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Abstract
While interactive simulations have been mostly limited to Computer Graphics
applications, new generations of Graphics Processing Units (GPUs) allow the
realization of industrial-grade interactive 3D physics simulations. By combining an
immersed boundary method with efficient GPU-based MINRES and CG solvers using
a GPU-based geometric multigrid preconditioner, we demonstrate a fast industrial 3D
computational mechanics solver. The various implementation aspects - specifically
how they differ from similar concepts used in the Computer Graphics community -
are discussed in detail. The proposed concept opens up new classes of industrial
simulation applications allowing a democratization beyond today’s expert users, from
designer centric simulation to operational and service decisions based on 3D
simulations. To support this, we provide various benchmark cases including a
real-world study of a simulation-based service decision for a damaged gear-box
mount.
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1 Introduction
Computer Aided Engineering (CAE) and simulation are a success story in industrial en-
gineering. Today, hardly any product is produced without being simulated beforehand.
Thereby, Computational Mechanics is one of the most important application fields [1].
Simulation is a strategic priority for many industrial corporations [2] with an ambition to
extend its adoption among more users [3] (democratization of simulation) as well as along
the life cycle [4] (Digital Twins). A main challenge in this endeavor is the usability and end-
to-end simulation time [5]. Here, major aspects are not only the actual solver time but also
the time required for geometry preparation and meshing of complex geometries.

At the same time, the Computer Graphics community has been for decades at the fore-
front of developing techniques aimed at accelerating animations and physics engines for
video games and animations [6, 7], c.f. [8] for an example in the field of Computational
Mechanics. These endeavors have given rise to innovative algorithms and methodologies,
specifically exploiting Graphics Processing Units (GPUs), with high computational effi-
ciency and real-time responsiveness without the need for complex meshing.

This paper has the objective of bridging the gap between Computer Graphics and Com-
putational Mechanics, harnessing well-established concepts and practical solutions from
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the former and enhancing them with established Computational Mechanics techniques
ensuring the required accuracy for industrial solutions. The ambition is to create simu-
lation solutions that are exceptionally fast and performant while maintaining a level of
accuracy that is comparable to classical Computational Mechanics approaches. By com-
bining the strengths of these two distinct domains, we seek to provide a new paradigm for
simulations that can be applied to a wide array of engineering domains demanding quick
prediction but not being addressed by today’s simulation technology. That is, democra-
tizing simulation beyond today’s expert users. These include applications from the use of
simulation in early lifecycle phases, e.g., allowing designers to exploit interactive simula-
tions, as well as in later stages, e.g., allowing simulation based optimization of operations
and maintenance.

1.1 Contributions
In pursuit of the aforementioned research objective, this study presents several notewor-
thy contributions.

Immersed Boundary Method (IBM) Integration: To ensure an accurate representation
of essential boundary conditions within a voxel-based discretization, we have integrated
the IBM. The well-known Marching Cubes algorithm has been adapted for surface trian-
gulation and numerical integration. Furthermore, to fully exploit the parallel processing
capabilities of GPUs, the IBM has been effectively parallelized.

Fast Linear Algebra Solver Implementation: A Geometric Multigrid Method (GMG) has
been adapted to work as a preconditioner to the Conjugate Gradient (CG) and the Min-
imum Residual (MINRES) solvers. The entire solver has been intricately parallelized to
harness the computational power of GPUs using the CUDA [9] programming framework.

Robustness Analysis: Extensive convergence analysis has been conducted for both the
Finite Element Method (FEM) and the linear algebra solver across various practical use
cases. These comprehensive analyses provide empirical evidence of the method’s robust-
ness and its ability to consistently deliver accurate results in diverse scenarios.

Collectively, these contributions form a robust and efficient computational framework
for Computational Mechanics applications tailored to address complex problems requir-
ing accurate boundary representations and high-performance linear algebra solvers.

2 Related work
2.1 Immersed boundary method
In classical FEM, the finite element (FE) space is a subspace of the solution space. If this
FE space approximates the solution space, then by construction the approximate solution
converges to the true solution. However, a FE space that is not a subspace of the solution
space can be advantageous in some cases. For example, an FE mesh that does not conform
to the boundary of the domain can be chosen arbitrarily to simplify meshing or to assist the
solution process. Various types of such non-conforming FEM have been presented and are
referred to by different names, such as unfitted FEM, fictitious domain FEM, Finite Cell
Method, Cartesian FEM, cutFEM, and Fixed Grid FEM. The common underlying idea in
all these methods is that the problem domain is embedded in a background mesh, hence
they are collectively referred to as IBM [10]. The Generalized-FEM [11] and the Extended-
FEM [12] can also be loosely categorized into the IBM family.

In most implementations of IBM, Dirichlet boundary conditions have to be imposed
weakly since the immersion of the problem domain in a non-conforming mesh makes
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strong enforcement infeasible. Along with the usual penalty and Lagrange methods of
weak enforcement, the Nitsche method [13] is widely used e.g. [14, 15]. For an extensive
discussion on Nitsche method, we refer to the work of Juntunen et al. [16].

IBM including the Nitsche method suffer from small cut instability. Burman et al. [17]
have introduced boundary value correction for the stabilization of elements at the bound-
ary which ensures the optimal condition number of the resulting linear system of equa-
tions. Related to this is the work of Hansbo et al. [18] in which a stabilization for control of
jumps in derivatives in the vicinity of boundaries is added. The stabilization leads to what
is called the ghost penalty. Moreover, high-order elements are used in the background
mesh.

Parvizian et al. [19] have also used higher-order test functions in IBM for 2D elasticity
in a method that they called the Finite Cell Method (FCM). The method has been fur-
ther extended to 3D linear elasticity [20]. The core idea is the approximation of extended
variables (in the extended domain) using high-order test functions and performing hp-
refinement for optimal order convergence of smooth problems. The stiffness of fictitious
material outside the boundaries is set to an extremely low value. For the integration of cut-
cells, a uniform grid of sub-cells or a grid of non-uniform sub-cells based on a quad-tree
approach is suggested.

A simpler approach for integrating the cut-cells is developed in Fixed Grid FEM by
García-Ruíz et al. for 2D [21] and 3D elasticity [22]. The FE domain is represented with a
fixed Cartesian grid and the element stiffness matrix of a cut element is obtained as a fac-
tor of a reference element stiffness matrix. Daneshmand et al. [23] extended this method
to include static and dynamic analysis of 2D and 3D elastic solids. The further introduced
a volume integration scheme based on Gaussian quadrature and the characteristic func-
tion of the original domain embedded in the extended domain. Some other notable works
in this field are FEM based on hierarchic h-refined Cartesian meshes [24] and immersed-
FEM [25].

2.2 Fast solvers
In 2011, Dick et al. [8] introduced a GPU-based simulation of elastic bodies utilizing hex-
ahedral meshes. Following this, the employment of tetrahedral meshes with efficient GPU
data structures was demonstrated by Allard et al. [26] and further explored by Weber et
al. [27]. This work was subsequently extended to incorporate higher-order elements as
discussed in [28].

Large-scale efficient multigrid-based solvers for massively parallel architectures have
been another focal point of research. Ljungkvist and Kronbichler have made significant
contributions with development of a GPU-based matrix-free multigrid method tailored
for solving 2D and 3D Poisson problems [29, 30]. This methodology was subsequently
adapted for addressing linear elasticity problems on CPUs in [31] and has been integrated
into the deal.II library [32]. More recently, these techniques have been further refined to
support locally refined meshes [33], enhancing their applicability and performance.

Recently, Jomo et al. [34] took the advantage of the Finite Cell Method’s hierarchic struc-
ture to build a multigrid preconditioned CG solver for solution of very large systems on a
massively parallel distributed memory machines. However, the parallelization is not real-
ized for more readily available GPUs.
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Figure 1 The problem domain and its embedding in voxel mesh

3 Methods
3.1 Voxel-based immersed boundary method
3.1.1 Discretization
Unlike conforming FEM, in voxel-based IBM the geometry discretization requires a sepa-
rate representation since the hexahedral mesh, also known as voxel grid, approximates the
extended domain instead of the geometry. The geometry is represented using a signed dis-
tance function discretized over the background mesh using the highly performant Open-
VDB library [35].

Let � be the problem domain with Dirichlet and Neumann boundary conditions applied
at ∂�D and ∂�N respectively (Fig. 1a). To use a geometric multigrid algorithm a hierarchy
of meshes needs to be constructed. The FE mesh, i.e. the finest in the grid hierarchy, is
generated by meshing the bounding box of the geometry (Fig. 1b) and removing the ele-
ments that do not overlap with the geometry. The extend of the resulting mesh T h defines
the extended domain �ext (Fig. 1c), in which the geometry � is embedded. The geome-
try is represented by the signed distance function φ residing on the vertices of the mesh
T h. The coarser grids are created using a modified form of vertex-centered coarsening.
Thereby, the coarse elements at the edges may have nodes that do not correspond to any
node in the finer grid. Here, the coherency between different levels of multigrid is kept by
ensuring that every element in a fine grid has a corresponding element in the next coarser
grid.

Thus, a grid {T ih} in the multigrid hierarchy consists of elements eih having the side
length ih, where i = 20, 21, 22, . . . , 2m and h is the side length of an element eh in the finest
grid {T h}. Elements in any grid {T ih} can be classified into two sets of inside elements {eih

I }
and cut elements {eih

C } defined as:

{eih
I } = {e ∈ {T ih}|e ∩ � �= ∅ and e ∩ ∂� = ∅}, (1)

{eih
C } = {e ∈ {T ih}|e ∩ ∂� �= ∅}, (2)

where ∂� represents the geometric boundary, and it holds {eih
I }∩{eih

C } = ∅ as well as {eih
I }∪

{eih
C } = �ext.
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3.1.2 Discretized linear elasticity equations
Following a classical computational approach for linear elasticity [36], weak form as ob-
tained by multiplying the strong form by virtual displacements δu and integrating over the
whole physical domain can be written as:

∫
�

σ (δu) : ε(u) dx =
∫

�

δu · b dx +
∫

∂�N

δu · t̂ dx +
∫

∂�D

δu · (σ (u) · n) dx, (3)

where u denotes displacement, σ (u) is the Cauchy stress, ε(u) is the linear strain, n rep-
resents surface normal vector, b is the body force, t̂ is the traction vector acting on the
surface ∂�N , and ∂�D is the boundary where Dirichlet boundary condition is imposed.
The stress σ (u) and strain ε(u) are related via a material law, which in our case is the
simple linear elastic, i.e. σ (u) = C : ε(u), where C is the elasticity tensor relating strain to
stress. The last term of the right hand side in (3) vanishes in boundary conforming FEM
by choosing the FE space of virtual displacement such that δu = 0 on δ�D, while the FE
space of displacements ensures u = û on δ�D [37], where û is the prescribed displacement.

In IBM, the enforcement of Dirichlet boundary conditions by prescribing the displace-
ment on nodes which coincide with the Dirichlet boundary is not feasible. An alternate
way is to modify the weak formulation such that Dirichlet boundary conditions are satis-
fied weakly. Using the symmetric Nitsche method [37], the modified weak formulation is
described as:

∫
�

σ (δu) : ε(u) dx +
∫

∂�D

δu · β · u dx –
∫

∂�D

(σ (δu) · n) · u dx –
∫

∂�D

δu · (σ (u) · n) dx

=
∫

�

δu · b dx +
∫

∂�N

δu · t̂ dx +
∫

∂�D

δu · β · û dx –
∫

∂�D

(σ (δu) · n) · û dx, (4)

where β is stabilization parameter, σ (δu) = C : ε(δu), and the additional terms compared
to Equation (3) cancel each other.

The volume integrals involved in the computation of the element stiffness matrix of
inside elements {eh

I } is evaluated using the standard second-order Gaussian quadrature.
For integrals of the cut elements {eh

C} volume integrals are computed using the Marching
Cubes algorithm [38]. Likewise, the surface integrals in Equation (4) are computed using
the same algorithm, which also conveniently provides the surface normal vectors n at the
surface integration points (see Sect. 3.1.3). After FE discretization and integration, the
system of equations to be solved is of the form:

(K + βM – G – GT )u = f + βm – g, (5)

K̂u = f̂. (6)

Here the matrix K represents global stiffness matrix M, which is the same as the penalty
matrix, and stabilizes the formulation while –G – GT ensures the symmetry as described
in [37]. However, unlike the penalty method, the stabilization parameter β does not need
to be very large to ensure good satisfaction of the constraint. Here, β is chosen as:

β = 102 · E
h

, (7)
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where E is the Young’s modulus, and h is side length of the element. For more details on
the effect of the Nitsche stabilization parameter the reader is referred to [37].

3.1.3 Marching cubes-based cut element treatment
Surface integrals As described in Sect. 3.1.1, the geometry in this work is represented
using a signed distance function stored at the nodes of the hexahedral elements. Using
the Marching Cubes algorithm for triangulating the iso-surface is quite convenient in this
case. The Marching Cubes algorithm, widely used in the Computer Graphics community,
works by dividing the 3D scalar field into a grid of “cubes”, and then determining how the
iso-surface intersects each cube. The surface intersection is identified using the vertex
values of the cube to look up the particular intersection case in a table.1 Using this infor-
mation, it computes the surface triangles, and the corresponding surface normal vectors,
before “marching” on to the next cube. The reader is referred to the original paper of
Lorensen and Cline [38], and the implementation of Bourke [39] for more details.

The resulting triangles are assigned with integration points using the standard second-
order Gaussian quadrature for triangles. The normal vectors as provided by the Marching
Cubes algorithm are useful for the integration of the Nitsche term in weak enforcement of
boundary conditions as seen in Equation (4) and for computation of the volume fraction
of cut elements.

Volume integrals The integral involved in the computation of the element stiffness ma-
trix of inside elements {eh

I } is evaluated using the standard second-order Gaussian quadra-
ture. Thereby uniform hexahedral mesh elements allow to compute the element stiffness
matrix only once and it is denoted by K0. For the cut elements, belonging to the set {eh

C},
the volume integrand is however discontinuous since these elements lie on the boundary
of the geometry. The discontinuous integral can be written using a characteristic function
χ as,

Kc =
∫

�e
BTχ(x)CB dx, (8)

where B is the linear strain matrix, C is the elasticity matrix, and the characteristic func-
tion χ is defined as

χ(x) =

⎧⎨
⎩

1 if x ∈ �,

α if x ∈ �ext \ �.
(9)

Here, 0 < α � 1 is a very small constant that represents the relative stiffness of the material
in the empty portion of the cut element. Its value in this work is chosen to be 10–3. The
smaller α the more accurate will be the model, however it may lead to very high condition
number and numerical instability. Setting α close to 1 will make the problem well-behaved
albeit highly inaccurate.

1Given that there are eight vertices of a cube with two states each (in or out), there are 28 = 256 intersection cases. However,
using the different symmetries, they are reduced to only 15 unique cases.
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In this work, we assume that the discontinuous bi-material distribution in a cut element
can be approximated by a constant distribution of a fictitious material as done in [21, 22]:

Kc =
(
vf +

(
1 – vf

)
α
)∫

�e
BT CB dx =

(
vf +

(
1 – vf

)
α
)

K0, (10)

where vf is the volume fraction of the cut element, i.e. Kc is simply obtained by scaling the
stiffness matrix K0.

In Equation (10), the volume fraction can be computed as:

vf =
∫
�e+ 1 dx∫
�e 1 dx

, (11)

where �e+ represents the portion of the element e that lies inside �. The integral in the
nominator is still an integral over a discontinuous volume. Following the work of Wang
[40], the volume enclosed by the iso-surface is computed using the divergence theorem,
which converts the discontinuous volume integration into the surface integration:

∫
�e+

1 dx =
1
3

∫
∂�e+

n · x dx =
1
3

∑
i∈T

∫
∂�i

n · x dx, (12)

where T is a set of surface triangles that include the iso-surface triangles and the triangles
on the cube surface to form an enclosed volume (enclosing the intersection of the geome-
try and the element), n is the surface normal vector and x is the location of the integration
point (c.f. Figure 2).

The advantage of this method is that the matrix assembly does not require element wise
integration as it uses the precomputed stiffness matrix K0 and scales it accordingly, hence
requiring minimal computations. Having a small memory footprint, stiffness matrix K0

can be stored in constant GPU memory, which allows extremely fast memory access. How-
ever, the simplification of just scaling the element matrix does not take into account the ge-
ometry of the boundary and the orientation of the cut and distributes the stiffness equally
to all nodes of the element. This implies that vertically, horizontally, and diagonally cut
elements have the same element stiffness matrix if the volume fraction vf is the same.

In Sect. 4 we compare the scaled boundary element approach above with unscaled
boundary element approach as adopted typically in the Computer Graphics community
like in [8]. The latter applies no scaling factor to the boundary elements, i.e., one always
chooses vf = 1 for intersected elements. In the subsequent sections, we refer to the ap-
proach where vf = 1 as the unscaled method and the approach where vf is defined accord-
ing to Equation (11) as the scaled method.

Figure 2 The surface triangle A (blue) and three face triangles B (Yellow), C (Red),
and D (Black) that form volume (enclosing the intersection of the geometry and
element) for computation of volume fraction
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3.2 GPU-based iterative solvers
Although discretization is defined on a per-element basis, to effectively leverage the mas-
sive parallelism of GPU streaming multiprocessors for iterative solvers, transitioning to
a vertex-based data distribution is more advantageous. Consequently, all operations are
redefined using vertex-specific stencils to optimize performance and fully exploit the com-
putational capabilities of GPUs. Thanks to the structure of the mesh, as mentioned in the
Sect. 3.1.3, the element stiffness matrix K0 is precomputed and stored in the fast constant
GPU memory. The matrix K0 and the volume fraction (11) are then used to construct ver-
tex stencils for all vertices in the mesh T h. These stencils are subsequently stored in the
GPU memory as per [8, 41].

Matrices M, G, and GT in Equation (5), arising from the cut elements {eh
C} are contingent

on the configuration of the cuts and thus cannot be precomputed. Instead, these matrices
are computed on the CPU2 for each individual cut element in the set {eh

C}, their sum is
then used to construct corresponding stencils Qv for vertices v in {eh

C}. These stencils are
then copied to the GPU memory, where they are summed in order to obtain final vertex
stencil Kv = Qv + Sv that corresponds to the left hand side of Equation (5).

We implement the standard MINRES [42] and CG [43] solvers (e.g. see [44]) using
CUDA [9] to be used along with our GMG preconditioner PMG as defined in [41] and
detailed below. We will refer to these as MINRES-PMG and CG-PMG respectively. Com-
pared to GMG implementation [41] as a primary solver, our MINRES-PMG or CG-PMG

implementation requires only one additional matrix-vector multiplication per iteration,
which does not present large computational overhead. Additionally, there is a minor in-
crease in memory usage due to the need to store intermediate arrays. The outcomes of
these improvements, aiming to help robustness and computational efficiency, are detailed
in Sect. 4.2.

GMG solvers stand out as highly efficient tools for solving partial differential equations,
achieving an optimal computational complexity of O(N) where N is number of degrees
of freedom of a system. The core concept behind the GMG approach is the utilization of
a series of nested grids, each with varying resolution. This multi-tiered strategy smoothes
out errors at their respective scales, allowing for a comprehensive error reduction across
the full spectrum of frequencies [45, 46]. To leverage the structured discretization scheme
and maximize GPU performance, we employ a GMG-based preconditioner operating on
vertex stencils Kv.

The majority of the multigrid implementation is detailed in the works [8, 41], cover-
ing its implementation aspects. The multigrid solver employs a standard V-cycle with
two pre-smoothing and two post-smoothing steps, using the multicolor Successive Over-
Relaxation (SOR) smoother. The coarsest grid size in the multigrid hierarchy is prede-
termined using heuristics to ensure adequate geometric detail, typically comprising 104

nodes in our studies. At the coarsest level, a direct solver, oneMKL PARDISO [47], is uti-
lized on the CPU. Due to the relatively small problem size on the coarsest grid, memory
transfers between the CPU and GPU are negligible in the overall execution time. The pri-
mary components of the multigrid algorithm, namely smoothing, residual computation,
restriction, and prolongation, are implemented as separate CUDA kernels.

2Due to the different cut configurations that produce numerous branching conditions, implementing this on a GPU would
be challenging. Therefore, cut cell computation is handled on the CPU, which is better suited for such tasks.
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4 Results
In the following, we illustrate the effectiveness of the proposed approach through several
industrial examples. Our analysis concentrates on the h-convergence of the solver and the
convergence of the multigrid preconditioned Conjugate Gradient (CG-PMG) and Mini-
mum Residual (MINRES-PMG) solvers on increasingly complex geometries. Finally, we
present a practical industrial example to demonstrate how this fast solver can be effec-
tively used.

All results were obtained on a workstation equipped with an Intel i9 13900KF CPU, 32
GB of DDR5 RAM, and an NVIDIA RTX 4090 GPU with the NVIDIA 555.x graphics
driver. Our codebase has been built using GCC 11.4 and NVCC 12.3 compilers.

4.1 h-convergence analysis
In our study, we perform h-convergence analysis on two distinct examples: a bracket and
a perforated plate. Reference values, denoted with ∗, for convergence comparisons are
obtained using the Simcenter 3D (SC3D) structural solver [48] with tetrahedral elements
having 4 degrees of freedom (C3D4). The Simcenter 3D solver, with its mesh conforming
capability, offers better geometry discretization compared to voxel-based methods but
is computationally more expensive. To simplify the comparison of mesh conforming and
non-conforming results, we examine the error in several key quantities of physical interest,
including:

• relative error in the mean displacement value ‖u‖2:

εu =
|‖u‖2 – ‖u∗‖2|

‖u∗‖2
;

• relative error in the maximal displacement value ‖u‖∞:

εumax =
|‖u‖∞ – ‖u∗‖∞|

‖u∗‖∞
;

• relative error in the maximal Von Mises stress value ‖σ VM‖∞:

εσmax =
∣∣‖σ VM‖∞ – ‖σ ∗

VM‖∞
∣∣

‖σ ∗
VM‖∞

;

• relative error in the external work (Energy) value Wext(u), which is defined and
computed in discrete form as:

εWext =
|Wext(u) – Wext(u∗)|

Wext(u∗)
=

∣∣∣fT u – f∗T u∗
∣∣∣

f∗T u∗ .

Furthermore, we use the number of degrees of freedom rather than the discretization
size in the following convergence analysis as it provides more information about problem
scale. While these relationships can be straightforwardly established in the case of a voxel
grid, they are not applicable in the context of the Simcenter structural solver. The latter
does not work with an hierarchical refinement, but rather requires re-meshing completely
when the size of the mesh is changed as in most state of the art industrial solvers. This
also explains the “non-optimal” convergence rates observed in the following studies for
the Simcenter structural solver.

Simple bracket example In this study, we examine a simple steel bracket (Fig. 3), with
material properties E = 2.069 · 105 MPa, and ν = 0.288. The bracket is fixed at one end and
subjected to a 5000 N downwards force at the other end. We observe convergence in the
mean displacement value in both approaches: unscaled and scaled boundary presented in
Fig. 4. When employing the scaled boundary approach, we achieve accuracy comparable
to the mesh conforming Simcenter 3D reference solution. This similarity in accuracy and
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Figure 3 Simple bracket geometry, stress field and displacement field respectively

Figure 4 Bracket h-convergence plots comparing the error in various quantities of interest between the
presented non-conforming method and the results from a classic conforming mesh method in Simcenter 3D
using C3D4 elements

convergence rate also extends to the relative error in maximum displacement εumax and
external work εWext .

However, the relative error in maximum stress εσmax is consistently higher than in the
reference solution for both approaches. This is primarily due to the challenges in accu-
rately recovering stress from the voxel space to the surface of the geometry. The most
significant error contributions are found in elements with minor cuts, where stress values
cannot be reliably calculated.

Perforated plate example In our analysis of the perforated steel plate example, with ma-
terial properties E = 2.069 · 105 MPa, and ν = 0.288, the plate is fixed at one end and sub-
jected to a tensile load of 5000 N at the other end (Fig. 5), convergence is assessed over
grids with varying degrees of freedom (Fig. 6).

Similar to the results of the bracket example (Fig. 4), in Fig. 6 we observe convergence
for both unscaled and scaled boundary approaches as defined in Sect. 3.1.3. However, the
relative error in maximum stress εσmax is consistently higher than the reference, due to
reasons previously discussed. Interestingly, for the unscaled approach, the error in max-
imum stress εσmax occasionally drops below that of the scaled approach. This can be due
to the fact that for certain element size h, the mesh is better aligned to geometry produc-
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Figure 5 Perforated plate geometry, stress field and displacement field respectively

Figure 6 Perforated plate h-convergence plots comparing the error in various quantities of interest between
the presented non-conforming method and the results from a classic conforming mesh method in Simcenter
3D using C3D4 elements

ing better stress estimates. It is important to note here the overall convergence behavior,
which shows that the usage of boundary scaling consistently results in lower errors in the
maximal stress value.

4.2 Iterative solver analysis
In this section, we present a convergence analysis of implemented iterative solvers. We
compare the accuracy of the GMG preconditioned Conjugate Gradient (CG-PMG) and
Minimum Residual (MINRES-PMG) solvers. In addition to the simple geometries above,
we consider two complex geometries from typical industrial applications, an airplane
landing gear and a car rim (depicted in the corresponding plots). Thereby, our analysis
focuses on two types of errors.

On the one hand, we compute the relative residual rk at each iteration k and define the
following error analyzing the residual in reference to the value in the first step:

εsolver(r) =
||rk||M
||r0||M , (13)
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where M represents the norm type. For the CG-PMG solver the standard l2-Norm is used
and for the MG-PMG solver the norm is defined via the preconditioner as described in [44].
As we always start the iteration with zero initial guess, the residual ||r0||M is equivalent to
the norm of the right hand side ||f||M . On the other hand, we compute the relative error
of the solution uk at iteration k compared to an exact discrete solution u∗ of the linear
system which was computed using a direct solver:

ε∗
solver(u) =

||uk – u∗||2
||u∗||2 . (14)

The error ε∗
solver enables us to monitor the evolution of the “true” error throughout the

iterations. The iterative solver should be ideally stopped if the relative error in the solu-
tion ε∗

solver(u) falls below a specific threshold to avoid unnecessary high compute times.
However, the relative error in the solution ε∗

solver(u) is usually not known a priori. It thus
cannot serve as a stopping criterion for either solver. Instead, at each iteration, we com-
pute the relative residual error εsolver(r), which is then employed as the stopping criterion.
When comparing εsolver(r) for both solvers, as shown in Figs. 7 and 8, it is evident that
the residual error estimate of CG-PMG is more conservative than that of MINRES-PMG.
Consequently, to achieve the target accuracy in terms of the relative residual, CG-PMG

necessitates a greater number of iterations. In the context of democratizing simulation

Figure 7 Iterative solver convergence rates for bracket and perforated plate examples

Figure 8 Iterative solver convergence rates for landing gear and rim examples
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tools, choosing right parameters for stopping criterion presents a significant challenge to
non-expert users. Tolerances need to be predetermined to allow any user to successfully
run the simulations.

Furthermore, it is noteworthy that both the MINRES-PMG and CG-PMG solvers exhibit
nearly identical convergence rates with respect to the exact error as defined in Equation
(14).

4.3 Performance tests
For these examples, the stopping criteria for both CG-PMG and the MINRES-PMG solver
was εsolver(r) ≤ 10–5. This threshold was heuristically determined, as it generally suffices
for most industrial use cases.

In both examples, as illustrated in Fig. 9, we observe linear scaling with respect to an
increase in the number of degrees of freedom. The maximal problem sizes solved on the
RTX 4090 GPU with 24 GB of memory were 1.7 · 107 degrees of freedom in 1.2 seconds
for the plate example and 1.5 ·107 degrees of freedom in 1.1 seconds for the bracket exam-
ple. It can be observed that for more geometrically complex examples, the MINRES-PMG

trend line lies below that of CG-PMG, indicating better performance in practice. This can
be attributed to the fact that CG-PMG requires more iterations to meet the previously
mentioned stopping criterion. Conversely, for simpler geometries, as shown in Fig. 7,
when the relative residual errors are comparable for both CG-PMG and MINRES-PMG,
CG-PMG performs slightly better due to its lower number of compute operations per iter-
ation. This analysis indicates that for an intermediate number of degrees of freedom, the
MINRES-PMG solver can be well-suited for interactive 3D Digital Twin simulations.

4.4 Interactive computational mechanics
Fast 3D Computational Mechanics solvers open up numerous possibilities for interactive
feedback loops - from designer centric simulation applications to simulation-based deci-
sion support in operation and service. In the following, we investigate the potential for an
operation and service centric use case. For those types of use cases many existing indus-
trial interactive simulation applications leverage model order reduction technologies [49].
However, their application is often restricted to scenarios that can be precisely parame-
terized. The fast 3D solver we introduce in this paper is considerably more adaptable. It
allows for example to identify the implications of defects in mechanical structures, e.g.,
caused by manufacturing errors or operational damage.

Figure 9 MINRES-PMG and CG-PMG performance scaling with respect to number of degrees of freedom for
bracket and perforated plate examples. Trend line in red corresponds to the MINRES-PMG , and in green to the
CG-PMG solver
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Figure 10 Comparative analysis of stress distribution in gearbox mount example: Evaluating the impact of
defects on mechanical integrity and factor of safety

Table 1 Gearbox mount simulation time

# elements #DoFs time (s)

3.3 · 105 1.2 · 106 3.54
1.2 · 106 4.2 · 106 14.30

Let’s consider a damaged gearbox mount of an electric vehicle as a real-life scenario.
With no spare parts available and the vehicle being essential, a rapid assessment is crucial
to determine if the car can still be operated safely. Our approach begins with a 3D scan
of the damaged part, creating an STL model. We then run a simulation using our solver,
quickly assessing the resulting stresses and the extent of the damage as shown in Fig. 10.
In this instance, moderate fidelity simulation takes approximately 3 seconds to complete
(Table 1) and reports a maximum stress that is more than double the norm, suggesting
that operating the car would be unsafe.

However, the technology itself allows for many more opportunities. For example, de-
signers can perform interactive simulations early in the design phase - tweaking and re-
fining designs in real-time to achieve an optimal performance design. In fact, the opti-
mization of the gearbox mount’s topology was achieved using this same technology [41].

5 Conclusion
This work has presented an interactive 3D Computational Mechanics solver which scales
well up to a high number of degrees of freedom. By exploiting GPU computing, this solver
is capable of handling tens of millions of degrees of freedom within seconds.
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We addressed key challenges associated with the IBM when used with piecewise con-
tinuous C0 basis functions, such as inadequate surface and volume approximation, and
difficulties in stress recovery. A detailed analysis of the h-convergence of our method was
conducted, focusing on multiple quantities of interest. These were compared against a
well-established industrial mesh conforming solver [48]. Our findings indicate that the
scaled boundary element approach not only outperforms the unscaled version - used fre-
quently in the Computer Graphics community - but also matches the convergence or-
der of an industrial state-of-the-art tetrahedral mesh conforming solver. We also imple-
mented and evaluated various iterative solvers, concluding that the multigrid precondi-
tioned MINRES–PMG solver offers better accuracy and the fastest convergence in relation
to the established stopping criteria.

Finally, through a real industrial example, we demonstrated the practical applicability
of our approach. We showed that our solver can rapidly assess the structural integrity of
parts, provided corresponding geometric models are available.
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