kurtosis see [39]) or leptokurtic class of distributions (i.e. when
the excess kurtosis is greater than zero or it is infinite), see e.g. [39]. For particular values of
the parameters this distribution reduces to the Gaussian one. The Student’s t distribution
belongs to the leptokurtic class of distributions for which the excess kurtosis is greater
than 0 or is infinite. The variance of Student’s t distribution is finite when the number
of degrees of freedom is greater than 2, otherwise we have the infinite-variance case. For
large number of degrees of freedom the Student’s t distribution tends to Gaussian one. The
last considered distribution, α-stable one, belongs to the leptokurtic class of distributions.
In this case the variance is infinite for all values of stability index (see Eq. (6)). The only
exception is when the stability index is equal to 2. In that case the α-stable distribution
reduces to the Gaussian one.

3.1 Mixture of Gaussian distributions
Let a1, a2, . . . , al denote a series of non-negative weights satisfying

∑l
i=1 ai = 1. Let

F1(·), F2(·), . . . , Fl(·) denote an arbitrary sequence of Gaussian cumulative distribution
functions (CDFs) with means μ1,μ2, . . . ,μl and variances σ 2

1 ,σ 2
2 , . . . ,σ 2

l . Let f1(·), f2(·), . . . ,
fl(·) be the corresponding probability density functions (PDFs). A random variable with
the following CDF and PDF

F(z) =
l∑

i=1

aiFi(z), f (z) =
l∑

i=1

aifi(z), z ∈R, (3)

where fi(z) =
1√

2πσi
exp

(
–

1
2

(
z – μi

σi

)2
)

(4)

is called a mixture of Gaussian distributions [3, 32, 39] (denoted further as MG). For l = 1
this distribution reduces to the Gaussian one (denoted further asG). In that case, the excess
kurtosis is equal to zero. As was mentioned, this distribution may belong to the leptokurtic
class of distributions, but the variance is finite for any set of parameters. In this paper
we assume l = 2, μ1 = μ2 = 0. Moreover we assume σ1 = 1, σ2 =

√
5 and the analysis is

provided with respect to the a1 ∈ [0.7, 1] parameter. In that case, the excess kurtosis is
greater than 0, the only exception is when a1 = 1. In that case, the mixture of Gaussian
distributions reduces to the Gaussian one.

In Fig. 3, we demonstrate the boxplots of the analyzed statistics A(N) and C(N) de-
fined in the previous section for mixture of Gaussian distributions and N = 1, 2, 3. The
boxplots are obtained for samples from a mixture of Gaussian distributions for sample
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Figure 3 The boxplots of the statistics A(1), A(2), A(3) (top panels) and C(1), C(2), C(3) (bottom panels) for
samples of length n = 1000 from mixed Gaussian distributions withm = 2, μ1 =μ2 = 0, σ1 = 1 and σ2 =

√
5.

The boxplots are presented with respect to a1 parameter and are obtained based on M = 1000 Monte Carlo
simulations

length n = 1000 based on M = 1000 Monte Carlo simulations. As can be seen, for N = 1
the difference between the statistics considered is not visible for all cases (including the
Gaussian case, that is, when a1 = 1). For higher N there is a significant difference be-
tween the cases a1 ∈ [0.7, 1) and a1 = 1. This is visible in the interquartile ranges and
medians of the sample statistics. Thus, in the case considered, one may expect that the
test for finite variance distribution will be more efficient for N = 1. Note that for a mix-
ture of Gaussian distributions, the test should not reject the H0 hypothesis for any values
of a1.

3.2 Student’s t distribution
Student’s t distributed random variable is defined through the following PDF [35, 37]

f (z) =
1√
νπ

�
(

ν+1
2

)

�
(

ν
2
)

(
1 +

z2

ν

)– ν+1
2

, z ∈R, (5)

where the number of degrees of freedom ν > 0 is a parameter responsible for heavy-tailed
properties. In the following parts, we denote this distribution by T . The lower the ν pa-
rameter, the more impulsive behavior that occurs in the corresponding random sample.
For ν ∈ (0, 2] the variance is not defined. Moreover, as ν → ∞, the Student’s t distribution
tends to the Gaussian one.

In Fig. 4, we show boxplots of the statistics A(N) (top panels) and C(N) (bottom panels)
for N = 1, 2, 3 obtained for samples from Student’s t distribution of length n = 1000 for
different numbers of degrees of freedom. As before, the boxplots are obtained with M =
1000 Monte Carlo simulations. One can see the significant differences between finite- and
infinite-variance cases we receive for higher N for both types of statistics.
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Figure 4 The boxplots of the statistics A(1), A(2), A(3) (top panels) and C(1), C(2), C(3) (bottom panels) for
samples of length n = 1000 from Student’s t distribution with different v parameters. The boxplots are
obtained based on M = 1000 Monte Carlo simulations

3.3 The α-stable distribution
The α-stable distributed random variable is defined by the following characteristic func-
tion [27, 33, 38]

�(z) =

⎧
⎨

⎩
exp

(
–|z|α[1 – iβtan πα

2 sign(z)]
)

, α �= 1

exp
(
–|z|α[1 + iβ 2

π
sign(x)log|z|]) , α = 1,

(6)

where z ∈ R, α ∈ (0, 2] is the stability index responsible for heavy-tailed behavior, β ∈
[–1, 1] is the skewness parameter, γ ∈ R+ is the scale parameter, and μ ∈ R is the shift
parameter. The tail of the α-stable distribution decays as the power-law function, that is,
1 – F(z) ∼ z–α , where F(z) is the corresponding CDF. Therefore, one can conclude that
the lower the stability index α, the more impulsive the behavior that occurs in the sample.
When α = 2, the α-stable distribution reduces to the Gaussian one, hence the variance, as
well as higher order moments, such as skewness or kurtosis, exist. For α < 2, the variance is
infinite. In this paper, we consider a symmetric α– stable distribution, that is, when β = 0
and μ = 0. Moreover, we assume σ = 1. In the further analysis, we denote this distribution
by S .

In Fig. 5, we provide boxplots of the statistics A(N) and C(N) for N = 1, 2, 3 obtained
for the samples of the α-stable distribution for the length of the sample n = 1000 with dif-
ferent parameters α. The boxplots are obtained with M = 1000 Monte Carlo simulations.
Similar to the case of Student’s t distribution, there is significant difference between dis-
tributions of the statistics for finite- (i.e. Gaussian) and infinite-variance random samples
for all values of N .

4 Simulated data analysis
In this section, we present the efficiency of the procedures for finite variance testing for
simulated data. Here, we analyze three distributions described in the previous section.
The effectiveness of the testing procedures is demonstrated based on the powers of the
tests.
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Figure 5 The boxplots of the statistics A(1), A(2), A(3) (top panels) and C(1), C(2), C(3) (bottom panels) for
samples of length n = 1000 from α-stable distribution with different α parameters. The boxplots are obtained
based on M = 1000 Monte Carlo simulations

In the performed simulation studies the test procedures based on the statistics A(1),
A(2), A(3) and C(1), C(2), C(3) are applied to the samples represented in the time do-
main. In our analysis, we investigate the performance of the proposed tests based on 1000
Monte Carlo simulations of samples from each distribution with lengths n = 500, 1000.
The empirical distribution of test statistic is obtained based on 1000 simulated trajecto-
ries from Gaussian distribution (corresponding to the H0 hypothesis - finite variance case)
and the power of the test is calculated based on 1000 simulated trajectories from mixture
of Gaussian distribution, Student’s t distribution and α-stable distribution. More precisely,
for each simulated trajectory from each distribution we calculate the test statistics and we
compare if they fall in the obtained acceptance region (as described in proposed testing
procedure in Sect. 2.2).

In the case of mixture of Gaussian distributions, we fixed parameters m = 2, μ1 = μ2 = 0,
σ1 = 1 and σ2 =

√
5 and we analyze the performance of the tests with respect to the parame-

ter a1 ∈ {0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1}. In the case of the Student’s t distribution, we apply
the test to samples from the distribution with parameter ν ∈ {1.5, 2, 3, 6, 10, 15}. Finally,
in case of the α-stable distribution, we verify the results of the tests by the assumption
that the scale parameter σ = 1 and the stability index α ∈ {1.5, 1.6, 1.7, 1.8, 1.9, 2}. As it was
mentioned, the empirical distributions of the analyzed test statistics under H0 hypothesis
are calculated for samples from the standard Gaussian distribution.

Due to the possible different scales of the samples considered, we propose applying a
normalization procedure based on conditional variance [29]. A similar approach was used
in [23]. The procedure is as follows: first, the sample median is calculated for given data.
Then the conditional standard deviation is calculated, that is, the sample is trimmed at an
arbitrarily chosen quantile levels (in our case q1 = 0.1 and q2 = 0.9), and then the sample
standard deviation is calculated for the trimmed data. Finally, the vector is normalized by
subtracting the obtained sample median and dividing by the conditional sample standard
deviation.

The powers of the tests (for d = 5%) obtained for the mixture of Gaussian, Student’s t,
and α-stable distribution are presented in Fig. 6, Fig. 7 and Fig. 8, respectively. For a mix-
ture of Gaussian distributions, we expect the power of tests based on proposed statistics
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Figure 6 Power curves of the introduced tests obtained in 1000 Monte Carlo simulations of samples from
mixture of Gaussian distributions with n = 500, 1000 observations. The results are presented with respect to
parameter a1 responsible for heavy-tailed properties of this distribution. We assume d = 5%

Figure 7 Power curves of the introduced tests obtained in 1000 Monte Carlo simulations of samples from
Student’s t distribution with n = 500, 1000 observations. The results are presented with respect to parameter ν
responsible for heavy-tailed properties of the distribution. We assume d = 5%

Figure 8 Power curves of the introduced tests obtained in 1000 Monte Carlo simulations of samples drawn
from α-stable distributions with n = 500, 1000 observations. The results are presented with respect to
parameter α responsible for heavy-tailed properties of the distribution. We assume d = 5%

to be close to 0.05 reflecting the chosen significance level, as for any value of parameter
a1 the variance of the distribution exists. Based on the results obtained for a mixture of
Gaussian distributions, it can be observed that the test statistics A(2), A(3), C(2) and C(3)

are very sensitive to any violation from the Gaussian distribution, that is, when a1 = 1.
All tests based on the statistics A(2), A(3), C(2) and C(3) falsely reject the H0 hypothe-
sis for a mixture of Gaussian distributions. In contrast, tests based on A(1) and C(1) do
not reject the H0 hypothesis and correctly identify a mixture of Gaussian distribution as a
finite-variance case for any a1.
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In the case of the Student’s t distribution, the power of all tests decreases with respect to
the increasing value of ν , see Fig. 7. This means that the statistics are sensitive to changes
in the variance of this distribution. Let us note that for ν > 2 we expect the tests to not
reject the H0 hypothesis. Therefore, for ν > 2, we expect the power of the tests to be close
to 0.05, as selected significance level, otherwise the power of the tests should be signif-
icantly higher than the significance level. In Fig. 7 the cases corresponding to finite and
infinite variance are separated by the vertical line. Based on the results presented in Fig. 7
it can be concluded that the tests based on statistics A(1) and C(1) favor not rejecting the
H0 hypothesis even for ν = 1.5 and ν = 2. At the same time, the other tests tend to re-
ject the H0 hypothesis more often even if it is true, which can be observed for ν = 3 and
ν = 6. For ν = 10 and ν = 15, tests based on statistics A(1), A(2), A(3) and C(1) favor not
rejecting the H0 hypothesis and statistics C(2) and C(3) reject it in most of the cases. The
power of the tests based on A(1) and C(1) is lower than that of any other test. Further-
more, tests A(2), A(3), C(2) and C(3) incorrectly reject the H0 hypothesis for ν = 6 and
ν = 3.

For the α-stable distribution, the results are presented in Fig. 8. The tests based on the
statistics A(2), A(3), C(2), and C(3) discriminate in favor of the infinite variance of the dis-
tribution for all the values of the stability index, as expected. Furthermore, the introduced
test statistics can distinguish between finite and infinite variance (strictly α-stable) distri-
butions for samples of length n = 500, 1000 for the stability index close to 2. Considering all
statistics, the least efficient of the proposed tests for α-stable distribution are tests based
on the statistics A(1) and C(1). In these cases, the power of the test is the lowest. More-
over, for sample length n = 1000 the values of the power of the tests based on A(2), A(3),
C(2), and C(3) are above 0.8 for stability index α ∈ {1.5, 1.6, 1.7, 1.8, 1.9} which means that
all these tests accurately reject H0 hypothesis. Hence, for α ∈ {1.5, 1.6, 1.7, 1.8, 1.9} tests
based on A(2), A(3), C(2) and C(3) rightfully reject the H0 hypothesis.

In the Appendix we include the comparison of the power of tests based on the A(N)

statistic with two-sided and one-sided acceptance region for all analyzed distributions
(see Fig. 17, Fig. 18 and Fig. 19). In case of Student’s t distribution and α-stable distribu-
tion the results of a test with two-sided acceptance region are similar to those obtained for
a test with one-sided acceptance region (see Fig. 18 and Fig. 19. For mixture of Gaussian
distributions (see Fig. 17), the power of a test with one-sided acceptance region is lower
than for a test with two-sided acceptance region. Thus, for mixture of Gaussian distri-
butions the test with two-sided acceptance region is more restrictive as it rejects the H0

hypothesis more often.
To compare the introduced methods, the power of each test for every distribution is

included in Table 1 (see Appendix) for the significance level d = 5% for different values
of the sample lengths. Moreover, we demonstrate the results of two tests known from
the literature to compare efficiency with the proposed methods. In the first method in-
troduced in [36], denoted as T1, the H0 hypothesis assumes an infinite second moment
of a random sample. Thus, in Table 1 in the column “T1”, the results do not present
the power of a test, but rather 1 – power of a test. In this method, one first calculates
the empirical second moment s2 of the tested sample x1, x2, . . . , xn, and then generates
a vector of independent random variables ξ1, ξ2 · · · , ξr , where ξj ∼ N (0,

√
es2 ), where

r = �n
4
5 	 and �·	 is the floor function. Secondly, two sequences ζ1(u), ζ2(u), . . . , ζr(u) for

u ∈ {–1, 1} are generated, where ζj(u) = I[ξj ≤ u] and I[·] is an indicator function. Lastly,
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one defines υr(u) as υr(u) = 2√
r
∑r

j=1[ζj(u) – 0.5] and the test statistic is constructed as
θ1 =

∑
u 0.5υ2

r (u). The test statistic θ1 under H0 follows χ2 distribution with one degree of
freedom, which enables one to create the acceptance region of the test at a given signifi-
cance level.

In the second method [13], denoted as T2, the H0 hypothesis is the same as in our case,
i.e. that the considered random sample comes from the distribution with finite second
moment. The method incorporates the bootstrap approach and is based on randomly
generating M = 10000 sub-samples of the original sample with a fixed length �0.4logn�,
where �·� is the ceiling function. Then, for each sub-sample, the empirical second mo-
ment is calculated s2

1, s2
2, . . . s2

M . As a test statistic θ2 the authors selected the ratio of the
number of sub-samples with a higher empirical second moment than the scaled empirical
second moment of the tested initial sample to the number of all simulated sub-samples,
i.e. θ2 =

∑M
i=1 I[s2

i >0.999s2]
M , where s2 is the empirical second moment of the initial sample. If

the defined ratio exceeds the chosen significance level, the H0 hypothesis is not rejected,
otherwise the test rejects H0 in favor of the H1 hypothesis. For both tests T1 and T2, we
apply the same normalization of the data as in the tests introduced in this paper. The re-
sults obtained for T1 and T2 for d = 5% are presented in Table 1 (see columns “T1” and
“T2”).

It can be observed that especially in the case of α-stable distribution, where for sta-
bility index α ∈ {1.7, 1.8, 1.9} tests T1 and T2 identify the distribution as finite vari-
ance, i.e. test T1 rejects the H0 hypothesis that the distribution has an infinite sec-
ond moment, while test T2 does not reject H0 hypothesis, assuming finite second mo-
ment. As it was previously noted, tests based on A(1) and C(1) favor not rejecting
the H0 hypothesis and their performance is at least as good or better than the per-
formance of the tests T1 and T2. The only case where T1 and T2 are more efficient
than proposed tests is observed for Student’s t distribution with ν = 3. When apply-
ing the tests to infinite-variance samples, tests based on statistics A(2), A(3), C(2) and
C(3) have higher power than test T2. The methods proposed in this paper are also more
efficient than T1 for infinite-variance identification, comparing the power of the tests
based on A(2), A(3), C(2) and C(3) and 1 – power of a test for T1. Thus, the tests A(2),
A(3), C(2) and C(3) are more efficient to reject the H0 hypothesis than tests T1 and
T2.

5 Real data analysis
In this section, we demonstrate the results of proposed tests, based on statistics A(1),
A(2), A(3) and C(1), C(2), C(3), applied to real data. We analyze two vibration sig-
nals collected from healthy machines. Thus, we do not expect here the components re-
lated to local damage (i.e. cyclic impulses). In the next subsections, we study the sig-
nals in the time and time-frequency (spectrogram) domains, respectively. The analyzed
vibration signals come from a rolling element bearing used in belt a conveyor system
(signal 1) and a hammer crusher used for fragmentation of hard solid material (signal
2). The signals are presented in Fig. 9 in the time domain (see the top panels) and in
the time-frequency domain (see the bottom panels). The sampling frequency of signal
1 is 19200, and for signal 2 - it is 25000. In case of signal 1, we have in total 48000
number of observations corresponding to 2.5 seconds of measurement. For signal 2,
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Figure 9 Top panels: analyzed signals in the time domain. Bottom panels: analyzed signals in the
time-frequency domain (spectrograms)

Figure 10 Analyzed signals after applying high-pass filtering

we obtained 2550000 sampling points measured during 102 seconds. The same sig-
nals were examined in the time-frequency domain in the article [34], which addressed
the issue of infinite-variance distributed signals in the context of condition monitoring.

5.1 Analysis in time domain
Real vibration signals are often considered as a mixture of deterministic and random com-
ponents. These components should be separated by decomposition methods. For sim-
plicity, assuming that deterministic components are low frequency signals, we used basic
high-pass filter to remove low-frequency, high energy deterministic components. Selec-
tion of cutoff frequency is not critical here, it was set to 2 kHz for signal 1, and 1 kHz for
signal 2, as the energy is located in the range up to those frequencies. Let us note that
in general the deterministic components may also appear for high frequencies. Thus, the
pre-processing proposed here (high-pass filtration) is designed for such specific signals. In
Fig. 10 we present the examined signals after applying high-pass filtering. In the analysis,
we cut the signals into non-overlapping windows of length corresponding to 1 second. In
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Figure 11 Comparison of the empirical tails (green stars) and theoretical tail of Gaussian distribution (black
solid line) in logarithmic scale. Left panel: results obtained for the first segment of length 1 second, right
panel: result obtained for the second segment of length 1 second

Figure 12 The results of proposed tests obtained for signal 2 in time domain for d = 5%. For segments where
the tests rejected the H0 hypothesis we assigned the value 1, whereas for segments where the tests did not
reject H0 we assigned 0

case of signal 1 it is 19200 observations, and in case of signal 2 - 25000 observations. For
signal 1 there are 2 segments (as the signal was measured during 2.5 seconds), whereas
for signal 2 we obtain 102 segments. We apply the testing procedures based on the A(1),
A(2), A(3) and C(1)-C(3) statistics to each segment separately. In the analysis, we used
1000 Monte Carlo simulations of Gaussian samples. More precisely, in the case of signal
1 to calculate the acceptance regions (2) under the H0 hypothesis we simulate Gaussian
samples of length 19200 while for signal 2 we used samples of length 25000. Moreover,
we assumed significance levels d = 5%. In case of signal 1 there is no evidence to reject
the H0 hypothesis (all tests do not reject the hypothesis). Moreover, this signal is con-
firmed to be Gaussian distributed by the Kolmogorov-Smirnov test [10] with pvalue = 0.27
and pvalue = 0.48 for the first and second segment, respectively. In Fig. 11 we present a
comparison of the theoretical tail (1- cumulative distribution function) of the Gaussian
distribution with the empirical tail of the data corresponding to the first two seconds of
signal 1. In case of signal 2, tests based on statistics A(2) – A(3) and C(2) – C(3) reject the
H0 hypothesis for both significance levels. The tests based on statistics A(1) and C(1) do
not reject H0 hypothesis in some cases. However, there are more segments classified as
infinite variance distributed. The results of the tests obtained for signal 2 in the time do-
main are presented in Fig. 12. The x axis presents the seconds of the signal and the y axis
presents the result of the hypothesis testing, which is 0 (not rejecting the H0 hypothesis)
or 1 (rejecting the H0 hypothesis).
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5.2 Analysis in time-frequency domain
In this part, we present the results of the tests applied to the examined signals in their
spectrogram representations. The spectrogram is defined as a square of the short time
Fourier transform (STFT) [17]3

S(t, f ) = |STFT(t, f )|2 =

∣∣∣∣∣

n∑

m=1

xmw(t – m)e–i2π f m
n

∣∣∣∣∣

2

, (7)

where x1, x2, . . . , xn is the considered vector of observations, w(·) is a window, t ∈ T is a
time point and f ∈F is the frequency.

Let us note, that the probabilistic properties of a given random sample change after
transformation via spectrogram. More precisely, in [18] it was shown that a Gaussian
random sample after transformation into the time-frequency domain (spectrogram) has
the so-called generalized χ2 distribution [24]. In that case, the finite variance distribu-
tion property is valid for samples in the time and time-frequency domains. The situa-
tion is much more complicated when the random sample in the time domain has infinite-
variance distribution. In that case, after the transformation into time-frequency domain
considered here, we have also the infinite-variance distribution. However, there are also
cases where the finite-variance distributed samples are transformed into the infinite-
variance case. This point was extensively discussed in [34].

As mentioned, the same real signals were analyzed in our previous work in the time-
frequency domain. In [34] it was concluded that signal 1 has a generalized χ2 distribu-
tion. This thesis was confirmed in Sect. 5.1, where we have shown that this signal in
the time domain can be considered as Gaussian distributed. Signal 2 in [34] was classi-
fied as infinite variance distributed in the time-frequency domain. In this work, we ap-
ply tests based on the statistics A(1), A(2), A(3) and C(1), C(2), C(3) to confirm this re-
sult.

In the time-frequency analysis, we calculated the spectrograms of the given signals af-
ter high-pass filtering. For signal 1, we selected kaiser(500, 5) windowing (see [28]), with
512 points to calculate the Fourier transform. The spectrogram of signal 2 was obtained
using the kaiser(2000, 5) window and 2048 points to calculate the Fourier transform. As
it was previously mentioned, to ensure that the observations in spectrogram represen-
tations are independent, in both cases the overlap parameter was set to 0. The spec-
trograms of signal 1 and signal 2 calculated after high-pass filtering are presented in
Fig. 13.

It should be noted that selecting a single sub-signal associated with one frequency to
determine the behavior of the background noise (i.e. independent observations) is not
allowed due to the significant differences occurring for different frequencies. Moreover,
to ensure that there are no auto-dependencies within the data, for each signal, we selected
only the frequencies for which the mean of the robust autocorrelation measure (robust
ACF), defined as in [40], was the lowest (in our case, we selected frequencies for which
robust ACF was lower than 0.05). In our analysis, for signal 1 in such a way we selected 100
sub-signals, and for signal 2- 200 sub-signals. In each case, we analyzed test statistics A(1),
A(2), A(3) and C(1), C(2), C(3) separately for all selected sub-signals (with the smallest

3In our analysis, we selected Kaiser window kaiser(L,b), where L represents window length and b is the shape factor.
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Figure 13 Spectrograms of analyzed signals after applying high-pass filtering

Figure 14 The results of proposed tests obtained for signal 1 in time-frequency domain for d = 5%. For
frequencies where the test rejected the H0 hypothesis we assigned the value 1, whereas for frequencies
where the test did not reject H0 we assigned 0

Figure 15 The results of proposed tests obtained for signal 2 in time-frequency domain for d = 5%. For
frequencies where the test rejected the H0 hypothesis we assigned the value 1, whereas for frequencies
where the test did not reject H0 we assigned 0

robust ACF). Namely, for each sub-signal from the spectrogram, we calculate test statistics
A(1), A(2), A(3) and C(1), C(2), C(3) and verify if they are contained in the respective
acceptance region constructed based on 1000 Monte Carlo simulations. If the value of
the statistic calculated for the analyzed sub-signal falls into the acceptance region, there
is no evidence to reject the H0 hypothesis at given significance levels, and for the selected
sub-signal we classify it as finite variance distributed. The procedure is then repeated for
all sub-signals within the selected frequency range. In Figs. 14 and 15 we demonstrate
the results obtained for signal 1 and signal 2, respectively. The y-axis corresponds to the
hypothesis testing result, i.e. if the H0 was rejected, the result is 1, otherwise it is 0. In order
to be consistent with the results presented in the simulation study, we assume d = 5%.
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In case of the signal originating from the rolling bearings, i.e. signal 1, the tests did not
reject the H0 hypothesis for the majority of sub-signals for the selected frequencies. In
case of signal 2 obtained from the crusher, the tests based on statistics A(2)-A(3) and C(1),
C(2), C(3) reject the H0 hypothesis for most of the sub-signals, that confirms the results
presented in [34]. The only exception is the test based on statistics A(1) which does not
reject H0 hypothesis. The results obtained in the time-frequency domain correspond to
the results obtained in time domain. Signal 1 in the time and time-frequency domain is
classified as finite variance distributed. Signal 2 is classified as infinite variance distributed
by most of the tests, both in the time and time-frequency domain.

6 Conclusions
In this paper we have introduced procedures to test whether the sample of observations
comes from a finite-variance distribution. Preliminary knowledge about the probabilistic
properties of the data (here expressed in terms of the finite variance of the corresponding
distribution) is extremely important for selection of appropriate tools for its further anal-
ysis. The proposed methodology is based on the ECEM statistic and its specific behavior
for data coming from finite- and infinite-variance distributions. We have parameterized
this specific behavior and introduced a new test statistic. The efficiency of the testing pro-
cedures was verified for three broad classes of heavy-tailed distributions with possible
finite and infinite variances. The presented real-world examples confirm the universal-
ity and the broad spectrum of possible applications of the introduced methodology. We
believe that developed procedures could be useful for various applications and the pro-
posed algorithms can be considered as the tools useful at the pre-processing step where
the preliminary knowledge about the data properties is extremely important for further
analysis. As the final conclusions we draw the main advantages of the proposed testing
methodology:

• It is based on simple observation related to specific behavior of the ECEM statistic for
finite- and infinite-variance distributed data.

• The A statistic used for testing is easy to calculate. It requires only a regression
method, which is pretty standard and available in various mathematical packages.

• The testing procedure is quite standard and easy to implement.
• The proposed methodology is universal. It can be applied to any data (assuming it

represents independent observations). Moreover, one may apply the testing procedure
for data represented in any domains (like time, time-frequency domains).

• The presented simulation study clearly confirms the efficiency of the testing
procedures for a broad class of distributions.

We highlight also main limitations of the introduced methodology:
• Theoretical distributions of test statistics are not know, thus, the acceptance region is

obtained based on Monte Carlo simulations.
• In consequence in H0 hypothesis there is a need to assume some specific distribution

(here Gaussian) to obtain the acceptance region for the tests.
• The proposed methodology based on A statistic is dedicated to vectors of

independent observations, and the possible dependencies in the data may reduce the
efficiency of the testing procedures. Therefore, it is necessary to perform some
pre-processing of the initial data (like high-pass filtration in the presented analysis for
real data in time domain) to be sure that the examined data are independent.
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However, as it is shown in [23], the testing methodology based on C statistic is also
useful for data with a given dependence structure.

Appendix

Figure 16 The procedure presenting derivation of A(1) statistic for Student’s t distribution with ν = 15 (finite
variance case, see Eq. (5)). At first, C(1) statistic is calculated (see panel 1). Next, the differences between
neighbouring values of statistic are calculated (see panel 2). Based on the peaks, we segment the trajectory of
C(1) statistic (see panel 3) - red lines represent points separating segments. Lastly, we fit straight line (red
dashed line) to the last segment (see panel 4) - the obtained slope is our statistic A(1)

Figure 17 The comparison of power curves of the tests based on the A(N) statistics with two-sided (solid
lines) and one-sided (dashed lines) acceptance regions. Power curves of the tests are obtained based on 1000
Monte Carlo simulations of samples from mixture of Gaussian distributions with n = 500, 1000. The results are
presented with respect to parameter a1 responsible for heavy-tailed properties of this distribution. We
assume d = 5% in case of both two-sided and one-sided acceptance regions
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Table 1 Power of a tests based on statistics A(1), A(2), A(3) and C(1), C(2), C(3), and for T2 for a
random sample of length n = 500 (top table) and n = 1000 (bottom table) for significance level
d = 5%. In the case of T1, results present 1 – power of the test

A(1) A(2) A(3) C(1) C(2) C(3) T1 T2

n = 500
MG(a1) 0.7 0.12 0.41 0.55 0.05 0.94 0.95 0.05 0.06

0.75 0.10 0.42 0.56 0.06 0.94 0.95 0.06 0.07
0.8 0.11 0.47 0.65 0.05 0.94 0.95 0.06 0.07
0.85 0.10 0.45 0.65 0.07 0.94 0.95 0.05 0.06
0.9 0.10 0.40 0.61 0.06 0.88 0.93 0.05 0.06
0.95 0.09 0.24 0.45 0.05 0.72 0.83 0.04 0.05

T (ν) 1.5 0.33 0.91 0.87 0.29 0.95 0.95 0.85 0.23
2 0.22 0.93 0.93 0.26 0.95 0.95 0.72 0.16
3 0.10 0.88 0.92 0.15 0.95 0.95 0.12 0.10
6 0.08 0.38 0.53 0.06 0.88 0.91 0.07 0.08
10 0.10 0.17 0.25 0.06 0.59 0.71 0.06 0.06
15 0.10 0.12 0.15 0.06 0.37 0.52 0.05 0.05

S(α) 1.5 0.25 0.92 0.89 0.27 0.95 0.95 0.87 0.22
1.6 0.18 0.91 0.90 0.23 0.95 0.95 0.51 0.14
1.7 0.16 0.91 0.90 0.23 0.95 0.95 0.09 0.07
1.8 0.11 0.83 0.88 0.19 0.95 0.95 0.05 0.05
1.9 0.10 0.59 0.68 0.10 0.84 0.88 0.05 0.04

Gauss 0.05 0.05 0.05 0.05 0.05 0.05 0.02 0.02

n = 1000
MG(a1) 0.7 0.10 0.54 0.75 0.06 0.95 0.95 0.06 0.06

0.75 0.13 0.57 0.80 0.06 0.95 0.95 0.06 0.06
0.8 0.11 0.60 0.84 0.05 0.95 0.95 0.06 0.07
0.85 0.10 0.59 0.86 0.06 0.95 0.95 0.05 0.06
0.9 0.10 0.50 0.82 0.05 0.95 0.95 0.05 0.05
0.95 0.09 0.34 0.65 0.05 0.89 0.92 0.05 0.04

T (ν) 1.5 0.40 0.93 0.91 0.53 0.95 0.95 0.88 0.25
2 0.22 0.95 0.94 0.34 0.95 0.95 0.41 0.15
3 0.12 0.91 0.94 0.18 0.95 0.95 0.08 0.06
6 0.09 0.53 0.81 0.06 0.94 0.95 0.06 0.06
10 0.10 0.22 0.39 0.05 0.83 0.89 0.05 0.05
15 0.10 0.12 0.20 0.05 0.54 0.70 0.04 0.04

S(α) 1.5 0.30 0.93 0.90 0.51 0.95 0.95 0.88 0.26
1.6 0.21 0.94 0.91 0.42 0.95 0.95 0.45 0.17
1.7 0.16 0.94 0.93 0.33 0.95 0.95 0.10 0.10
1.8 0.12 0.92 0.92 0.27 0.94 0.94 0.07 0.08
1.9 0.10 0.77 0.87 0.19 0.94 0.94 0.05 0.07

Gauss 0.05 0.05 0.05 0.05 0.05 0.05 0.02 0.02
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Figure 18 The comparison of power curves of the tests based on the A(N) statistics with two-sided (solid
lines) and one-sided (dashed lines) acceptance regions. Power curves of the tests are obtained based on 1000
Monte Carlo simulations of samples from Student’s t distribution with n = 500, 1000. The results are presented
with respect to parameter ν responsible for heavy-tailed properties of the distribution. We assume d = 5% in
case of both two-sided and one-sided acceptance regions

Figure 19 The comparison of power curves of the tests based on the A(N) statistics with two-sided (solid
lines) and one-sided (dashed lines) acceptance regions. Power curves of the introduced tests are obtained
based on 1000 Monte Carlo simulations of samples drawn from α-stable distributions with n = 500, 1000. The
results are presented with respect to parameter α responsible for heavy-tailed properties of the distribution.
We assume d = 5% in case of both two-sided and one-sided acceptance regions
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