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Abstract
This paper addresses the challenging task of guide wire navigation in cardiovascular
interventions, focusing on the parameter estimation of a guide wire system using
Ensemble Kalman Inversion (EKI) with a subsampling technique. The EKI uses an
ensemble of particles to estimate the unknown quantities. However, since the data
misfit has to be computed for each particle in each iteration, the EKI may become
computationally infeasible in the case of high-dimensional data, e.g. high-resolution
images. This issue can been addressed by randomised algorithms that utilize only a
random subset of the data in each iteration. We introduce and analyse a subsampling
technique for the EKI, which is based on a continuous-time representation of
stochastic gradient methods and apply it to on the parameter estimation of our guide
wire system. Numerical experiments with real data from a simplified test setting
demonstrate the potential of the method.
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1 Introduction
The Ensemble Kalman Inversion (EKI) is a widely utilized technique for addressing inverse
problems, which involve estimating unknown parameters based on observational data.
EKI is particularly advantageous due to its efficiency in high-dimensional spaces and its
ability to incorporate uncertainty in a straightforward manner. This method operates by
evolving an ensemble of particles, which represent possible solutions, toward an optimal
estimate by iteratively updating these particles using observational data. EKI is well-suited
for problems where the forward model is treated as a black box, and it performs robustly
in situations where the underlying distributions are close to Gaussian.

Despite its strengths, one challenge that arises in the application of EKI is the compu-
tational burden associated with high-dimensional data, such as high-resolution images.
The need to compute the data misfit for each particle at each iteration can become infea-
sible when dealing with large datasets. To address this issue, we propose incorporating a
subsampling technique into the EKI framework. This approach leverages randomized al-
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gorithms to utilize only a subset of the data in each iteration, significantly reducing com-
putational costs while maintaining the integrity of the solution.

1.1 Application: guide wire navigation in vascular systems
Vascular diseases are a leading cause of mortality, accounting for approximately 40% of
all deaths in Germany. The widespread adoption of minimally invasive procedures, such
as percutaneous coronary angioplasty (PCA), is evident, with around 800,000 procedures
performed annually in Germany. These interventions typically require accessing a large
artery, such as the arteria femoralis, and navigating a guide wire under angiographic con-
trol toward the target lesion, often a coronary stenosis.

The navigation process of the guide wire is highly challenging and demands significant
expertise to ensure a safe procedure. Improper navigation can lead to complications like
dissections, which occur due to excessive mechanical stress on the vessel walls. Given
these risks, there is a growing interest in robotic assistance for guide wire navigation. Such
a system would need to execute navigation with minimal mechanical stress on the vessel
walls, ideally remaining below a predefined threshold.

However, information regarding vessel compliance and surface friction is typically un-
available, necessitating real-time learning of these parameters during the procedure by
observing the wire’s shape via angiographic imaging. By estimating and predicting the be-
havior of the vascular environment, it becomes possible to develop a probabilistic model
that assesses mechanical stress during navigation, thereby facilitating risk stratification.

In this work, we propose a first step toward the automated control of guide wires, fo-
cusing on wire advancement within vascular structures. Using a simulation setting with
force sensors for precise measurement and high-resolution imaging, we aim to estimate
and predict the behavior of the vascular environment. The real-time estimation and pre-
diction of the guide wire’s position are crucial, and to achieve this, we employ the EKI
method, enhanced with a subsampling technique to manage the large volume of data from
high-resolution images efficiently.

1.2 Literature overview
The Ensemble Kalman Filter (EnKF) is a well-established algorithm for solving inverse
problems and data assimilation tasks, first introduced in [13]. Its popularity stems from
its straightforward implementation and robust performance even with small ensemble
sizes [3, 4, 19–21, 25, 31, 32]. Recently, the continuous-time limit of the Ensemble Kalman
Inversion (EKI) has garnered significant attention, leading to convergence analyses in the
observation space, as discussed in [5–7, 27, 28]. Achieving convergence in the param-
eter space typically requires the application of regularization techniques. For instance,
Tikhonov regularization has been analyzed in [9] and is the regularization method cho-
sen for our study. This form of regularization has continued to attract interest, with fur-
ther analyses conducted on adaptive Tikhonov strategies and stochastic EKI settings [35].
Additionally, the mean-field limit of EKI has been explored in recent works [8, 12].

To address the computational challenges associated with classical optimization algo-
rithms, the stochastic gradient descent method, introduced in [26], has been increasingly
employed. This method is not only computationally efficient but also effective in avoiding
local minima in non-convex optimization problems [10, 33]. For our subsampling scheme,
we will leverage the continuous-time limit analysis of stochastic gradient descent, initially
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explored in [24] and further generalized in [22]. Our analysis will focus on subsampling
in EKI for general nonlinear forward operators, building on previous analyses conducted
for linear operators [18].

In the context of guide wire navigation in vascular systems, coronary vessels can be ap-
proximated as rigid but time-variant tubular geometries that respond to the heartbeat. For
algorithmic simplicity, we adopt a basic representation of the guide wire as a cylindrical
rod with a specified elasticity constant, rather than employing a more detailed guide wire
model. Sharei et al. [29] provide a comprehensive overview of contemporary techniques
for guide wire navigation, primarily utilizing finite element methods. These techniques
include the Euler-Bernoulli beam model, the Kirchhoff rod model, and the Timoshenko
beam, with a non-linear variant known as the Cosserat model. High-resolution images are
utilized to accommodate the simplified model. To estimate the unknown parameters from
the model, particle-based methods, such as EKI, are employed due to their demonstrated
effectiveness and low computational costs.

1.3 Contributions and outline
This paper aims to advance robotic assistance for guide wire navigation in cardiovascular
systems. We focus on a simplified setting and suggest a subsampling variant of the EKI
to estimate the unknown parameters of the simulation and thus, improve the accuracy
of predictions as well as to ensure feasibility of the EKI in large data settings. The key
contributions of this article are as follows:

• Formulation of a guide wire system with a feedback loop by high resolution images to
learn the unknown parameters in the simulation.

• Adaption of a subsampling variant of the EKI to estimate the unknown parameters
with low computational costs in a black-box setting.

• Analysis of a subsampling scheme for the EKI in the nonlinear setting.
• Numerical experiments with real data from a wire model.
The structure of the remaining article is as follows: In Sect. 2, we introduce the mathe-

matical model of the guide wire system as well as formulate the inverse problem to recon-
struct an image via our model. We describe the EKI and present results on convergence
analysis in Sect. 3; before introducing and analysing our subsampling scheme in Sect. 4.
We then proceed to show an numerical experiment in Sect. 5 and complete our work with
a conclusion in Sect. 6.

1.4 Notation
We denote by (�,A,P) a probability space. Let X be a separable Hilbert space, and Y :=
R

Nobs representing the parameter and data spaces, respectively. Here Nobs denotes the
number of real-valued observation variables, We define inner products on R

n 〈·, ·〉 and
their associated Euclidean norms ‖ · ‖, or weighted inner products 〈·, ·〉� := 〈�– 1

2 ·,�– 1
2 ·〉

and their corresponding weighted norms ‖ · ‖� := ‖�–1 · ‖, where � ∈ R
n×n is symmetric

and positive definite matrix.
Furthermore, define the tensor product of vectors x ∈R

n and y ∈R
m as x ⊗ y := xy�.



Hanu et al. Journal of Mathematics in Industry           (2024) 14:21 Page 4 of 21

2 Parameter estimation problem
In the context of inverse problems, the objective is to estimate an unknown parameter
u ∈ X based on noisy observations y ∈ Y . This relationship is modeled as:

y = G(u) + η, (1)

where G : X → Y is the forward operator that maps the parameter u to the observation
space, and η ∈ Y represents the additive observational noise. In the specific application
discussed later, the observations y correspond to high-resolution images of a guide wire,
and the dimensionality of the data space Y is RNobs , where Nobs ∈N.

Within a Bayesian framework, both the parameter u and the noise η are treated as inde-
pendent random variables, with u : � → X and η : � → Y . Assuming the noise η follows a
Gaussian distribution η ∼N (0,�), the posterior distribution μy of the parameter u given
the observation y is expressed as:

dμy(u) =
1
Z

exp

(
–

1
2
‖y – G(u)‖2

�

)
dμ0(u), (2)

where μ0 denotes the prior distribution of the parameter u, and Z = Eμ0 exp(– 1
2‖y –

G(u)‖2
�) is the normalization constant.

The central goal is to compute the Maximum a Posteriori (MAP) estimate, which serves
as a point estimate for the unknown parameter. In a finite-dimensional setting, this in-
volves minimizing the negative log-posterior. Assuming a Gaussian prior on the parameter
u, such that u ∼N (0,α–1/2D0), the MAP estimate is obtained by minimizing the following
regularized objective function:

�reg(u) :=
1
2
‖y – G(u)‖2

� +
α

2
‖u‖2

D0 , (3)

where α > 0 is the regularization parameter. For a detailed discussion in the infinite-
dimensional setting we refer to [11, 23].

2.1 Wire model as forward model
To model the guide wire, we utilize Cosserat rods, which are commonly employed to sim-
ulate the dynamic behavior of slender, flexible structures that can bend, twist, stretch, and
shear. Understanding the dynamics of such objects is crucial, as they are prevalent in both
natural and engineered systems, including polymers, flagella, snakes, and space tethers.
A comprehensive and practical numerical implementation of Cosserat rods is detailed in
[16] and [36]. While we provide a brief overview of the model and the variables we use, we
refer readers to these sources for a more in-depth explanation. Additionally, we make use
of the mathematical software Pyelastica [30] to support our simulations. The schematic
plot of the Cosserat rod in Fig. 1 is based on Figure 1 in [34].

2.1.1 Cosserat rods
The fundamental assumption in modeling Cosserat rods is that the rod’s length L ∈ R>0

is significantly greater than its radius r ∈ R>0, i.e., (L 
 r). The position of the rod is de-
scribed by its centerline r(s, t), where s ∈ [0, L] denotes the position along the rod, and t
represents time. The position of the rod is given in R

3.
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Figure 1 Illustration of discretization of a Cosserat rod in a simplified setting of the sinus function. We
discretize the function into nodes ri with reference frames Qi . Each reference frame consists of vectors
(d1i ,d2i ,d3i), where d1i and d2i (green and blue arrows) span the binormal plane and d3i (red arrows) goes
along the tangent of the of straight connection between the nodes

Vectors are expressed in local (Lagrangian) frames as x = x1d1 + x2d2 + x3d3, where d1

and d2 span the binormal plane, and d3 points along the tangent to the centerline. The
local frame is defined as Q = {d1, d2, d3}.

The dynamics of the Cosserat rod at each cross-section are governed by the following
differential equations:

• Linear momentum

ρA · ∂2
t r̄ = ∂s

(
QT Sσ

e

)
+ ef̄ . (4)

• Angular momentum

ρI
e

∂tω = ∂s

(
Bκ

e3 +
κ × Bκ

e3

)
+

(
Q

r̄s

e
× Sσ

)

+
(
ρI · ω

e

)
× ω +

ρIω
e2 · ∂te + e, (5)

• And boundary conditions for position ri(t = 0) = r0 and velocity vi(t = 0) = v0.
The variables are: stretch ratio e = ds

d̂s ∈R, where s ∈ R denotes the deformed configuration
and ŝ ∈R the reference configuration, cross-section area: A = Ā

e ∈ R
3×3, bending-stiffness

matrix: B = B̄
e2 ∈ R

3×3, shearing-stiffness matrix: S = S̄
e ∈ R

3×3, second area moment of
inertia: I = Ī

e2 ∈ R
3×3, local orientation of the rod r̄s = et̄ ∈ R

3, where t̄ is a unit tangent
vector, E ∈R elastic Young’s modulus, G ∈R shear modulus, Ii ∈R(i = 1, 2, 3) second area
moment of inertia, αc = 4/3, external force f ∈ R

3, couple line density c ∈ R
3, mass per

unit length ρ ∈R, curvature of the vector κ ∈ R
3, angular velocity of the rod ω ∈R

3, shear
strain vector σ ∈ R

3 and translational velocity v̄ = ∂t r̄ ∈R
3. Here B and S depend on G, E, Ii

and αc.

2.1.2 Numerical implementation
Since analytical solutions of (4) and (5) are usually not feasible, we aim to solve the
differential equations numerically. For this we discretize the rod r(s, t) into a set of N
nodes {ri(s, t)}i=0,...,N . Furthermore, the nodes are connected through straight line seg-
ments, where each segments has its own reference frame Qj(s, t) for j = 1, . . . , N . Since
there are N + 1 nodes we have N segments. We illustrate this in Fig. 1. Then, the above
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Figure 2 Set up for static analysis. Segmentation of the photographed image of the wire in two different
cases: 200 mm offset (left) 940 mm offset (right)

introduced values are defined for either each node or each segment. At each node we con-
sider the velocities vi = ∂ri

∂t ∈ R
3, where ri ∈ R

3 denotes the position, as well as external
forces f̄i ∈ R

3 that are applied to the rod and masses per unit length ρi ∈ R at each node.
The length of each segment is given by sj ∈ R. Furthermore, we have a reference length
ŝj ∈ R for each segment as well as stretch ratios ej = sj

ŝj
∈ R

3, unit tangent vectors tj, shear
strain vectors σj ∈ R

3, angular velocity ωj ∈ R
3, cross section areas Âj ∈ R

3×3, bending
stiffness matrices B̂j ∈ R

3×3, shearing-stiffness matrices Ŝj ∈ R
3×3 and second moment of

inertia matrices Îj ∈ R
3×3. The curvatures κi are integrated over some Voronoi region Di

at each interior node i = 1, . . . , N – 1. Through those definitions we can formulate the dif-
ferential equations (4) and (5) for each node and segment. We refer to [16, 30, 36] for a
detailed analysis.

2.2 Experimental setup
To analyze and evaluate the physical behavior of the guide wire under both static and
dynamic forces, we conducted two distinct experimental setups.

In the first setup, a static analysis was performed using a Radifocus Guide Wire M Stan-
dard type 0.035” (Terumo, Tokyo, Japan), which was positioned vertically against a surface
(see Fig. 2). A series of 47 images were captured at 20 mm intervals of displacement, using
a Full HD webcam. This setup allowed us to observe and document the deformation of
the guide wire caused by its own weight at various positions.

To evaluate the dynamic behavior of the guide wire, we designed an electrical drive sys-
tem with two degrees of freedom—axial and radial—which allows precise control of both
the position and speed of the wire’s movement. A diagram of this system, including its key
components, is shown in Fig. 3.

The system is composed of two motors: Motor 1, which is responsible for generating
axial movement and is housed within a rotor, and Motor 2, which drives the radial move-
ment. The entire prototype is controlled by a Raspberry Pi 4, programmed using the Robot
Operating System (ROS) framework to facilitate future integration with sensors and ad-
ditional applications.

During the experiment, data were collected by capturing 80 images at half-second in-
tervals as the guide wire moved axially at a speed of 20 mm/s through a phantom model
measuring 100 mm × 100 mm (see Fig. 3). The phantom includes three circles of different
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Figure 3 Set up for dynamic analysis. Guided wire drive system diagram (left). Prototype of the drive system
with phantom built in the laboratory to evaluate the guided wire in a dynamic state (right)

radii positioned at various locations, enabling us to observe and analyze the wire’s defor-
mation under dynamic conditions.

2.3 Optimization problem
Our objective is to replicate the images obtained from the experimental setup described
in Sect. 2.2 by solving the differential equations outlined in Sect. 2.1. We focus on two
degrees of freedom: the wire’s density, ρ , and the elastic Young’s modulus, E, while as-
suming that all other parameters are known. Thus, our task is to estimate the MAP of the
inverse problem by minimizing the objective function (3), where the parameter vector is
u = (ρ, E)T ∈R

d with d = 2.
Once the Cosserat rod ordinary differential equations (ODEs) described in Sect. 2.1 are

solved, we must also perform image segmentation to determine the rod’s final position, as
the data y is provided in the form of images. We divide the forward modeling process into
two main steps:

1. Fix one end position of the rod and solve the Cosserat rod model for the application
of a constant force on the other end of the rod up until a fixed time tend, given the
parameter u ∈R

d .
We define:

E : Rd →R×R
3

x �→ (r(s, t), Q(s, t)) ,

where s ∈ [0, L] , t ∈ [0, tend] , r(s, t) describes the center line at position s and time t
and Q(s, t) describes the orientation frame.

2. Image segmentation: this part consists of the following steps
(a) We depict the last position of the rod as an image in 2D space, i.e., define

fimg : R×R
3 → (

R
dx×dy

)3

(r(s, tend), Q(s, tend)) �→ fimg (r(s, tend), Q(s, tend)) ,

here each element represents a pixel of the image, that consists of the
RGB-values.

(b) Convert frames into greyscale image. Define

fRGBtoGREY :
(
R

dx×dy
)3 → {0, 1, . . . , 255}dx×dy
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x �→ fRGBtoGREY(x).

fRGBtoGREY assigns each pixel, based on its shade, a number between 0 and 255,
where 0 represents the color black and 255 the color white.

(c) Transform the greyscale images into binary images via a threshold function, i.e.,
define

fthresh,σ : {0, 1, . . . , 255}dx×dy → {0, 255}dx×dy

xi,j →
⎧⎨
⎩

0, if xi,j ≤ σ

255, if xi,j > σ
,

where σ ∈ {1, 2, . . . , 255} indicates whether pixels are turned black
(
(
fthresh,σ (x)

)
i,j = 0) or white (

(
fthresh,σ (x)

)
i,j = 255).

(d) Distance transformation: Define

fdist : {0, 255}dx×dy →R
dx·dy

x �→ fdist(x).

Here fdist computes the distance of each white pixel to the nearest black pixel.
The exact method to compute the distance can be found in [14]. To conclude
the segmentation we vectorize the image.

We denote the composition of the operators as F = fdist ◦ fthresh,σ ◦ fRGBtoGREY ◦ fimg. Then
G := F ◦E , denotes the forward operator in the potential (3). It is important to note that, in
order to minimize the potential function, a distance transformation must also be applied
to the original image. The following example demonstrates one of the cases we consider.

Example 1 Fig. 4 shows an example of an original image where a force has been applied to
the rod. Afterward, we apply the image segmentation process, denoted byF , to this image.
The final result is a distance transformation of the image, which represents our observed
data y that we aim to reconstruct. A distance map of a simplified example is illustrated in
Fig. 5.

3 Ensemble Kalman inversion (EKI)
We aim to find the minimizer of (3) using EKI, focusing on the continuous version as
introduced in [27].

Let u0 = (u(j)
0 )j∈J ∈ XNens denote the initial ensemble, where we assume, without loss of

generality, that the family (u(j)
0 – ū0)j∈J is linearly independent. Here, Nens ∈ N represents

the number of ensemble members, with Nens ≥ 2, and J := {1, . . . , Nens} is the index set.
We adopt an EKI approach without a stochastic component, where the particles are

determined by solving the following system of ordinary differential equations (ODEs).

du(j)(t)
dt

= –ĈuG
t �–1(G(u(j))(t) – y) (j ∈ J) (6)

u(0) = u0,
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Figure 4 Example of original taken image (left) with force application on to the rod and an image of the
same rod after applying the transformationF to the original image

Figure 5 Set (depicted in orange; left image) and its corresponding distance transformation (right image)

where ĈuG
t is defined as

ĈuG
t :=

1
Nens – 1

Nens∑
j=1

(u(j)(t) – u(t)) ⊗ (G(u(j))(t) – G(u)(t)),

and u(t) is given by

G(u)(t) =
1

Nens

Nens∑
j=1

G(u(j))(t) (t ≥ 0).

It has been shown, that the continuous variant (6) corresponds to a noise free limit for
t → ∞, i.e. overfitting will occur in the noisy case. Therefore, we include an additional
regularization term

du(j)(t)
dt

= –ĈuG
t �–1(G(u(j))(t) – y) – Ĉu

t C–1
0 u(j)

t (j ∈ J) (7)

u(0) = u0,
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with

Ĉu
t :=

1
Nens – 1

Nens∑
j=1

(u(j)(t) – u(t)) ⊗ (u(j)(t) – u(t)).

In the nonlinear setting, controlling the mean in the observation space through variance
inflation has been shown to be essential for managing nonlinearity; see [35] for more de-
tails. The dynamics in this context are then given by

du(j)(t)
dt

= –ĈuG
t �–1(G(u(j)

t ) – y) – Ĉu
t C–1

0 u(j)
t

+ ρĈu,G
t �–1(G(u(j)

t ) – Ḡ(ut)) + ρĈu
t C–1

0 (u(j)
t – ūt) (j ∈ J) (8)

u(0) = u0,

where 0 ≤ ρ < 1. We can rewrite this as

du(j)(t)
dt

= (1 – ρ)
[
–ĈuG

t �–1(G(u(j)
t ) – y) – Ĉu

t C–1
0 u(j)

t

]

+ ρ
[
–ĈuG

t �–1(Ḡ(ut) – y) – Ĉu
t C–1

0 ūt
]

(j ∈ J) (9)

u(0) = u0,

Remark 1 Note that, since � is positive definite we can multiply (1) by the inverse square
root of � and not change the predicted solution. For the sake of simplicity and without
loss of generality, we will assume that � is the identity matrix Idk .

3.1 Convergence analysis of EKI
As a basis for the convergence analysis of the subsampling techniques in the nonlinear
setting, we summarize the properties of EKI based on [35].

Assumption 1 The functional �reg ∈ C2(X,R+) satisfies
1. (μ-strong convexity). There exists μ > 0 such that

�reg(x1) – �reg(x2) ≥ 〈∇�reg(x2), x1 – x2〉 +
μ

2
‖x1 – x2‖2, ∀ x1, x2 ∈ X.

2. (L-smoothness). There exists L > 0 such that the gradient ∇�reg satisfies:

‖∇�reg(x1) – ∇�reg(x2)‖ ≤ L‖x1 – x2‖ ∀ x1, x2 ∈ X .

Furthermore, we assume

Assumption 2 The forward operator G ∈ C2(X, Y ) is locally Lipschitz continuous, with
constant clip > 0 and satisfies

G(x1) = G(x2) + DG(x2)(x1 + x2) + Res(x1, x2) ∀x1, x2 ∈ X, (10)
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where DG denotes the Fréchet derivative of G. Furthermore, the approximation error is
bounded by

‖Res(x1, x2)‖2 ≤ bres‖x1 – x2‖2
2 . (11)

To understand the dynamics of the EKI, we begin by discussing the subspace property,
which indicates that the EKI estimates are constrained to the span of the initial ensemble
S = span{u(j), j ∈ {1, . . . , J}}. Specifically, the particles remain within the affine space u⊥

0 + E
for all t ≥ 0, as detailed in [9, Corollary 3.8]. Here, E is defined as the span of vectors, i.e.,
E := {e(1)(0), . . . , e(Nens)(0)}, where e(j) = u(j) – ū for j ∈ {1, . . . , Nens}, and u⊥

0 = ū(0) – PE ū(0).
We define B := u⊥

0 + E .

Theorem 3 ([35]) Let {u(1)(0), . . . , u(J)(0)} denote the initial ensemble. The ODE systems
(7) and (8), admit unique global solutions u(j)(t) ∈ C1([0,∞);B) for all j ∈ {1, . . . , J}.

Therefore, the best possible solution that we can obtain through the EKI is given by best
approximation in u⊥

0 + E . We summarize in the following the convergence results for the
various variants.

Theorem 4 ([35]) Suppose Assumptions 1 and 2 are satisfied. Furthermore we define
Ve(t) = 1

J
∑J

j=1
1
2‖e(j)

t ‖2, where e(j)
t = u(j)

t – ūt . Let j ∈ {1, . . . , J} and u(j)(t) be the solutions
of (7) (or respectively (8)) then it holds

1. The rate of the ensemble collapse is given by

Ve(t) ∈O(t–1).

2. The smallest eigenvalue of the empirical covariance matrix Ĉu
t remains strictly

positive in the subspace B, i.e. let

η0 = min
z∈B,‖z‖=1

〈z, C(u0), z〉 > 0.

Then it holds for each z ∈ B with ‖z‖ = 1

〈z, Ĉ(ut)z〉 ≥ 1
(1 – ρ)mt + η0

,

where m > 0 depends on the eigenvalues of Ĉu
0 and � and the Lipschitz constant clip

and 0 ≤ ρ < 1.
3. Let u∗ be the unique minimiser of (3) in B then it holds

1
J

J∑
j=1

�reg
(

u(j)
t

)
– �reg (

u∗) ≤
(

c1

t + c2

) 1
α

where 0 < α < (1 – ρ) L
μ

(σmax + clipλmax‖C0‖HS). Here σmax denotes the largest
eigenvalue of C–1

0 , λmax denotes the larges eigenvalue of �–1, ‖C0‖HS denotes the
Hilbert-Schmidt norm, 0 ≤ ρ < 1 and c1, c2 > 0 depends on the constants from our
assumptions 1 and 2.
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4 Subsampling in EKI
If Nobs is very large, as it will be the case for high-resolution images, it might be computa-
tionally infeasible to use the EKI framework to solve the inverse problem (1). Therefore,
we employ a subsampling strategy. This strategy involves splitting the data y into Nsub sub-
sets, denoted as y1, . . . , yNsub , where (y1, . . . , yNsub )T = y, Nsub ∈ {2, 3, . . .} and we use an index
set I := {1, . . . , Nsub} to represent these subsets. We define “data subspaces” Y1, . . . , YNsub to
accommodate this data partitioning, resulting in Y :=

∏
i∈I Yi. Regarding the noise we as-

sume the existence of covariance matrices �i : Yi → Yi, for each i ∈ I , which collectively
form a block-diagonal structure within �:

� =

⎛
⎜⎜⎜⎜⎝

�1

�2
. . .

�Nsub

⎞
⎟⎟⎟⎟⎠ .

Finally, we split the operator G into a family of operators (Gi)i∈I obtaining the family of
inverse problems

G1(u) + η1 = y1

...

GNsub (u) + ηNsub = yNsub ,

where ηi is a realisation of the a Gaussian random variable with zero-mean and covariance
matrix �i.

Similar to above we assume �i is the identity matrix Idki for the remaining discussion.
Then for our analysis we consider the family of potentials

�i(u) :=
1
2
‖Gi(u) – yi‖2 (i ∈ I).

When adding regularization we can define the following entities to obtain a compact rep-
resentation. We set C0 = Nsub

α
D0 and define

G̃i(u) =

(
Gi(u)

C– 1
2

0 u

)
, ỹ =

(
y
0

)

Then we obtain the family of regularized potentials

�
reg
i (u) =

1
2
‖ỹi – G̃i(u)‖2, (i ∈ I).

Note that we scale the regularization parameter by Nsub
–1 so that we obtain

�reg(u) =
Nsub∑
i=1

�
reg
i (u).
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Figure 6 Illustration of EKI with subsampling. Here we took the distance transformation from image 4 and
split the image horizontally into four subimages. Then at each time point where the data is changed, the
particles see a different image until the next time when the data is changed

We will consider the right hand sides of the ODEs (7) and (8) but replace G with Gi

and respectively y with yi randomly. This method was introduced in [18] and is known
as single-subsampling. We illustrate the idea in Fig. 6. For the analysis of the subsampling
scheme, we will assume the same convexity assumptions on the sub-potentials �i as well
as the same regularity assumptions on the family of forward operators Gi for all i ∈ I .

Assumption 5 The families of potentials (�i, i ∈ I) and (Gi, i ∈ I) satisfy assumptions 1
and 2.

Then the flows that we are going to consider are given by

du(j)(t)
dt

= –ĈuG
t (Gi(t)(u(j))(t) – yi(t)) – Ĉu

t C–1
0 u(j)

t (j ∈ J) (12)

u(0) = u0,

when we only consider regularization. In case of variance inflation we consider

du(j)(t)
dt

= (1 – ρ)
[
–ĈuG

t (Gi(t)(u
(j)
t ) – yi(t)) – Ĉu

t C–1
0 u(j)

t

]

+ ρ
[
–ĈuG

t (Ḡi(t)(ut) – yi(t)) – Ĉu
t C–1

0 ūt
]

(j ∈ J) (13)

u(0) = u0,

where 0 ≤ ρ < 1. Here i(t) denotes an index process that determines which subset we are
considering at which time points. The analysis of subsampling in continuous time as well
as the definition of the index process will be introduced in the following Sect. 4.1, where we
summarize the results of [24]. Note that the empirical covariance in case of subsampling
is given by

ĈuG
t :=

1
Nens – 1

Nens∑
j=1

(u(j)(t) – u(t)) ⊗ (Gi(t)(u(j))(t) – Gi(t)(u)(t)).

4.1 Convergence analysis of EKI with subsampling
To determine which subsample we use, when solving the EKI, we consider a continuous-
time Markov process (CTMP) i : [0,∞)×� → I on I . This process is a piecewise constant
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Algorithm 1 Sampling (i(t))t≥0

1: draw i(0) ∼ Unif(I) and t0 ← 0
2: sample  with survival function

P( ≥ t|t0) := 1[t < 0] + exp

(
–

∫ t

0
η(u + t0)–1du

)
(t ∈ [–∞,∞])

3: set i|(t0,t0+) ← i(t0)

4: draw i(t0 + ) ∼ Unif(I\{i(t0)})
5: increment t0 ← t0 +  and go to 2

process that randomly changes states at random times given by the distribution of . The
CTMP has initial distribution i(0) ∼ Unif(I) and transition rate matrix

A(t) :=
1

(Nsub – 1)η(t)

⎛
⎜⎜⎝

1 · · · 1
...

. . .
...

1 · · · 1

⎞
⎟⎟⎠ –

Nsub

(Nsub – 1)η(t)
· idI , (t ≥ 0) (14)

where η : [0,∞) → (0,∞) is the learning rate, which is continuously differentiable and
bounded from above.

Algorithm 1 describes how we sample from (i(t))t≥0.
For a more detailed analysis of this particular CTMP (i(t))t≥0 we refer to [24]. For other

characterisations we refer the reader to [1, 17].
Next we define a stochastic approximation process.

Definition 1 Let (Fi, i ∈ I) : X × [0,∞) → X be a family Lipschitz continuous functions.
Then the tuple (i(t), u(t))t≥0 consisting of the family of flows (Fi)i∈I and the index process
(i(t))t≥0) that satisfies

u̇(t) = –Fi(t)(u(t), t) (t > 0)

u(0) = u0 ∈ X,

is defined as stochastic approximation process.

Furthermore, we define F =
∑

i∈I Fi/Nsub and introduce the flow

u̇(t) = –F(u(t), t) (t > 0)

u(0) = u0 ∈ X,

To analyse the asymtotic behaviour of the process we need the following:

Assumption 6 Let d ∈N and assume for any i ∈ I :
(i) Fi ∈ C1(X × [0,∞), X),
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(ii) there exists a measurable function h : [0,∞) →R, with
∫ ∞

0 h(t)dt = ∞ such that the
flow ϕ

(i)
t satisfies

〈Fi(ϕ
(i)
t (u0), t) – Fi(ϕ

(i)
t (u1), t),ϕ(i)

t (u0) – ϕ
(i)
t (u1)〉X ≤ –h(t)‖ϕ(i)

t (u0) – ϕ
(i)
t (u1)‖2

for any two initial values u0, u1 ∈ X .

By Assumption 6(ii) we obtain that the flow of –F is exponentially contracting. Hence,
by the Banach fixed-point Theorem, the flow has a unique stationary point u∗ ∈ X. The
main result of [24] shows that the stochastic process converges to the unique stationary
point u∗ of the flow (ϕt)t≥0 and is summarized below.

Theorem 7 Consider the stochastic approximation process (i(t), u(t))t≥0, which is ini-
tialised with (i0, u0) ∈ I × X. Furthermore, let Assumption 6 hold and that the learning
rate satisfies, limt→∞ η(t) = 0. Then

lim
t→∞ dW

(
δ(· – u∗),P(u(t) ∈ ·|u0, i0)

)
= 0,

where dW denotes the Wasserstein distance, i.e.

dW(π ,π ′) = inf
H∈C(π ,π ′)

∫
X×X

min{1,‖u – u′‖q}dH(u, u′),

where q ∈ (0, 1] and C(π ,π ′) denotes the set of couplings of the probability measures π ,π ′

on (X,BX).

For the proof we refer to [18, Theorem A.1].
To analyse convergence of our subsampling scheme we verify that the gradient flow satis-

fies Assumption 6. Then the result follows by Theorem 7. Condition (ii) is hereby essential.
We consider the scaled left hand side

–
1

Nens
〈u1 – u2, Fi(u1, t) – Fi(u2, t)〉 ≤ –h(t)‖u1 – u2‖2,

for t large enough, where –Fi(u(t), t) denotes the right hand side of the systems (12) and
(13) and h : [0,∞) → R being a measurable function. In order to derive convergence re-
sults in the parameter space, we will focus in the following on the regularized setting, i.e.
we consider the potential �reg and only consider the variance inflated flow (13).

Theorem 8 Let Assumption 5 be satisfied and Nens > d. Furthermore, let (i(t))t≥0) be an
index process and assume (u(j)(t))t≥0,j∈J satisfies (12) (or respectively (13)), and α > 2 in
Theorem 4. Then the stochastic approximation process (i(t), u(j)(t))t≥0,j∈J satisfies

lim
t→∞ dW

(
δ(· – u∗),P(u(j)(t) ∈ ·|u0, i0)

)
= 0 (j ∈ J).

Proof Note that we obtain (12) from (13) by choosing ρ = 0, thus, we will focus on (13).
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Let u1 and u2 be two coupled process with initial values u1(0), u2(0). We want to show
the existence of a function h : [0,∞) →R with

∫ ∞
0 h(t)dt = ∞ such that

–
1

Nens
〈u1 – u2, Fi(u1, t) – Fi(u2, t)〉 ≤ –h(t)‖u1 – u2‖2,

Note that due to the strong convexity of �reg we obtain from Theorem 4 u(j) → u∗ with
rate O(t– 1

α ), i.e.

‖u(j)
t – u∗‖ ∈O(t– 1

α ) ∀t ≥ 0 ∀i ∈ {1, . . . , Nsub}.

Furthermore, by Theorem 4 we also obtain that �
reg
i (u) is bounded, i.e., there exists a

B > 0 such that

‖�reg
i (u)‖2 ≤ B ∀u ∈R

d.

Since u1 and u2 are column vectors consisting of the stacked particle vectors we need
to introduce new variables to represent (13) in vectorized notion. We define for all i ∈
{1, . . . , Nsub} the operators Gi : XJ → R

d×J , u → [Gi(u), . . . , Gi(u)]T ∈ R
kNens and Ḡi : XJ →

R
kNens , u → [

Ḡi(u), . . . , Ḡi(u)
]T ∈ R

kNens , Moreover, we set Ĉu = diag{Ĉu, Ĉu, . . . , Ĉu} ∈
R

dNens×dNens , ĈuG
i = diag{ĈuG

i , ĈuG
i , . . . , ĈuG

i } ∈R
dNens×dNens , C–1

0 = diag{C–1
0 , C–1

0 , . . . , C–1
0 } ∈

R
dNens×dNens and yi =

[
yi, yi, . . . , yi

]T ∈R
kNens . For the potential we define

�i(u) =
1
2
‖yi – Gi(u)‖2 =

1
2

Nens∑
j=1

‖yi – Gi(u(j))‖2.

Thus, we have

–
1

Nens
〈u1 – u2, Fi(u1, t) – Fi(u2, t)〉

= –
1 – ρ

Nens
〈u1 – u2, ĈuG

i (Gi(u1)(t) – yi) + Ĉu1 C–1
0 u1(t)〉 (15)

+
1 – ρ

Nens
〈u1 – u2, ĈuG

i (Gi(u2)(t) – yi) + Ĉu2 C–1
0 u2(t)〉 (16)

–
ρ

Nens
〈u1 – u2, ĈuG

i (Ḡi(u1)(t) – yi) + Ĉu1 C–1
0 u1(t)〉 (17)

+
ρ

Nens
〈u1 – u2, ĈuG

i (Ḡi(u2)(t) – yi) + Ĉu2 C–1
0 u2(t)〉. (18)

We will focus for now on (15) and (16). Equations (17) and (18) can be analysed similarly.
We exploit in the following the fact that we can estimate the difference of the EKI flow to

a preconditioned gradient flow. Adding –Ĉu1∇�i(u1) + Ĉu1∇�i(u1) and –Ĉu2∇�i(u2) +
Ĉu2∇�i(u2) yields

–
1

Nens
〈u1 – u2, Fi(u1, t) – Fi(u2, t)〉

= –
1 – ρ

Nens
〈u1 – u2, ĈuG

i (Gi(u1)(t) – yi) – Ĉu1∇�i(u1)〉
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–
1 – ρ

Nens
〈u1 – u2, Ĉu1 C–1

0 u1(t) + Ĉu1∇�i(u1)〉

+
1 – ρ

Nens
〈u1 – u2, ĈuG

i (Gi(u2)(t) – yi) – Ĉu2∇�i(u2)〉

+
1 – ρ

Nens
〈u1 – u2, Ĉu2 C–1

0 u2(t) + Ĉu2∇�i(u2)〉.

The first term satisfies

–
1 – ρ

Nens
〈u1 – u2, ĈuG

i (Gi(u1)(t) – yi) – Ĉu1∇�i(u1)〉

≤1 – ρ

Nens
|〈u1 – u2, ĈuG

i (Gi(u1)(t) – yi) – Ĉu1∇�i(u1)〉|

≤1 – ρ

Nens
‖u1 – u2‖2‖ĈuG

i (Gi(u1)(t) – yi) – Ĉu1∇�i(u1)‖2

Next we use a result from [35, Lemma 4.5]. With this we can bound the second norm
and obtain

1 – ρ

Nens
‖u1 – u2‖2‖ĈuG

i (Gi(u1)(t) – yi) – Ĉu1∇�i(u1)‖2

≤1 – ρ

Nens

Nens∑
j=1

‖u(j)
1 – u(j)

2 ‖2‖ĈuG
i (Gi(u

(j)
1 )(t) – yi) – Ĉu1∇�i(u

(j)
1 )‖2

≤(1 – ρ)
Nens∑
j=1

‖u(j)
1 – u(j)

2 ‖2b1

√
�(u(j)

1 )Ve1(t)
3
2 ∈O

(
t– 3α+2

2α

)
. (19)

Respectively we can do the same for the third term.
For the second and fourth term we obtain

–
1 – ρ

Nens
〈u1 – u2, Ĉu1 C–1

0 u1(t) + Ĉu1∇�i(u1)〉

+
1 – ρ

Nens
〈u1 – u2, Ĉu2 C–1

0 u2(t) + Ĉu2∇�i(u2)〉

= –
1 – ρ

Nens
〈u1 – u2, Ĉu1∇�

reg
i (u1)〉 +

1 – ρ

Nens
〈u1 – u2, Ĉu2∇�

reg
i (u2)〉

= –
1 – ρ

Nens
〈u1 – u2, Ĉu1∇�

reg
i (u1) – Ĉu2∇�

reg
i (u2)〉

To bound the term

–
1 – ρ

Nens
〈u1 – u2, Ĉu1∇�

reg
i (u1) – Ĉu2∇�

reg
i (u2)〉

we take a mean-field approach [2, 15], i.e. under suitable assumptions, the sample covari-
ance has a well-defined limit C(t), where C(t) is symmetric, positive definite for all t ≥ 0.
Thus, by splitting

–
1 – ρ

Nens
〈u1 – u2, Ĉu1∇�

reg
i (u1) – Ĉu2∇�

reg
i (u2)〉
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= –
1 – ρ

Nens
〈u1 – u2, Ĉu1∇�

reg
i (u1) – Ĉu1∇�

reg
i (u2)〉

+ –
1 – ρ

Nens
〈u1 – u2, Ĉu1 (I – (Ĉu1 )–1Ĉu2 )∇�

reg
i (u2)〉,

the factor (I – (Ĉu1 )–1Ĉu2 ) can be made arbitrarily small by adjusting Nens. We therefore
assume, that Nens is chosen large enough such that this term is negligible. Then by μ-strong
convexity we obtain the following upper bound for the first term

= –
1 – ρ

Nens
〈u1 – u2, Ĉu1∇�

reg
i (u1) – Ĉu1∇�

reg
i (u2)〉

≤ –
1 – ρ

Nens
λmin(Ĉu1 )μ‖u1 – u2‖2 ∈O

(
t– 2+α

α

)
,

since λmin(Ĉu1 ) ∈O
(
t–1) by Theorem 4. Moreover, since α > 2, we have – 2+α

α
> – 3α+2

2α
and

therefore the term (19) converges faster then the latter term.
The terms (17) and (18) can be bounded using the similar arguments. The upper bound

for these two together is

–
ρ

Nens
λmin(Ĉu1 )μ‖u1 – u2‖2 ∈O

(
t– 2+α

α

)
.

All together we obtain

–
1

Nens
〈u1 – u2, Fi(u1, t) – Fi(u2, t)〉 ≤ –h(t)‖u1 – u2‖2,

where h(t) = μ

Nens
λmin(Ĉu1 ) with

∫ ∞
0 h(t)dt = ∞, since λmin(Ĉu1 ) ∈O

(
t–1).

�

5 Numerical experiments
We consider the image given in Example 1 for the reconstruction and use the EKI (8) and
the suggested EKI with subsampling scheme (13) to estimate the unknown parameters
(density ρ and energy dissipation E as discussed in Sect. 2.3), i.e. d = 2. To ensure that
the EKI is searching a solution in the full space R

d we consider Nens = 3. Furthermore,
we represent the image as 705 × 555 pixel image, this means that the observation space
is given by Y = R

705×555. We solve the ODEs (8) and (13) up until time T = 10000 with
ρ = 0 in (8) and respectively (13). For the subsampling strategy a linear decaying learning
rate η(t) = (at + b)–1, where a = b = 10 is considered. To account for the minimal step size
of the ODE solver, the learning rate η(t) only considered until time Tsub = 10. Afterwards
we consider a fixed amount of switching times. This results in approximately 600 data
switches until time Tsub = 10. For the remaining time we switched the data 1000 times.
Furthermore, we split the data horizontally into Nsub = 5 subsets.

Figure 7 depicts the mean residuals of the solutions obtained by the EKI and our sub-
sampling scheme. We can see that asymptotically both methods converge with the same
rate. However, keep in mind the subsampling approach is computationally cheaper, since
we only need to consider the lower-dimensional ODE (13) at each point in time.

Figure 8 depicts the computed solutions in comparison to the original image. We can
see that the solutions computed from both methods approximate the rod in the original
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Figure 7 Mean residuals of the particles, i.e. 1
Nens

∑Nens
j=1 �reg(u(j))

Figure 8 Comparison of the best computed solutions to the original image. The blue rod depicts the rod
from the original image. The thinner rods depict the solutions computed via the EKI (upper rod) and our
subsampling approach (lower rod). The right image illustrates the EKI solution (upper rod) and the
subsampling solution (lower rod). The x and y axis represent the pixels of the image

image quite well. One can see that the desired solution seems to be more elastic than the
solutions computed via the EKI and our subsampling approach, which is due to model
error.

Remark 2 We note that the initial idea of our subsampling approach was to ensure feaibil-
ity of the EKI in case of large data sets. Indeed, due to the large amount of data the required
memory space can often be not large enough for numerical computations. The effective
data space that is used in the subsampling approach reduces to Nobs/Nsub. Furthermore,
due to the smaller data sets that are used in the computations, each particle also works
with smaller data dimensions which can lead to a decrease of the computation time, de-
pending on the implementation.
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6 Conclusions
We have introduced a formulation of a guide wire system with estimation of the unknown
parameters by a subsampling version of EKI using high resolution images as data. The ex-
periment with real data shows promising results; the subsampling strategy could achieve
a good accuracy while reducing the computational costs significantly. In future work, we
will explore this direction further to enable uncertainty quantification in the state estima-
tion, thus making a robust control of the guide wire possible.
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