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Abstract
In the design process of large adaptive mirrors numerical simulations represent the
first step to evaluate the system design compliance in terms of performance, stability
and robustness. For the next generation of Extremely Large Telescopes increased
system dimensions and bandwidths lead to the need of modeling not only the
deformable mirror alone, but also all the system supporting structure or even the full
telescope. The capability to perform the simulations with an acceptable amount of
time and computational resources is highly dependent on finding appropriate
methods to reduce the size of the resulting dynamic models. In this paper we present
a framework developed together with the company Microgate to create a reduced
order structural model of a large adaptive mirror as a preprocessing step to the
control system simulations. The reduced dynamic model is then combined with the
remaining system components allowing to simulate the full adaptive mirror in a
computationally efficient way. We analyze the feasibility of our reduced models for
Microgate’s prototype of the adaptive mirror of the Giant Magellan Telescope.

Keywords: Model order reduction; Modal truncation; Balanced truncation; Krylov
subspace methods; Moment matching; Adaptive mirrors

1 Introduction
For ground-based telescopes, so-called Adaptive Optics (AO) systems are used to com-
pensate the image distortions in astronomical observations caused by atmospheric turbu-
lence, using the flexible shape of an optical surface. The control of an AO system is com-
plex and requires at least a wavefront sensor to get information about the atmospheric
turbulence causing the image distortions, a known natural or laser guide star as reference
source, a mirror shape command generator, and a deformable mirror to compensate for
the atmospheric turbulence.

We consider the control of an adaptive mirror based on non-contacting voice-coil ac-
tuators, which are co-located to capacitive position sensors [12]. This deformable mirror
technology was developed by the company Microgate1 together with other partners (ADS

1https://engineering.microgate.it.
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International,2 INAF-Osservatorio Astrofisico di Arcetri,3 and the Aerospace Engineering
Department of Politecnico di Milano4). It has been already deployed realizing the adaptive
secondary mirror of several large telescopes, including the Multiple Mirror Telescope, the
Large Binocular Telescope, and the Very Large Telescope. Microgate is engaged in the final
design and construction of the adaptive mirrors for the next generation of Extremely Large
Telescopes (ELTs). Sub-system and full-system multiphysics simulation plays a key role in
the design phase of such complex projects. Therefore, numerical simulation has always
been intensively pursued by the company. Several design solutions need to be compared
and the impact of different modelling choices have to be verified.

The structural dynamic models used to describe the large adaptive mirror are of high
order, caused by the need to describe well high spatial order deformations and by the
inherent complexity of the system supporting structure. Hence, a reduced order mirror
model is required that guarantees high fidelity results with a reasonable simulation time.
The earliest methods for model order reduction techniques go back to the 1960s in the
field of structural dynamics. These methods rely on the identification of eigenfrequencies
and are referred to as mode displacement methods [22, 40]. In the 1980s the important
reduced order method balanced truncation [15, 35] has been developed in the system
and control theory community. In the field of numerical mathematics, approaches such as
Pade-via-Lanczos and rational interpolation methods came up in the 1990s and are still
under research, e.g. in [4, 16, 27]. Nowadays these methods are often used for the design
and analysis of large electronic circuits. In recent years data driven approaches gained a
lot of traction, see e.g. [3, 4, 8, 24–26, 31]. In the literature various reviews on model order
reduction techniques exist [1, 2, 5, 6, 9–11, 13, 14, 17, 19, 28].

In the framework of this paper a reduced order model is created by applying different
methods as a preprocessing step to the control system simulations. In [33] the authors
used balanced truncation for reducing the complexity of an adaptive mirror model, which
is a common approach for control theory applications. However, in contrast to the model
presented in this paper theirs did not take into account the system supporting structure up
to the full telescope and was thus less complex. Moreover, here we also consider Krylov
subspace based methods and the Loewner framework. We combine the reduced order
structural model with the remaining system components and run full system simulations
using different numerical tools. Our developments are validated via simulations of Micro-
gate’s P72 [18], which is a 72 actuation points prototype of the Giant Magellan Telescope
(GMT).

The outline of this paper is as follows: We start with a brief description of the physical
model of the adaptive mirror in Sect. 2. Section 3 is dedicated to an overview of exist-
ing model order reduction methods from the field of structural dynamics, control theory,
and numerical mathematics. In Sect. 4 we describe our framework for performing high
fidelity mirror simulations with a reduced order structural model and we give some im-
plementation details. Numerical simulations for the GMT P72 adaptive mirror, including
a performance evaluation of different reduced order methods, are shown in Sect. 5. We
end with a summary and conclusions in Sect. 6.

2https://www.ads-int.com/.
3https://www.arcetri.inaf.it/en/.
4https://www.aero.polimi.it/it/il-dipartimento.
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2 Physical model
The physical modeling of the deformable mirrors treated in this paper usually requires a
multiphysics description. The level of modeling accuracy and complexity can be set on
the basis of the needs and usually involves the description of (see Fig. 1):

• a thin deformable mirror, usually a Zerodur shell about 2 mm thick;
• a reference structure called reference body, also made of Zerodur to grant the

required thermal stability;
• the squeeze film action of the air trapped in the thin gap, about 100 microns, between

the mirror and the reference body, which significantly contributes to the deformable
mirror damping, affecting both the control loop stability and the controlled system
performance;

• the cold plate, typically made by aluminum, where the Voice Coil Motor (VCM)
actuators are mounted, which sustains the VCM reaction forces providing adequate
mechanical stability and taking care of the system cooling;

• the system positioner, typically a hexapod, responsible for the system alignment and
offloading of the mirror low-order modes;

• the mirror capacitive sensors and VCM actuators with their signal conditioning and
the digital feedforward-feedback control loop.

The focus of this paper is on model order reduction methods for the structural dynamics
of the system components mentioned above, even if the effectiveness of the reduced order
models are verified also through the simulation of the full system behavior. Details about
the fluid dynamic model and the control system are omitted and can be found in [34].

The deformable mirror is described using a linear structural model in the time domain.
One way to represent the structural dynamics is via its degrees of freedoms using sec-
ond order differential equations. Another way is given by its system states with first order

Figure 1 Deformable mirror and supporting structure
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differential equations often referred to as state space representation. This formulation is
preferred by control engineers as linear control system analyses and design methods are
usually given in the state space form. Besides the form of equations the model can be rep-
resented via different coordinate systems. Commonly, nodal and modal coordinates are
employed. The nodal coordinates are expressed through displacements and velocities of
specific physical locations, also called nodes. In contrast, modal coordinates are defined
through structural eigenmodes [21].

2.1 Second order structural models
The structural model of the adaptive mirror shape can be represented by second order
linear differential equations using nodal coordinates, i.e., in terms of displacement, veloc-
ity and acceleration. Typically, the Finite Element (FE) method with piecewise polynomial
basis functions [44] is applied, where the structure is described by the mass, stiffness and
damping matrices. The discretized displacement uh, which depends on the spatial variable
z and the time t, is represented via

uh(z, t) =
ng∑

i=1

ψi(z)ui(t), (1)

where ng is the number of degrees of freedom, ψi(z) are the linear independent FE basis
functions, and (ui)

ng
i=1 =: �uh(t) ∈R

ng are the time dependent coefficients of the FE solution
uh. With Equation (1) we can identify the FE function uh with its coefficient vector �uh. As-
suming a linear structural model described by its degrees of freedom the FE discretization
leads to the following system of Ordinary Differential Equations (ODEs)

Mg �̈uh + Dg �̇uh + Kg �uh = Bg(f c
a + f d

a ), (2)

where Mg is the ng × ng mass matrix, Dg is the ng × ng damping matrix, Kg is the ng × ng

stiffness matrix and Bg is the ng × na force influence matrix. The control and disturbance
force vectors at the na actuation points are denoted by f c

a and f d
a , respectively. For more

details about the mechanical model and the coupling with the fluid part we refer to [33].
Equation (2) can be formulated in modal coordinates. When considering free vibrations

of a structure without damping, i.e., a structure without external excitation and with a
damping matrix D = 0, the vibration modes are found using a time harmonic representa-
tion of the displacement of the unforced system in (2). This leads to the following gener-
alized eigenvalue problem

(Kg – ω2
i Mg)φi = 0, (3)

where ω2
i with i ∈ {1, . . . , nm} is an eigenfrequency and φi the corresponding mode shape

vector. The so-called modal displacement can be written as

qm =
nm∑

i=1

φiqi, (4)
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with the modal coefficients denoted by qi. The displacement written in matrix notation
becomes

qm = �gq, �g = [φ1,φ2, . . . ,φnm ] ∈ R
ng×nm , (5)

with the ng × nm modal shape matrix �g normalized such that

Mm := �T
g Mg�g = I, (6)

Km := �T
g Kg�g = diag(ω2

i ). (7)

The adaptive mirrors considered in this paper experiences, at least most of the time, only
light damping. In this setting it is common, see e.g. [21], to include a diagonal modal damp-
ing approximation with damping coefficients ξi

Dm := diag{2ξiωi} ≈ �gDg�
T
g . (8)

The force influence matrix is transformed similarly

Bm := �T
g Bg . (9)

In this way the equation of motion (2) in modal coordinates becomes fully uncoupled

q̈i + 2ξiωiq̇i + ω2
i qi = f c

mi
+ f d

mi
, i ∈ {1, . . . , nm}, (10)

where f c
mi

and f d
mi

denote the i-th component of the modal force vectors

f c
m := Bmf c

a , (11)

f d
m := Bmf d

a . (12)

Note that for the numerical simulations we focus on modal coordinates as the FE model
provided by the company is given in this representation.

2.2 State space representation
For control theory applications it is common to rewrite the second order differential equa-
tions in (2) into a so-called state space representation, which is a set of first order differ-
ential equations. We consider the Linear Time Invariant (LTI) state space representation
of the form

ẋ = Ax + Bu (13)

y = Cx, (14)

where u ∈ R
m is the input and y ∈ R

p the output of the system. The state vector is de-
noted by x ∈ R

n and A ∈ R
n×n is commonly referred to as state matrix. The input matrix

is denoted by B ∈ R
n×m and the output matrix by C ∈R

p×n.
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By applying the Laplace transform the model can be represented via its transfer function,
which describes the input-output behavior of the system. In this paper we assume to have a
stable system, i.e., all eigenvalues of A have a negative real part [21]. Moreover, we assume a
minimal realization, i.e., all components of the state vector contribute to the input-output
behavior. The transfer function of the system in (13)-(14) is given by

H(s) = C(sI – A)–1B, s ∈ C. (15)

Note that the transfer function is invariant under coordinate transformation.
The modal version of the state space representation (13)-(14) of flexible structures has

a special form, in which the state matrix Am in modal coordinates is block diagonal

Am = diag(Ami ),

with Ami being 2 × 2 blocks, see e.g. [21]. The input and output matrices in modal coor-
dinates are arranged accordingly

Bm = [Bm1 , . . . , Bmnm ]T , Cm = [Cm1 , . . . , Cmnm ]. (16)

The state vector is split into nm components that represent the state of a certain mode

x = [x1, . . . , xnm ]T , xi = [xi1 , xi2 ]. (17)

The i-th component, i.e., the i-th mode, has the state representation (Ami , Bmi , Cmi ).
We consider the following representation for the blocks of the state space matrices

Ami =

[
0 1
ωi –2ξiωi

]
, Bmi =

[
0

bmi

]
, Cmi =

[
0

cmi

]
. (18)

The i-th state is given by

xi = [qmi , q̇mi ]
T , (19)

where qmi is the i-th modal displacement and q̇mi the modal velocity. Each component has
a modal displacement and velocity, which are related to the original one by (4). Note that
this leads also to a special form of the transfer function in modal coordinates which we
denote by Hm(s). For more details we refer to [21].

3 Model order reduction
In practice, we deal with a very large number of degrees of freedom for the structural
model required to obtain a certain modeling accuracy. Moreover, for the design and con-
struction of the large adaptive mirrors a high number of simulations has to be performed.
This makes the direct use of a FE model infeasible and a reduced order model, which rep-
resents well the dynamics of the structure within the frequency band of interest, has to be
used.

For the control of an adaptive mirror it is important that the reduced order model pre-
serve the input-output behavior. Thus, the quality of the reduced model can be evaluated
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by comparing its output to the output of the high order model. This is commonly done by
considering the error in the transfer function. The H2 error of a stable system is defined
by

‖Hr – H‖H2 , ‖H‖H2 =

√
1

2π

∫ ∞

–∞
tr{HT (–jω)H(jω)}dω, (20)

where we denote by j the imaginary unit and H and Hr are the transfer functions of the
high and reduced order model, respectively. Attention is also paid to the H∞ error

‖Hr – H‖H∞ , ‖H‖H∞ = supω∈Rσmax(H(jω)), (21)

where σmax(.) is the largest singular value. There exist several algorithms that aim for min-
imizing the H2 error, i.e., the so-called first order optimality condition,

‖Hr – H‖H2 → min, for stable Hr . (22)

In the following we summarize model order reduction approaches based on modal trun-
cation, moment matching and data-driven interpolation.

3.1 Modal truncation
The modal displacement method [22] computes a reduced model based on free vibration
modes of the structure. For an acceptable approximation of the dynamics of the mirror a
relative small number of modes may be sufficient. To this end not all nm eigenvectors in
(4) are used, but a limited number r < nm. Usually, one is interested in the response of the
system for lower frequencies, as most structural forcing terms operate at low frequencies.
Hence, the first r eigenvectors are kept, which correspond to the r lowest eigenfrequencies,
and the others are truncated. Note that to accurately control complex mirror deformations
a number of modes at least equal to the number of actuators is required to correctly rep-
resent the number of independent degrees of freedom of the control problem.

3.2 Balanced truncation
Balanced truncation [15, 35] is a very popular model order reduction method which al-
lows to reach the first order optimality condition in (22). The LTI system is transformed
into a so-called balanced realization, in which the states are ordered according to their
contribution to the input-output behavior. To quantify the systems input-output behavior
the notions of controllability and observability are introduced. These system properties
are determined via the so-called controllability Wc ∈ R

n×n and observability Wo ∈ R
n×n

Gramians [35]. We are interested in the stationary or time invariant solution. In this case
the controllability and observability Gramians, see e.g. [43], can be obtained by solving
the Lyapunov equations

AWc + WcAT + BBT = 0, (23)

AT Wo + WoA + CT C = 0, (24)
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where A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n. The Hankel singular values γi with i = 1, . . . , n,

used to determine the importance of a certain state for the input-output behavior, are de-
fined as the square roots of the eigenvalues of the product WcWo. Note that in contrast
to Gramians the Hankel singular values are system invariants. Once the system is trans-
formed into the balanced representation the states with small influence on the system
dynamics, i.e., with small Hankel singular values, are discarded. The reduced system is
again in balanced form, therefore, it preserves the stability property of the original system
[37]. This is a very important point for adaptive mirror control. Moreover, an upper bound
on the error [15, 23] is given by

‖Hr(s) – H(s)‖H∞ ≤ 2
n∑

i=r+1

γi, (25)

i.e., we obtain a good approximation as long as the truncated Hankel singular values are
small.

In balanced truncation the total frequency range is covered, however, for adaptive mir-
ror control there is a certain frequency range of interest. For the frequency limited bal-
anced truncation, the controllability and observability Gramians are computed in finite
frequency intervals. We refer to [20] for more details on the computation. Similar ex-
tensions exist to, e.g., time-limited balanced truncation or frequency weighted balanced
truncation, e.g. in [28], but are not considered in this paper.

3.2.1 Modal approximation
A huge drawback of balanced truncation is that solving the Lyapunov equations in (23) is
computationally very demanding. Thus, applying balanced truncation in this form would
not be feasible for our large scale system. However, the representation of the state space in
modal form (18) leads to a special form of the controllability and observability Gramians
[21]. Assuming small damping the Gramians can be approximated via

Wc ≈ diag(wci I), wci =
∥∥Bmi

∥∥2
2

4ξiωi
, (26)

Wo ≈ diag(woi I), woi =
∥∥Cmi

∥∥2
2

4ξiωi
, (27)

where wci and woi are called modal controllability and observability factors. The approx-
imate Hankel singular values in modal coordinates are the geometric means of these two
factors

γi ≈ √wcii woii . (28)

Equations (26)-(27) can be evaluated very fast. Moreover, the system preserves its original
modal representation.

More recently also a data-driven approach of balanced truncation has been developed
in [24] in which the product of the Gramians is approximated directly through frequency
response data up to a desired accuracy.
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3.3 Moment matching methods
Similar to balanced truncation, the goal of moment matching methods is to reduce the
system to one with fewer degrees of freedom, but with similar input-output behavior, i.e.,
approximating the transfer function. Typically, those methods are used for large electronic
systems, but also for structural vibrations, e.g., in [32]. The basic approach is to approxi-
mate the state space S of x by a low dimensional subspace S̃ via projection.

For an arbitrary interpolation point s0 ∈ C the transfer function can be written via its
moment expansion

H(s) =
∞∑

i=0

(–1)iMi(s0)(s – s0)i, (29)

Mi(s0) := CT (s0I – A)–i(sI – A)–1B. (30)

where the Mi are the so-called moments. Note that for Multiple Input Multiple Output
(MIMO) systems the moments are p × m matrices. The idea behind moment matching
methods is to truncate the Taylor series in (29) and thus find a reduced order transfer
function Hr , which matches the first r moments of H at the given expansion point s0. The
precision of the moment matching methods depends not only on the number of moments
matched but also highly depends on the chosen expansion point s0. The reason is that the
Taylor series in (29) is only a reasonable approximation within a certain distance from s0.
To increase accuracy methods that use multiple expansion points s1 . . . , s
 ∈ C are often
used. In the SISO case, the moment matching problem is given by finding an Hr such that

Hr(si) = H(si) for i = 1, . . . , N , (31)

which is also known as rational interpolation. In the MIMO case the moments are matri-
ces and one commonly interpolates along certain directions, which leads to the so-called
tangential interpolation problem, see e.g. [42]. The aim is to find a rational matrix Hr for
given interpolation points λi ∈C and μi ∈C and the corresponding right and left tangen-
tial directions ri ∈C

m and 
i ∈ C
p such that

Hr(λi)ri = H(λi)ri for i = 1, . . . , k, (32)


T
j Hr(μj) = 
T

j H(μj) for j = 1, . . . , q. (33)

The interpolation points and tangential directions have to be selected in advance to realize
certain model reduction goals.

3.3.1 Rational Krylov subspace methods
A common way to deal with the moment matching problem is rational interpolation by
projection. Here the moments are used to construct the biorthogonal projection matri-
ces V , W ∈ R

n×r , with which the reduced order model is obtained via Petrov-Galerkin
projection

Ar = W T AV , Br = W T B, Cr = CT V , (34)

x ≈ Vxr , (35)
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where Ar ∈ R
r×r , Br ∈ R

r×m, Cr ∈ R
p×r and xr ∈R

r . The columns of V form an orthonor-
mal basis of a subspace S̃ ⊂ S of the space of the state vector. Assuming the SISO case with
a single expansion point s0 ∈ C, S̃ is spanned by

range{V } = span{(s0I – A)–1B, (s0I – A)–1(s0I – A)–1B, . . . , (36)

((s0I – A)–1)r–1(s0I – A)–1B}.

For the right projection matrix W a similar property holds

range{W } = span{(s0I – A)–T CT , (s0I – A)–T (s0I – A)–T CT , . . . , (37)

((s0I – A)–T )r–1(s0I – A)–1CT }.

The range of V and the range of W span so-called Krylov subspaces. Note that when multi-
ple expansion points s1 . . . , s
 ∈C are used, the Krylov subspaces get extended. In the SISO
case B and C are vectors, thus, for the construction of V and W rational Krylov subspace
algorithms, such as rational Lanczos or rational Arnoldi, can be used [27]. These methods
are very efficient as only matrix factorization, forward and backward substitution as well
as matrix-vector multiplications are involved. Their complexity is of O(nr2). For adaptive
mirror simulations we are dealing with the MIMO case, where B and C are matrices and
the tangential directions need to be included into Krylov subspaces. Here, block rational
Arnoldi or Lanczos methods can be employed.

Recently methods that start from an initial group of interpolation points and iteratively
update them have been developed. One of those methods is the Iterative Rational Krylov
Algorithm (IRKA). Initially this algorithm was developed for SISO systems in [29]. In [42]
it was extended to the MIMO case called the Iterative Tangential Interpolation Algorithm
(ITIA). This method creates a reduced order model that fulfills the first order H2 optimal-
ity condition in (22). The updated expansion points are selected as the negative poles of
the transfer function of the reduced model Hr or equivalently as the negative eigenvalues
of the state matrix [42].

In contrast to balanced truncation, moment matching methods, in general, do not pre-
serve the stability of the system. For systems with special structures there exist approaches
where the reduced order model is guaranteed to be stable, see [36]. In [39] the authors pro-
posed the Iterative SVD Tangential Interpolation Algorithm (ISTIA), which combines
balanced truncation and Krylov subspace based methods. For one of the projection ma-
trices the observability or controllability Gramian is used, whereas the other projector is
computed using Krylov subspace based methods. The authors show that due to the usage
of a Gramian preserves stability. When frequency limited controllability or observability
Gramians are used, the method is commonly referred to as Frequency Limited Iterative
SVD Tangential Interpolation Algorithm (FISTIA) [39].

An advantage of the Krylov subspace based methods it that their efficiency does not rely
on a modal representation, but only depends on the system size. The more moment vec-
tors are included into the subspace, the more accurate the approximation is, however, the
reduced order model is enlarged. In practice, a trade-off between accuracy and the reduc-
tion size has to be made. If both projection matrices are constructed via Krylov subspace
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methods it is commonly referred to as two sided, whereas if only one of the projection ma-
trices is constructed in this way it is called one sided. Using the two sided method results
in 2r matched moments, whereas the one sided method matches r moments [7].

3.3.2 Loewner framework
The Loewner framework is a data-driven interpolation method for which the frequency
response data, i.e., samples of the transfer function H at certain frequency points s, is used.
In the MIMO case, where the moments are p × m matrices, the tangential directions are
included into the data set and the data is split into a right part

M = diag(μ1, . . . ,μq) ∈C
q×q, L = [
T

1 , . . . ,
T
q ]T ∈C

q×p, (38)

V = [vT
1 , . . . , vT

q ]T = [
T
1 H(μ1), . . . ,
T

q H(μq)]T ∈C
q×m,

and a left part

� = diag(λ1, . . . ,λk) ∈C
k×k , R = [rT

1 , . . . , rT
k ]T ∈C

m×k , (39)

W = [wT
1 , . . . , wT

k ]T = [H(λ1)r1, . . . , H(λq)rk]T ∈C
p×k .

The aim is to find a rational function Hr that fulfills the conditions in (32). The data ma-
trices defined in Equation (38) and Equation (39), as well as the Loewner matrix L and its
shifted version Ls defined via

L :=
(

vT
i ri – 
jwj

μi – λj

)j=1,...,k

i=1,...,q
, Ls :=

(
μivT

i ri – λj

T
j wj

μi – λj

)j=1,...,k

i=1,...,q

, (40)

are used to construct the unprocessed Loewner model {W ,L,Ls, V }. If the pencil (L,Ls) is
regular, Hr(s) := W (Ls – sL)–1V satisfies the interpolation condition in (32). In many appli-
cations the pencil (L,Ls) is singular and a post-processing step is required. The dominant
features of the data are extracted and redundancies removed. Commonly this is done by
applying the singular value decomposition (SVD) to the augmented Loewner matrix

[
L Ls

]
= Y ̃X̃H ,

[
L

Ls

]
= ỸXH , (41)

with , ̃ ∈ C
r×r , Y ∈C

q×r , Ỹ ∈ C
2q×r , X ∈C

k×r and X̃ ∈C
r×2k . The truncation index r is

chosen depending on the application and data size. The projected Loewner model is then
given by

Ar = –Y T
LsX, Br = Y T V , Cr = WX. (42)

The SVD provides optimal low-rank solutions, however, the full SVD has cubic complex-
ity. An alternative way was proposed in [30] and uses the CUR decomposition instead,
which is less accurate, but has a lower asymptotic time complexity. Moreover, it has the
benefit that the rows and columns of the decomposed matrices C and R are interpretable.
In our case, this means that the dominant interpolation points λ and μ are given directly
by the columns and rows of C and R.
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There exists an iterative extension of the Loewner framework called AAA algorithm [3].
Within this method the fitted rational approximants are expressed in a numerically stable
way using a baricentric representation. In every iteration the next interpolation points are
selected via a greedy method, i.e. interpolation is enforced at data points where the error
was maximal. Recently a version of the algorithm enforcing real-valued and strictly proper
rational approximants was proposed in [25].

4 Reduced order high fidelity mirror simulations
In the process of designing a specific adaptive mirror there is the need to perform simula-
tions that accurately represent the structural dynamics, i.e., realistic operative conditions.
The simulations have to guarantee high fidelity results, but with an affordable computa-
tional load. As the size of the models is very large, model order reduction methods are
required.

Figure 2 illustrates the process of performing high fidelity adaptive mirrors simulations
with reduced order models. In a first step the accurate and complex FE models describing
the deformable mirror, all the system supporting structure and in some cases even the full
telescope are created. These models have been provided by the company A.D.S. Interna-
tional.5 The FE models are then reduced by modal truncation to a predefined frequency
range of interest for the certain adaptive mirror. As a second step of model order reduc-
tion, methods described in Sect. 3 are used to reduce the system size further. The resulting
models are then combined with the rest of the system, i.e., fluid dynamics and control sys-
tem, and the dynamic analysis of the mirror is performed. Especially, the second step of
model order reduction makes it possible for Microgate to run their many simulations re-
quired in the adaptive mirror’s design process in a feasible time frame.

In the upcoming sections the model order reduction and system simulations are de-
scribed in more detail.

Figure 2 Graphical illustration of performing high fidelity adaptive mirror simulations with reduced order
models

5https://www.ads-int.com/.

https://www.ads-int.com/
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4.1 Creating the reduced order mirror model
The FE model is given in modal form (4). The first step of model reduction is applied by
truncation to a given frequency range of the mirror as described in Sect. 3.1. Based on
the resulting reduced system the LTI state space representation in modal form is set up
as shown in Equation (18). A second step of model order reduction is applied using either
balanced truncation, rational Krylov subspace methods or the Loewner framework. More
details on the implementation of the methods is given in the upcoming sections. Our code
is mainly implemented in MATLAB. Computationally demanding parts are programmed
in C. Parts of the C implementation use the Matrix Equation Sparse Solver (M.E.S.S) li-
brary [41] to efficiently deal with matrices, factorization and solving systems of equations.

4.1.1 Balanced truncation
Algorithm 1 shows the steps to perform the model order reduction with balanced trun-
cation. In order to make the method feasible for the given system size, the modal approx-
imation as shown in Equation (26) and Equation (27) is used. The modal controllability
factor wci and observability factor woi and the Hankel singular values γi are computed per
mode i = 1, . . . , n. The Hankel singular values are then ordered and all values below a cer-
tain threshold removed. As there is a one-to-one mapping between the Hankel singular
values and the modes, the corresponding modes are discarded and in this way the system
dimension reduced.

4.1.2 Rational Krylov subspace methods
Algorithm 2 illustrates the model order reduction procedure with Krylov subspace based
methods. Our studies showed that the quality of these methods depends highly on the
chosen interpolation points and that methods which use multiple expansion points and
update them iteratively perform best. Hence, we consider here ITIA,ISTIA andFISTIA,
see Sect. 3 for more details. In a first step of the algorithm the initial interpolation points
are chosen. The choice of the points is important as the methods provide only local con-
vergence. The eigenvalues of the state matrix would be a good initial guess. However, com-
puting them for a large scale system is not feasible. Because our input FE model is given in

Algorithm 1 Balanced truncation in modal form
1: function ModalBT(Bm, Cm, ξ , ω, t)
2: for each mode i = 1, . . . , n do
3: Compute the modal controllability factors wci via Equation (26).
4: Compute the modal observability factors woi via Equation (27).
5:

6: Compute the Hankel singular values γi using Equation (28).

7:

8: Order the Hankel singular values γ1 ≤ γ2 · · · ≤ γn.
9: Discard all Hankel singular values below the given threshold t

10: γ1 ≤ γ2 · · · ≤ γj–1 where γj–1 ≤ t < γj.
11:

12: Compute Br
m, Cr

m, ξ r and ωr from the higher order model by discarding
13: all modes i corresponding to the Hankel singular values γ1, . . . ,γj–1.
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Algorithm 2 Rational Krylov subspace method
1: function RationalKrylov(Am, Bm, Cm, maxIter)
2:

3: for each mode i = 1, . . . , n do
4: Compute the interpolation points si = ξiωi ± jωi

√
1 – ξ 2

i .
5: Set up the interpolation directions bi = [1, . . . , 1], ci = [1, . . . , 1].

6:

7: for i = 1, . . . , maxIter do
8: Compute the projection matrices V and W .
9: Compute the reduced system via Equation (34).

10: Compute eigenvalues λ and left and right eigenvectors U
, Ur of Ar .
11: Extract the new interpolation points s = –λ.
12: Extract the new interpolation directions b = U
, c = Ur .

13:

14: Verify that the reduced system (Ar , Br , Cr) is stable.
15: Transform (Ar , Br , Cr) into modal coordinates (Ar

m, Br
m, Cr

m).

modal form, we use their modal approximation, see e.g. [21]. In general, one would choose
the initial interpolation directions b and c as the corresponding left and right eigenvec-
tors. Due to computational reasons we omit the computation and set b and c to vectors
of ones. The projection matrices V and W are computed and used to obtain the reduced
state space system (Ar , Br , Cr). For details on the computation of the projection matrices
we refer to [39, 42]. The interpolation points for the next iteration are chosen as the eigen-
values of the state matrix λ(Ar) and the interpolation directions as the corresponding left
and right eigenvectors. In this way the interpolation points and directions are updated in
an iterative way until a maximum number of iterations is reached. Although the input to
the reduced order methods is in modal coordinates, the Krylov subspace based methods
produce a general state space representation. In order to study the system performance in
an efficient way we transform these state space matrices into modal form.

4.1.3 Loewner framework
Algorithm 3 shows how to create a reduced order model using the Loewner framework.
In a first step N logarithmically spaced interpolation points are created over the frequency
range of interest. The reason for choosing logarithmically distributed points is that in
adaptive mirror control it is more important to match the lower frequencies. Hence, hav-
ing a dense sampling grid in the beginning and a more sparse distribution towards the end
of the frequency range is more appropriate for our application. The initial interpolation di-
rections b and c are chosen as random values. Using the input state space system in modal
coordinates (Am, Bm, Cm), the transfer function Hm(s) is constructed and the right and left
data set is computed as shown in Equation (38) and Equation (39). Note that as the state
space system is given in modal coordinates the evaluation of the transfer function and thus
the computation of the input-output pairs for the data set is much faster. For more details
we refer to [20]. The data set is then used to compute the Loewner matrix L and its shifted
version Ls using Equation (40). The constructed complex representation (W ,L,Ls, V ) of
an underlying dynamical system is transformed into a real model (W r ,Lr ,Lr

s , V r), see e.g.
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Algorithm 3 Loewner framework with SVD
1: function LoewnerSVD(Am, Bm, Cm, N )
2: Compute the interpolation points s = logspace(–1, 3, N).
3: Set up interpolation directions b = rand(n) and c = rand(n).
4:

5: Compute the transfer function Hm.
6: Construct the right data set M, L and V using Equation (38).
7: Construct the left data set �, R, W via Equation (39).
8:

9: Compute the Loewner pencil (L,Ls) via Equation (40).
10: Transform the complex system into a real system (W r ,Lr ,Lr

s , V r).
11:

12: Compute the SVD of the Loewner matrix using Equation (41).
13: Compute the reduced model (Ar , Br , Cr) via Equation (42).
14:

15: Verify that the reduced system (Ar , Br , Cr) is stable.
16: Transform (Ar , Br , Cr) into modal coordinates (Ar

m, Br
m, Cr

m).

[30]. To identify dominant subsets of the data on which interpolation is enforced we apply
the SVD to the Loewner matrices using Equation (41). Note that the CUR decomposition
would provide a faster way of achieving this, however, it is only an approximation and
performed worse in our experiments. The reduced order model is then obtained through
projection using Equation (42). Similar as for the Krylov subspace based method we trans-
form the system into modal coordinates as a last step.

In our experiments we also considered the AAA algorithm [3], which is an adaptive and
iterative extension of the Loewner framework that chooses automatically the reduction
size for a given accuracy. However, for our simulation setting the results have been worse
compared to the Loewner framework and thus we omit more details on this method.

4.2 System simulation
The reduced order model of the system structural dynamics are combined with the re-
maining system and exploited to run dynamic analysis. Different numerical tools have
been developed for this purpose:

• dynamic simulation to evaluate the system behavior in time, this simulation is mainly
focused on the analysis of the system performance and stability;

• frequency response to have a characterization in the frequency domain, very useful to
understand possible critical frequencies in the dynamic response of the system, but
also to provide a measurement of system robustness;

• root locus analysis to obtain a description of the system in the Laplace domain, having
a characterization of the system stability and stability sensitivity, i.e. robustness, with
respect to some specific design parameters.

The three numerical tools above mentioned can be used all together to provide a compre-
hensive overview of the system behavior in terms of both stability and performance. The
accuracy of the system description provided by these different tools is usually not equiv-
alent and the fidelity level of each one can be tuned to find the best compromise between
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accuracy of the results and computational time and resources necessary to perform the
analysis.

In the framework of this paper Microgate’s mirror time simulator has been upgraded to
a new version, based on a multi-threaded parallel C++ implementation. This new code can
provide the most reliable system multiphysics simulation currently available and contains
all the features of the previous implementation written in C language [33, 34]. The new
simulator has the additional relevant capability to take into account not only the structural
dynamics of the deformable shell, but of the whole system supporting structure, poten-
tially up to the telescope one. The order of the structural dynamic description must be
reduced as much as possible to allow fully exploiting this new feature of the simulator, in
order to prevent that the simulation time and/or the amount of computational resources
become a show stopper for the analysis. The codes computational efficiency has been fur-
ther improved by using the blaze6 library, which is an open-source, high-performance,
C++ math library for dense and sparse arithmetic, and OpenMP7 for parallelization.

5 Numerical analysis
To validate our developments we perform numerical analysis for the model of the P72 pro-
totype of the GMT adaptive secondary mirror system [18]. The GMT is currently under
construction in the Atacama desert in Chile and will become one of the new ELTs [18]. The
prototype has 72 actuators and a diameter of 354 mm, featuring the four innermost rings
of actuators of the on-axis adaptive secondary mirror segment of the GMT, see Fig. 3. The
shell is 2 mm thick and made of Zerodur, the lateral flexures connecting the shell to the
Reference Body (RB) are the same of the final unit and also the VCM actuators are exactly
the final ones. The RB is made in Zerodur, while the cold plate, where the electronics is
mounted, is in aluminum. The cooling system is based on the direct expansion gas cooling
concept recently introduced in this application field [38]. All the simulators mentioned in
Sect. 4.2 exploit the very same FE model, shown in Fig. 3, to capture the system structural
behavior, through the use of eigenmodes.

Figure 3 Picture (left) and FE model (right) of the GMT P72 [18]

6https://github.com/parsa/blaze.
7https://www.openmp.org/.

https://github.com/parsa/blaze
https://www.openmp.org/
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5.1 Dynamic model order reduction
The FE model of the GMT P72 prototype is given in modal form and we truncate it to the
pre-known frequency range 0 – 6 kHz. Based on the resulting reduced system we set up
the LTI state space model and compare Balanced Truncation (BT), ITIA,ISTIA and the
Loewner Framework (LF). The Higher Order (HO) model after modal truncation has a
state matrix with dimension 1672 × 1672. For ISTIA we use the controllability Gramian
as one of the projection matrices. This choice provided slightly better results than using
the observability Gramian.

Figure 4 shows a logarithmic plot of the relative H∞ error of the transfer functions be-
tween the HO and the reduced order models. In plot (a) we show the model reduction
error for a reduced state matrix of dimension 144 × 144 and in (b) for a size of 330 × 330.
The reason for choosing 144 as lower limit is that the P72 consists of 72 degrees of free-
dom resulting in a state matrix of 144 × 144. Hence, this is the lowest order allowed to
be able to statically set the mirror deformation over 72 actuation points. During our stud-
ies we obtained the best trade-off between quality and speed with a state matrix of size
330 × 330. We compare here BT marked in blue, ITIA in orange, ISTIA in yellow and LF
in green. Note that for this setting ISTIA and FISTIA performed very similar, hence, we
omit FISTIA. The reason for this might be that the model was already truncated to the
desired frequency range by modal truncation. In Table 1 we list the mean of the relative er-
ror over the whole frequency range. For both simulated cases BT and the Krylov subspace
methods performed very similar. With LF we were not able to produce an appropriate re-
duced order model with a size of 144 × 144, hence, we do not show it in Fig. 4(a). For a
reduced system size of 330 × 330 LF yields the highest H∞ error. This might be caused by
not optimally chosen interpolation points. For the other methods an increased reduction
size provides a smaller mean relative error.

Figure 4 Logarithmic plot of the relativeH∞ error in dB between the HO and the reduced order transfer
functions with reduced state matrices of dimension 144× 144 (left) and 330× 330 (right) for BT (blue), ITIA
(orange), ISTIA (yellow) and LF (green)

Table 1 Mean of the relativeH∞ error as shown in Fig. 4. The mean is calculated over the desired
frequency interval 0 – 6 kHz for BT and the Krylovs subspace based methods ITIA and ISTIA and LF

Reduction size Mean relativeH∞ error

BT ITIA ISTIA LF

144× 144 0.627 0.768 0.691 –
330× 330 0.158 0.153 0.368 0.556
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Throughout the simulations we observed that the results of the Krylov subspace based
methods and LF highly depend on the choice of the initial interpolation points and direc-
tions. Note that for ITIA and ISTIA we use the modal approximation of the eigenvalues
of the HO state matrix. This offers an easy way of running the algorithms without tuning
it by hand. For LF we use 6000 logarithmically spaced points.

In terms of run-time BT clearly outperforms the other methods, because computing
the modal approximation of the Hankel singular values is very fast. For the Krylov sub-
space based methods the run-time depends mainly on the number of iterations and the
reduction size, since in every iteration the eigenvalues and eigenvectors of the reduced
order model have to be computed. In our simulations we obtained convergence within
less than 50 iterations. For the data-driven LF we observed that a fairly high amount of
data points is required to obtain an appropriate reduced order model, which increases the
computational time as well as the memory requirements significantly.

Further analysis showed that all reduced order methods are not able to represent 72
independent degrees of freedom with a state matrix of 144 × 144. Hence, this reduction
size is too low to represent properly the system behavior and we continue our analysis
with a reduced order model of size 330 × 330. The performance of ISTIA and ITIA is very
similar for the P72 mirror, hence, we focus for the upcoming analysis on ITIA.

5.2 Performance of the system
In this section the reduced order models representing the system structural dynamics are
exploited to simulate the full system behavior and a comparison of the results with the
system using the original full set of eigenmodes is done. The whole system modeling can
be summarized by the following list:

• The structural dynamics of the system, including: the deformable mirror, the
reference body, the cold plate and the P72 supporting structure.

• The fluid dynamic modeling of the air trapped between the deformable mirror and
the reference body.

• The inner control loop, controlling the mirror shape, including: the deformable mirror
control law, the voice coil motors dynamics, the capacitive sensors dynamics, the
digital and analog signals modeling.

The optical loop, which is responsible to generate the mirror commands, is not taken into
account within the present analysis, i.e, the mirror is simulated as a stand-alone compo-
nent of the AO system.

5.2.1 Stability
To analyze the stability of the control system we use root locus plots, i.e., we plot the poles
of the transfer function in the Laplace domain. These plots allow to study the sensitivity
of the system against certain parameters. Here we consider the feedback gain with a vary-
ing scaling factor. We use a circle to indicate a stable system, whereas crosses for unstable
systems. In terms of model order reduction, it is important that the reduced model does
not indicate a stable system when the original model was not stable or vice versa. Figure 5
shows the root locus plots of the higher order model (black) and of reduced order models
of size 330 × 330, using BT (blue), ITIA (orange) and LF (green). Note that only the im-
portant section around the 0 real axis is plotted, just for one half of the complex conjugate
poles characterized by a positive imaginary part. We observe that all models indicate a
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Figure 5 Root locus plot of the HO model in black and the reduced order model with size 330× 330 with BT
in blue, ITIA in orange and LF in green. The gain scaling is varied between 1 and 2. We show only the
important section around the real 0 axis (dashed red line). Moreover, we show only the poles with positive
imaginary part and not their conjugate complex counterpart. Circles indicate stable systems, whereas crosses
indicate unstable systems

Figure 6 Logarithmic plot of the minimum (dashed) and maximum (solid) singular values in dB of the high
and reduced order transfer functions in the frequency interval 0 – 6 kHz. We compare the HO model in black
and the reduced order models with BT in blue, ITIA in orange and LF in green

stable system with gain scaling 1 and an unstable system for a scaling of 2. The critical
poles, i.e. the ones having positive real part, slightly change for different methods. Our
simulations showed that for smaller reduction sizes the reduced model may lead to stable
systems where the original model was unstable.

5.2.2 Input-output behavior
To assess the difference in the input-output behavior of the full system, we study the min-
imum and maximum singular values of the complementary sensitivity transfer function
matrix, defined to have the deformable mirror commands as inputs and the mirror defor-
mation at the actuation points as output. The frequency response of the complementary
sensitivity is commonly used to asses the tracking capabilities of the closed-loop system
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as function of the command frequency content. Figure 6 shows a logarithmic plot of the
minimum (dashed) and maximum (solid) singular values in dB for the HO system in black
and the reduced systems with BT in blue,ITIA in orange and LF in green. We observe
that the reduced order models obtained with BT and ITIA yield very similar maximum
and minimum singular values compared to the original system. In contrast, the singular
values produced by LF are significantly different.

5.3 Mirror simulator step response
The last system analysis uses the reduced order models as input to the C++ mirror simula-
tor and studies the simulation over time of the control system response to a certain mirror
deformation command. In Fig. 7 we show the step response plots to a tilt (a) and trefoil (b)
command. We omit the reduced model produced by LF as it lead to too large forces for
the voice coil motor and thus the simulation was stopped. The plots on the left represent
the shell displacement, whereas the ones on the right show the modal control force. We
provide a zoom around the y-axis in order to be able to see the performance of the reduced

Figure 7 Plot of the step response for a tilt command (a) and a trefoil command (b) for the HOmodel in black
and the reduced models with BT (BT) in blue and ITIA in orange. In addition, a zoom around the y-axis is
shown
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order methods BT in blue and ITIA in orange compared to the HO model in black. We
observe that for both mirror commands all methods provide good results. However, the
step response obtained with BT is more in line with that of the original model, especially
for the trefoil command case.

6 Conclusion
In the design phase of an adaptive mirror, numerical simulations are crucial to evaluate
the system design compliance. The FE models for the adaptive mirrors of ELTs have a high
complexity, hence, model order reduction techniques that facilitate the computationally
efficient analysis are required. In this paper we present a framework for performing high
fidelity control system simulations within a reasonable time frame. In a preprocessing step
a reduced order model is created, which is then used to simulate the full adaptive mirror.
We perform a feasibility study of different reduced order methods exploiting the numeri-
cal model of the P72 prototype of the GMT secondary mirrors. Starting with the FE model
in modal coordinates several model order reduction algorithms are applied. The quality is
analyzed by means of the H∞ error of the transfer functions. The reduced order model of
the structural dynamics is combined with the remaining system modeling and its perfor-
mance is analyzed regarding accuracy, stability and robustness. BT and ITIA yield both
very similar stable and accurate models when reducing to a state matrix of size 330 × 330
or larger. In terms of computational load, BT with modal approximation is significantly
faster than the others. The data-driven LF was only able to produce an appropriate re-
duced model when considering a larger reduction size. The implemented framework for
performing highly accurate simulation with reduced order models together with the de-
veloped numerical analysis tools allow to improve the design process of adaptive mirrors
and the relevant research and development activity at Microgate. Although the framework
was tested here on a relatively small prototype the developments can be directly applied
to larger systems and will allow simulations within a reasonable computational time.
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