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Abstract The optimal design of rotational production processes for glass wool man-
ufacturing poses severe computational challenges to mathematicians, natural scien-
tists and engineers. In this paper we focus exclusively on the spinning regime where
thousands of viscous thermal glass jets are formed by fast air streams. Homogeneity
and slenderness of the spun fibers are the quality features of the final fabric. Their
prediction requires the computation of the fluid-fiber-interactions which involves the
solving of a complex three-dimensional multiphase problem with appropriate inter-
face conditions. But this is practically impossible due to the needed high resolution
and adaptive grid refinement. Therefore, we propose an asymptotic coupling concept.
Treating the glass jets as viscous thermal Cosserat rods, we tackle the multiscale prob-
lem by help of momentum (drag) and heat exchange models that are derived on basis
of slender-body theory and homogenization. A weak iterative coupling algorithm that
is based on the combination of commercial software and self-implemented code for
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flow and rod solvers, respectively, makes then the simulation of the industrial pro-
cess possible. For the boundary value problem of the rod we particularly suggest
an adapted collocation-continuation method. Consequently, this work establishes a
promising basis for future optimization strategies.

Keywords Rotational spinning process - viscous thermal jets - fluid-fiber
interactions - two-way coupling - slender-body theory - Cosserat rods - drag models -
boundary value problem - continuation method

Mathematics Subject Classification 76-xx - 34B08 - 41A60 - 65L10 - 65Z05

1 Introduction

Glass wool manufacturing requires a rigorous understanding of the rotational spin-
ning of viscous thermal jets exposed to aerodynamic forces. Rotational spinning pro-
cesses consist in general of two regimes: melting and spinning. The plant of our
industrial partner, Woltz GmbH in Wertheim, is illustrated in Figures 1 and 2. Glass
is heated upto temperatures of 1,050°C in a stove from which the melt is led to a
centrifugal disk. The walls of the disk are perforated by 35 rows over height with
770 equidistantly placed small holes per row. Emerging from the rotating disk via
continuous extrusion, the liquid jets grow and move due to viscosity, surface tension,
gravity and aerodynamic forces. There are in particular two different air flows that
interact with the arising glass fiber curtain: a downwards-directed hot burner flow of
1,500°C that keeps the jets near the nozzles warm and thus extremely viscous and
shapeable as well as a highly turbulent cross-stream of 30°C that stretches and fi-
nally cools them down such that the glass fibers become hardened. Laying down onto
a conveyor belt they yield the basic fabric for the final glass wool product. For the
quality assessment of the fabrics the properties of the single spun fibers, that is, ho-
mogeneity and slenderness, play an important role. A long-term objective in industry
is the optimal design of the manufacturing process with respect to desired product
specifications and low production costs. Therefore, it is necessary to model, simulate
and control the whole process.

Fig. 1 Rotational spinning §
process of the company Woltz
GmbH, sketch of set-up. Several

Axial velogity (m/s)

glass jets forming part of the | 40
row-wise arising fiber curtains j-80
are shown in the left part of the I’WO
disc, they are plotted as black -150

curves. The color map visualizes
the axial velocity of the air flow.
For temperature details see
Figure 2.
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Fig. 2 Rotational spinning 'l

Temperature (K)
process of the company Woltz 800

GmbH, sketch of set-up. Several 1600
glass jets forming part of the | 1200
row-wise arising fiber curtains 800
are shown in the left part of the J4oo
disc, they are plotted as black 250

curves. The color map visualizes
the temperature of air flow. For
velocity details see Figure 1.

Up to now, the numerical simulation of the whole manufacturing process is im-
possible because of its enormous complexity. In fact, we do not long for an uniform
numerical treatment of the whole process, but have the idea to derive adequate mod-
els and methods for the separate regimes and couple them appropriately, for a simi-
lar strategy for technical textiles manufacturing see [1]. In this content, the melting
regime dealing with the creeping highly viscous melt flow from the stove to the holes
of the centrifugal disk might be certainly handled by standard models and methods
from the field of fluid dynamics. It yields the information about the melt velocity and
temperature distribution at the nozzles which is of main importance for the ongoing
spinning regime. However, be aware that for their determination not only the melt
behavior in the centrifugal disk but also the effect of the burner flow, that is, aero-
dynamic heating and heat distortion of disk walls and nozzles, have to be taken into
account. In this paper we assume the conditions at the nozzles to be given and fo-
cus exclusively on the spinning regime which is the challenging core of the problem.
For an overview of the specific temperature, velocity and length values we refer to
Table 1. In the spinning regime the liquid viscous glass jets are formed, in particular
they are stretched by a factor 10,000. Their geometry is characterized by a typical
slenderness ratio 8 = d/I ~ 10~* of jet diameter d and length [. The resulting fiber
properties (characteristics) depend essentially on the jets behavior in the surrounding
air flow. To predict them, the interactions, that is, momentum and energy exchange, of
air flow and fiber curtain consisting of M N single jets (M = 35, N = 770) have to be
considered. Their computation requires in principle a coupling of fiber jets and flow
with appropriate interface conditions. However, the needed high resolution and adap-

Table 1 Typical temperature, velocity and length values in the considered rotational spinning process, cf.
Figures 1 and 2.

Temperature Velocity Diameter
Burner air flow in channel T, 1,773 K Vair1 1.2 102 m/s Wi 1.0-1072m
Turbulent air stream at injector Tair2 303 K Vair2 3.0 - 102 m/s W5 2.0- 1074 m
Centrifugal disk Ter 1,323 K Q2.3-10% 1/s 2R4.0-107'm
Glass jets at spinning holes 01323 K U 6.7-1073 m/s D74-107%m

There are M = 35 spinning rows, each with N = 770 nozzles. The resulting 26,950 glass jets are stretched

by a factor 10,000 within the process, their slenderness ratio is § ~ 1074,
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tive grid refinement make the direct numerical simulation of the three-dimensional
multiphase problem for ten thousands of slender glass jets and fast air streams not
only extremely costly and complex, but also practically impossible. Therefore, we
tackle the multiscale problem by help of drag models that are derived on basis of
slender-body theory and homogenization, and a weak iterative coupling algorithm.

The dynamics of curved viscous inertial jets is of interest in many industrial appli-
cations (apart from glass wool manufacturing), for example, in nonwoven production
[1, 2], pellet manufacturing [3, 4] or jet ink design, and has been subject of numerous
theoretical, numerical and experimental investigations, see [5] and references within.
In the terminology of [6], there are two classes of asymptotic one-dimensional models
for a jet, that is, string and rod models. Whereas the string models consist of balance
equations for mass and linear momentum, the more complex rod models contain also
an angular momentum balance, [7, 8]. A string model for the jet dynamics was de-
rived in a slender-body asymptotics from the three-dimensional free boundary value
problem given by the incompressible Navier-Stokes equations in [5]. Accounting for
inner viscous transport, surface tension and placing no restrictions on either the mo-
tion or the shape of the jet’s center-line, it generalizes the previously developed string
models for straight [9-11] and curved [12-14] center-lines. However, already in the
stationary case the applicability of the string model turns out to be restricted to certain
parameter ranges [15, 16] because of a non-removable singularity that comes from
the deduced boundary conditions. These limitations can be overcome by a modifica-
tion of the boundary conditions, that is, the release of the condition for the jet tangent
at the nozzle in favor of an appropriate interface condition, [17-19]. This involves
two string models that exclusively differ in the closure conditions. For gravitational
spinning scenarios they cover the whole parameter range, but in the presence of ro-
tations there exist small parameter regimes where none of them works. A rod model
that allows for stretching, bending and twisting was proposed and analyzed in [20, 21]
for the coiling of a viscous jet falling on a rigid substrate. Based on these studies and
embedded in the special Cosserat theory a modified incompressible isothermal rod
model for rotational spinning was developed and investigated in [16, 19]. It allows
for simulations in the whole (Re, Rb, Fr)-range and shows its superiority to the string
models. These observations correspond to studies on a fluid-mechanical ‘sewing ma-
chine’, [22, 23]. By containing the slenderness parameter é explicitely in the angular
momentum balance, the rod model is no asymptotic model of zeroth order. Since its
solutions converge to the respective string solutions in the slenderness limit § — 0, it
can be considered as §-regularized model, [19]. In this paper we extend the rod model
by incorporating the practically relevant temperature dependencies and aerodynamic
forces. Thereby, we use the air drag model F of [24] that combines Oseen and Stokes
theory [25-27], Taylor heuristic [28] and numerical simulations. Being validated with
experimental data [29-32], it is applicable for all air flow regimes and incident flow
directions. Transferring this strategy, we model a similar aerodynamic heat source for
the jet that is based on the Nusselt number Nu [33]. Our coupling between glass jets
and air flow follows then the principle that action equals reaction. By inserting the
corresponding homogenized source terms induced by F and Nu in the balance equa-
tions of the air flow, we make the proper momentum and energy exchange within this
slender-body framework possible.
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The paper is structured as follows. We start with the general coupling concept for
slender bodies and fluid flows. Therefore, we introduce the viscous thermal Cosserat
rod system and the compressible Navier-Stokes equations for glass jets and air flow,
respectively, and present the models for the momentum and energy exchange: drag
F and Nusselt function Nu. The special set-up of the industrial rotational spinning
process allows for the simplification of the model framework, that is, transition to
stationarity and assumption of rotational invariance as we discuss in detail. It fol-
lows the section about the numerical treatment. To realize the fiber-flow interactions
we use a weak iterative coupling algorithm, which is adequate for the problem and
has the advantage that we can combine commercial software and self-implemented
code. Special attention is paid to the collocation and continuation method for solving
the boundary value problem of the rod. Convergence of the coupling algorithm and
simulation results are shown for a specific spinning adjustment. This illustrates the
applicability of our coupling framework as one of the basic tools for the optimal de-
sign of the whole manufacturing process. Finally, we conclude with some remarks to
the process.

2 General coupling concept for slender bodies and fluid flows

We are interested in the spinning of ten thousands of slender glass jets by fast air
streams, M N = 26,950. The glass jets form a kind of curtain that interact and cru-
cially affect the surrounding air. The determination of the fluid-fiber-interactions re-
quires in principle the simulation of the three-dimensional multiphase problem with
appropriate interface conditions. However, regarding the complexity and enormous
computational effort, this is practically impossible. Therefore, we propose a cou-
pling concept for slender bodies and fluid flows that is based on drag force and heat
exchange models. In this section we first present the two-way coupling of a single
viscous thermal Cosserat rod and the compressible Navier-Stokes equations and then
generalize the concept to many rods. Thereby, we choose an invariant formulation in
the three-dimensional Euclidian space E>.

Note that we mark all quantities associated to the air flow by the subscript
throughout the paper. Moreover, to facilitate the readability of the coupling concept,
we introduce the abbreviations ¥ and W, that represent all quantities of the glass jets
and the air flow, respectively.

2.1 Models for glass jets and air flows
2.1.1 Cosserat rod

A glass jet is a slender body, that is, a rod in the context of three-dimensional contin-
uum mechanics. Because of its slender geometry, its dynamics might be reduced to a
one-dimensional description by averaging the underlying balance laws over its cross-
sections. This procedure is based on the assumption that the displacement field in
each cross-section can be expressed in terms of a finite number of vector- and tensor-
valued quantities. In the special Cosserat rod theory, there are only two constitutive
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Fig. 3 Special Cosserat rod
with Kirchhoff constraint
dsr = d3.

elements: a curve specifying the position r: Q — E? and an orthonormal direc-
tor triad {dy,dz,d3}: Q — E3 characterizing the orientation of the cross-sections,
where Q = {(s,1) € R?|s € I(t) = [0,1(t)], ¢ > 0} with arclength parameter s and
time 7. For a schematic sketch of a Cosserat rod see Figure 3, for more details on
the Cosserat theory we refer to [6]. In the following we use an incompressible vis-
cous Cosserat rod model that was derived on basis of the work [20, 34] on viscous
rope coiling and investigated for isothermal curved inertial jets in rotational spinning
processes [16, 19]. We extend the model by incorporating temperature effects and
aerodynamic forces. The rod system describes the variables of jet curve r, orthonor-
mal triad {dy, d, d3}, generalized curvature k, convective speed u, cross-section A,
linear velocity v, angular velocity w, temperature 7 and normal contact forces n - d,
o =1, 2. It consists of four kinematic and four dynamic equations, that is, balance
laws for mass (cross-section), linear and angular momentum and temperature,

0;r =V — uds,
0;dj = (w — uk) x dj,
osr =ds,
0sd; = k& x dj,
A+ 09,(mA) =0, )
p(3;(AV) + 05 (uAV)) = dyn + pAgeg + fu;r,
,0(8,(J -w) + 05 (uJ - co)) =0d;m+d3 xn,
pcp (9 (AT) + 05uAT)) = Graa + Gair

supplemented with an incompressible geometrical model of circular cross-sections
with diameter d

J=1(d1 ®d1 +d; ®dy +2d3 ®d3),
i

I=
64

dat oA="p
4
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as well as viscous material laws for the tangential contact force n - d3 and contact
couple m

n-d3=3uAdsu
2
m:3ul(d1®d1+d2®d2+ §d3®d3> - 0.

Rod density p and heat capacity ¢, are assumed to be constant. The temperature-
dependent dynamic viscosity u is modeled according to the Vogel-Fulcher-Tamman
relation, that is, w(T) = 10P1tP2/(T=pP3) Pa s where we use the parameters p; =
—2.56, pp =4,289.18 K and p3 = (150.74 4+ 273.15) K, [33]. The external loads rise
from gravity pAgeg with gravitational acceleration g and aerodynamic forces fy;;.
In the temperature equation we neglect inner friction and heat conduction and focus
exclusively on radiation ¢,,4 and aerodynamic heat sources ¢,;. The radiation effect
depends on the geometry of the plant and is incorporated in the system by help of the
simple model

Grad = eromd (T — TY)
with emissivity eg, Stefan-Boltzmann constant o and reference temperature Ti,r.
Appropriate initial and boundary conditions close the rod system.

2.1.2 Navier-Stokes equations

A compressible air flow in the space-time domain €; = {(x,71)|x € Q CE3, 7 > 0} is
described by density p,, velocity v,, temperature 7,. Its model equations consist of
the balance laws for mass, momentum and energy,

0 px + V- (vipy) =0,
8t (,O*V*) +V. (V* ® ,O*V*) =V. SZ + Px8€g + fjetSv (2)
0r(oxex) + V- (Vipxes) =Si 1 VVu = V- Qu + Gjers

supplemented with the Newtonian stress tensor S,, the Fourier law for heat conduc-
tion (s,

Se = =PI+ 1 (VVa + V) + 0,V - V1,

qx = _k*VT*,

as well as thermal and caloric equations of state of a ideal gas

T, Da
Dx = P& R T, e*:/ C,;*(T)dT— —
0

*

with pressure p, and inner energy e,. The specific gas constant for air is denoted by
R,. The temperature-dependent viscosities fi«, A, heat capacity cp, and heat con-
ductivity k, can be modeled by standard polynomial laws, see, for example, [33, 35].
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External loads rise from gravity p, geg and forces due to the immersed fiber jets /.
These fiber jets also imply a heat source gj.;s in the energy equation. Appropriate
initial and boundary conditions close the system.

2.2 Models for momentum and energy exchange

The coupling of the Cosserat rod and the Navier-Stokes equations is performed by
help of drag forces and heat sources. Taking into account the conservation of momen-
tum and energy, f; and fj.;; as well as g, and gjers satisfy the principle that action
equals reaction and obey common underlying relations. Hence, we can handle the
delicate fluid-fiber-interactions by help of two surrogate models, so-called exchange
functions, that is, a dimensionless drag force F (inducing £y, fjers) and Nusselt num-
ber Nu (inducing qyir, gjess). For a flow around a slender long cylinder with circular
cross-sections there exist plenty of theoretical, numerical and experimental investiga-
tions to these relations in literature, for an overview see [24] as well as, for example,
[29, 30, 33, 36] and references within. We use this knowledge locally and globalize
the models by superposition to apply them to our curved moving Cosserat rod. This
strategy follows a Global-from-Local concept [37] that turned out to be very satisfy-
ing in the derivation and validation of a stochastic drag force in a one-way coupling
of fibers in turbulent flows [24].

2.2.1 Drag forces - L4y vs fjers

Let ¥ and W, represent all glass jet and air flow quantities, respectively. Thereby,
W, is the spatially averaged solution of (2). This delocation is necessary to avoid
singularities in the two-way coupling. Then, the drag forces are given by

fair(s, 1) = F (W (s, 1), W (r(s, 1), 1)),

fiors(x, 1) = —/ 8(x —r(s, t))]-(\I’(s, 1), ¥, (x, t)) ds,
1(t)

2 d
My F<d3, Px (v, — V)>,
dpy 22

*

‘7:(\117 \I’*) =

where § is the Dirac distribution. By construction, they fulfill the principle that action
equals reaction and hence the momentum is conserved, that is,

/ (5. 1) ds = — / o (x, 1) dx
Iy (1) 1%

for an arbitrary domain V and Iy (¢t) = {s € I(¢t)|r(s,t) € V}. The (line) force F
acting on a slender body is caused by friction and inertia. It depends on material
and geometrical properties as well as on the specific inflow situation. The number of
dependencies can be reduced to two by help of non-dimensionalizing which yields
the dimensionless drag force F in dependence on the jet orientation (tangent) and the
dimensionless relative velocity between air flow and glass jet. Due to the rotational
invariance of the force, the function

F:S*xE—E
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can be associated with its component tuple F for every representation in an orthonor-
mal basis, that is,

F:S2, xR >R,

3 3 3
F=(F, F, F3) with Y Fi(r.w)ej= F(Z Tie;, Zwiei)
i=1 i=1

i=1

for every orthonormal basis {ej}.

For F we use the drag model [24] that was developed on top of Oseen and Stokes
theory [25-27], Taylor heuristic [28] and numerical simulations and validated with
measurements [29-32]. It shows to be applicable for all air flow regimes and incident
flow directions. Let {n, b, 7} be the orthonormal basis induced by the specific inflow
situation (7, w) with orientation 7 and velocity w, assuming w {f t,

W—w,T

n=———, b=r1xn,
Wn

Wr =W-T, Wy =,/W—w

Then, the force is given by
F(z,w) = Fy(wy)n + Fr (w,, wo)T,

Fp(wy) = we (wy) = wyry (wy), 3)

Fr(wy, we) = wewyce (wy) = werg (wy)

according to the Independence Principle [38]. The differentiable normal and tangen-
tial drag functions ¢,,, c; are

47 QSZ_S/2+5/]6
l—wy——c—— |, wp<wi,
Swy, 328
3
cn(wy) = eXp(Z pn,jlnj wn>, wi = w, < wy,
=0
+0.5, )
N wy < Wy
4 ;282 —285+1
————— |l —wy——=——— |, w.<uwy,
25 — Dwy, 1628 — 1)
3
cr(wy) = exp(Zpr’j In/ w,,), wy < w, < wy,
=0
\/w_n, w2 < Wy,

with S(w,) = 2.0022 — Inwy,, transition points wi; = 0.1, wp = 100, amplitude
y = 2. The regularity involves the parameters p, o = 1.6911, p, 1 = —6.7222. 1071,
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pn2 = 3.3287 - 1072, pn3 = 3.5015 - 1073 and pr,0 = 1.1552, pr 1 = —6.8479 -
107!, pr2=1.4884-1072, p,3 =7.4966- 10~*. To be also applicable in the special
case of a transversal incident flow w || T and to ensure a realistic smooth force F, the
drag is modified for w, — 0. A regularization based on the slenderness parameter &
matches the associated resistance functions r,,, r; (3) to Stokes resistance coefficients
of higher order for w, <« 1, for details see [24].

2.2.2 Heat sources - quir VS Gjers

Analogously to the drag forces, the heat sources are given by
Gair(s. 1) = Q(¥(s, 1), W, (r(s.1),1)),
Gjets(X, 1) = — /I([) S(X —r(s, t))Q(\Il(s, 1), W, (x, t)) ds,

* d '* * *
QW W,) = 2k, (T, — T)Nu[ ——" . d3, 2Py, — |, 2P}
”V*_V” 2 Mox ky

The (line) heat source Q acting on a slender body also depends on several material
and geometrical properties as well as on the specific inflow situation. The number of
dependencies can be reduced to three by help of non-dimensionalizing which yields
the dimensionless Nusselt number Nu in dependence of the cosine of the angle of
attack, Reynolds and Prandtl numbers. The Reynolds number corresponds to the rel-
ative velocity between air flow and glass jet, the typical length is the half jet circum-
ference.

For Nu we use a heuristic model. It originates in the studies of a perpendicular
flow around a cylinder [33] and is modified for different inflow directions (angles of
attack) with regard to experimental data. A regularization ensures the smooth limit
for a transversal incident flow in analogon to the drag model for F in (3). We apply

Nu: [, 1] x Rf xRf — R,

Nu(c, Re, Pr) = (1 — O.Shz(c, Re)) (0.3 + \/Nulza (Re, Pr) + Nu?u (Re, Pr)),

Nu, (Re, Pr) = 0.664Re!/2Pr/2, “
0.037Re%%Pr
Re¥! +2.443(Pr2/3 — 1)

cRe/é,, Re <y,
c, Re > §;,.

Nu;, (Re, Pr) =

s

h(c,Re) = {

2.3 Generalization to many rods
In case of k slender bodies in the air flow, we have W;, i = 1, ..., k, representing
the quantities of each Cosserat rod, here k = M N. Assuming no contact between

neighboring fiber jets, every single jet can be described by the stated rod system (1).
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Their multiple effect on the air flow is reflected in fj.;; and gje;s. The source terms in
the momentum and energy equations of the air flow (2) become

k
fers (X, 1) = — Z/ 8(x —ri(s, ) F(Wis, 1), Wa(x, 1)) ds,
i=1 i

1i(1)

k
Gjers(X, 1) = — Z/I ( )5(X —ri(s, 1)) Q(Wils, 1), W, (x, 1)) ds.
i(t

i=1

3 Models for special set-up of rotational spinning process

In the rotational spinning process under consideration the centrifugal disk is perfo-
rated by M rows of N equidistantly placed holes each (M = 35, N = 770). The
spinning conditions (hole size, velocities, temperatures) are thereby identical for
each row, see Figures 1 and 2. The special set-up allows for the simplification of
the general model framework. We introduce the rotating outer orthonormal basis
{a1(¢), ax(¢), az(r)} satisfying 0;a; = R x aj, i = 1,2, 3, where 2 is the angular fre-
quency of the centrifugal disk. In particular, & = Qa; and eg = —a;y (gravity di-
rection) hold. Then, glass jets and air flow become stationary, presupposing that we
consider spun fiber jets of certain length. In particular, we assume the stresses to be
vanished at this length. Moreover, the glass jets emerging from the rotating device
form dense curtains for every spinning row. As a result of homogenization, we can
treat the air flow as rotationally invariant and each curtain can be represented by one
jet. This yields an enormous complexity reduction of the problem. The homogeniza-
tion together with the slender-body theory makes the numerical simulation possible.

3.1 Transition to stationarity
3.1.1 Representative spun jet of certain length

For the viscous Cosserat rods (1), the mass flux Q is constant in the stationarity,
that is, uA = Q/p = const. We deal with -adapted linear and angular velocities,
vo=Vv— R xrand wg = — 2, which fulfill the explicit stationarity relations

vo=ud3, wo=ukK

resulting from the first two equations of (1). Moreover, fictitious Coriolis and cen-
trifugal forces and associated couples enter the linear and angular momentum equa-
tions. Using the material laws we can formulate the stationary rod model in terms of
a boundary value problem of first order differential equations. Thereby, we present it
in the director basis {dy, dz, d3} for convenience (see (5) and compare to [19] except
for the temperature equation). Note that to an arbitrary vector field z = Z?:l Ziaj =
Z?: 1z2idi € [E3, we indicate the component tuples corresponding to the rotating outer
basis and the director basis by z = (71, %2, %3) € R? and z = (21, 22, 23) € R>, re-
spectively. The director basis can be transformed into the rotating outer basis by the
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tensor-valued rotation R, thatis, R = a; ® dj = R;;a; ® a € E3? ® E? with associated
orthogonal matrix R = (R;;) = (d; - aj) € SO(3). Its transpose and inverse matrix
is denoted by RT. For the components, z = R - 7 holds. The cross-product z x R is
defined as mapping (z x R) : R3 — R3, y > z x (R -y). Moreover, canonical basis
vectors in R3 are denoted by e;, i =1, 2,3, for example, e; = (1,0, 0). Then, the
stationary Cosserat rod model stated in the director basis for a spun glass jet reads

3SF=RT es,
sR= —k xR,
Kn 47 p?
"
un
b= L3
30 p

1 . 1 o
+QQ*-R- (o1 x (1 x ) + Og-R-e1 — R -fui, ®)
dsm = —KXm+n>(e3+££P3-m—£n—3P2‘K
3u 127
Q Q1
S Reen- 221, xR-e)
127 pu 4mp u
0’ 1
— ——2P2-(MK+QR'G1) X (uk + QR -eq),
drp u

1
05T = ——(qrad + Gair)
cpQ

With ¢raq = 24/TERO A/ Q/,o(Tr‘;f — T4)/ﬁ and diagonal matrix Py = diag(1, 1, k),
k € R. For a spun jet emerging from the centrifugal disk at s = 0 with stress-free end
at s = L, the equations are supplemented with

f(0)=(H,R,0), R(0)=e1®ej—e2Q@e3+e3® e,

k(0)=0, u)=U, T(0)=0,

n(L)y=0, m(L)=0
(cf. Table 1). Considering the jet as representative of one spinning row, we choose the
nozzle position to be (H, R, 0) with respective height H, R is here the disk radius.

The initialization R(0) prescribes the jet direction at the nozzle as (dy, dz, d3)(0) =
(a1, —a3, az).

Remark 1 The rotations R € SO(3) can be parameterized, for example, in Euler
angles or unit quaternions [39]. The last variant offers a very elegant way of rewriting
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the second equation of (5). Define

i —a3—a3+a;  2@192 — q093) 2(q193 + 40q2)
R@=| 2qie2+49093) —aqi+a3—aq5+a; 2(q2q3—qoq1) |-
29193 — q092)  2(q2q3 +qoq))  —q? — a3 +q3 + ¢}

a= (g0, 91,92, q3) with ||q|| = 1, then we have 3;q = A(k) - q with skew-symmetric
matrix

0 k1 k2 K3
11—« 0 k3 —k
A(K) _ 5 1 3 2

—k2 —k3 0 K
—K3 K2 —K1 0

3.1.2 Rotationally invariant air flow

Due to the spinning set-up the jets emerging from the rotating device form row-wise
dense curtains. As a consequence of a row-wise homogenization, the air flow (2) can
be treated as stationary not only in the rotating outer basis {ay(¢), a2(¢), az(¢)}, but
also in a fixed outer one. Because of the symmetry with respect to the rotation axis, it
is convenient to introduce cylindrical coordinates (x, r, ¢) € R x R* x [0, 27) for the
space and to attach a cylindrical basis {ex, e, €y} with ex = ay to each space point.
The components to an arbitrary vector field z € [E3 are indicated by z = (zx, zr, Z¢) €
RR3. Then, taking advantage of the rotational invariance, the stationary Navier-Stokes
equations in (x, ) simplify to

1
Ox (PxUxs) + ;8r (rpsvre) =0,

1
x (0x U)%*) + - Or (rPxVraVxx)

= —0x Px + Ox s Ox Vs + A,V - \7*)

1
+ ;8r (rﬂ*(ax Urs + arvx*)) — px8 + (fi)jers

1 2 1 2
Ox (PxUxsVrs) + ;8r (rp« V) — ;,O*v,z,*
= —0;pu + 0x (M*(ax Vs + aar*))

2 N 2
+ ;8r(rll‘«*arvr*) + 0, (A V- vy) — r_zli*vr* + (fr)jetm
1 1
Ox (P2 VxaVgpx) + ;8r (rpxVraVgs) + ;,O*Ur*vfp*

1 1
= Oy (M*axv(p*) + r_zar (rgﬂ*ar <;U¢*>> + (fd?)jets’ (6)
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1
Ox (Px€xUxy) + ;ar (rpsesvr)

= Kx |:2(8x Ux*)z + z(arvr*)2 + (0xUps + 0r Ux*)z

1 2 9
2 2
+ (0« Ud)*) + (rar <; Ur*)) + r_2vr*:|
n n 1
+ 2V 007 = puV -y + 3y (kB T + — 0 (rkad, 1) + g

with V-V, = 8, vxs + (8, (rvy4))/r and equipped with appropriate inflow, outflow and
wall boundary conditions, cf. Figures 1 and 2.

3.2 Exchange functions

To perform the coupling between (5) and (6), we have to compute the exchange
functions in the appropriate coordinates. These calculations are simplified by
the rotational invariance of the problem. As introduced, we use the subscripts ~
and " to indicate the component tuples corresponding to the rotating outer basis
{a1(1), a2(?), a3(7)} and the cylindrical basis {ex, er, 4}, respectively. Essentially for
the coupling are the jet tangent and the relative velocity between air flow and glass
jet, they are

RT. es,
(‘E Ty + 1373 T3 — f3f2)

17 9
v2 v2 “2 &2
\/”2 +r3 \/’”2 +r3

¢
I

T

and

’

o ;21)“—;3(1)(1,*—9}’) f3vr*—|—f2(v¢*—9r) o
Vrel = | Vx> —ut,
2 | =2 2 22
}'2 +r3 V2 +r3
Orel = (Uxxs Urns Vpx — Qr) — ut.

Then, the drag forces are

fair(s) = F(W (), W (F1 (5), \[F2(5) + 72(5))),
. N [1 .
fers(x, 1) = 3 f ;8(x —F (s))(S(r — ,/fzz(s) + f%(s))}‘(\l/(s), v, (x, r)) ds,
2
FU,W,) =2 %%%F(f,z
x u

Q9
o
2
" 1 > 1 A
Fw,v,) =2‘/2&—F(f,2 |21y
TP Px A/ U TP s /U
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and the heat sources

air(s) = Q(W (), W, (71 (5), \/F3(s) +F2(5))),
N 1
Gjers (0, 7) = =5~ /1 ;S(x — F1(8))8(r — \/73(s) + 72(5)) Q(W(s), Wu(x, 7)) ds

Vel o [TQ pu Vel HxC px
Q(W, \Il*)=2k*(T*—T)Nu(V— T, | ———, — ).
[IVretl P M« ﬁ ke

Here, ?jm and gje;s represent the homogenized effect of the N glass jets emerging
from the equidistantly placed holes in an arbitrary spinning row. Correspondingly,
system (5) with \flair and ¢, describes one representative glass jet for this row. To
simulate the full problem with all M N glass jets in the air, jet representatives \V;,
i=1,..., M for all M spinning rows with the respective boundary and air flow con-
ditions have to be determined. Their common effect on the air flow is

M

R N 1

fiw 7)== 5 ) jfl S5 =R B0+ 7))
i=1 i

F(i(s), Walx,r))ds

N M
Gjers (X ’)—‘2_2/ 8(x = F1i())8(r — /73 ,(9) +73,())

Q(Wi(s), Walx,r))ds

4 Numerical treatment

The numerical simulation of the glass jets dynamic in the air flow is performed by
an algorithm that weakly couples glass jet calculation and air flow computation via
iterations. This procedure is adequate for the problem and has the advantage that we
can combine commercial software and self-implemented code. We use FLUENT, a
commercial finite volume-based software by ANSYS, that contains the broad physi-
cal modeling capabilities needed to describe air flow, turbulence and heat transfer for
the industrial glass wool manufacturing process. In particular, a pressure-based solver
is applied in the computation of (6). To restrict the computational effort in grid refine-
ment needed for the resolution of the turbulent air streams we consider alternatively a
stochastic k-w turbulence model. (For details on the commercial software FLUENT,
its models and solvers we refer to http://www.fluent.com.) Note that the modification
of the model equations has no effect on our coupling framework, where the exchange
functions are incorporated by UDFs (user defined functions). For the boundary value
problem of the stationary Cosserat rod (5), systems of nonlinear equations are set
up via a Runge-Kutta collocation method and solved by a Newton method in MAT-
LAB 7.4. The convergence of the Newton method depends thereby crucially on the
initial guess. To improve the computational performance we adapt the initial guess
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iteratively by solving a sequence of boundary value problems with slightly changed
parameters. The developed continuation method is presented in the following. More-
over, to get a balanced numerics we use the dimensionless rod system that is scaled
with the respective conditions at the nozzle. The M glass jet representative are com-
puted in parallel. The exchange of flow and fiber data between the solvers is based on
interpolation and averaging, as we explain in the weak iterative coupling algorithm.

4.1 Collocation-continuation method for dimensionless rod boundary value problem

The computing of the glass jets is based on a dimensionless rod system. For this
purpose, we scale the dimensional equations (5) with the spinning conditions of the
respective row. Apart from the air flow data, (5) contains thirteen physical parameters,
that is, jet density p, heat capacity c,, emissivity eg, typical length L, velocity U
and temperature 0 at the spinning hole as well as hole diameter D and height H,
centrifugal disk radius R, rotational frequency €2, reference temperature for radiation
T,er and gravitational acceleration g. The typical jet viscosity is chosen to be po =
1 (0). These induce various dimensionless numbers characterizing the fiber spinning,
that is, Reynolds number Re as ratio between inertia and viscosity, Rossby number
Rb as ratio between inertia and rotation, Froude number Fr as ratio between inertia
and gravity and Ra as ratio between radiation and heat advection as well as ¢, 4 and €
as length ratios between jet length, hole height, diameter and disk radius, respectively,

oUR U U 4ero 63 R
Re=——, Rb=—, Fr=——, Ra=——,
o QR VgR pcpUD
. L _H D
TR’ R’ R’

In addition, we introduce dimensionless quantities that also depend on local air flow
data, similarly to the Nusselt number in (4)

4u%R UD 8k, R «Cpx
Wy P A A“:Mki'

A= =—"
! 7. pU2D3 L 3 wpc,0D?

Here, A4 is the Prandtl number of the air flow. To make (5) dimensionless we use the
following reference values:

so=L, ro=R, ko=R"",

uo=U, To=0, po=u(To),

no=muoUD?*/(4R), mo=mwuoUD*/(16R?).
We choose the disk radius R as macroscopic length scale in the scalings, since it is
well known by the set-up. As for L, we consider jet lengths where the stresses are
supposed to be vanished. In general, R and L are of same order such that the param-

eter € can be identified with the slenderness ratio é of the jets, cf. Introduction. The
last two scalings for ng and mg are motivated by the material laws and the fact that
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the mass flux is Q = wpU D?/4. Then, the dimensionless system for the stationary
viscous rod has the form

with

8‘YF:RT-63:‘E,

| =

1
-dsR= —« xR,
14

1 4
-0 = — — —uP -m,
7 5K 3MK’13+3MM 3/2

1
— st = —uns,

l 3u

1 1
—dgn= —k xn+Reulk xes+ —njzes
l 3u

+ R Rien xest N2 LR (e x (e x 1)
_— - e X e —_— (e X (e1 Xr
Rb 1 3 Rb2M 1 1

4 Relg ReA; /iR - F( 7, Ay——y @
— _R-e; —Re uR-F( T, Ao—Vy01 ),
Fr2u 1 1 Zﬁ rel

1 4 Re 1
Zasmz —me+€—2nxeg+£ uP3-m—Zn3P2-K

Re & (LR ems+xxR e
N . —_— . n KX .
4Rbu 2 \3p 8 !

Re(ly PRI + R
_ ] — . _ X —_ . ,
g 2 TR T Rp

T —T")

. A Il
+A3(T*—T)Nu( Vrel o A ||Vl A4>,

< T, )
IVrer | 2 \/ﬁ

f(0)=(h,1,0), R(0)=e1®e;—e2R@es+e3® ez,
k(0)=0, u@)=1, TO) =1,
n(1)=0, m(l)=0.

Here, T,,r and the air flow associated T, and Vye; are scaled with @ and U, respectively.
System (7) contains the slenderness parameter € (¢ < 1) explicity in the equation
for the couple m and is hence no asymptotic model of zeroth order. In the slender-
ness limit € — 0, the rod model reduces to a string system and their solutions for
(t,7,u, N =nj3, T) coincide. Only these jet quantities are relevant for the two-way
coupling, as they enter in the exchange functions. However, the simpler string system
is not well-posed for all parameter ranges, [15, 16]. Thus, it makes sense to consider
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(7) as e-regularized string system, [19]. We treat ¢ as moderate fixed regularization
parameter in the following to stabilize the numerics, in particular we set € =0.1.

For the numerical treatment of (7), systems of non-linear equations are set up
via a Runge-Kutta collocation method and solved by a Newton method. The Runge-
Kutta collocation method is an integration scheme of fourth order for boundary value
problems, that is, o,z = (s, 2), f: [a, b] x R" — R" with g(z(a),z(b)) =0. Itis a
standard routine in MATLAB 7.4 with adaptive grid refinement (solver bvp4c . m).
Leta =509 <s1 <--- < sy = b be the collocation points in [a, b] with h; =s; — s;_1
and denote z; = z(s;). Then, the nonlinear system of (N + 1) equations, S(z" =0,
for the discrete solution 2" = (zi)i=0,... N 18 set up via

,,,,,

So(z") = g(z0. 2n) =0,

hit
6

Sit1(Z") =zip1 —z — ((si. 2i) + 48(si41/2, Ziv172) +F(si41,Zi41)) =0,

1 hit1
Ziy1/2 = E(Zi-H +2) — =

f(siv1.zip1) — (s 21))

fori =0,..., N — 1. The convergence and hence the computational performance of
the Newton method depends crucially on the initial guess. Thus, we adapt the ini-
tial guess iteratively by help of a continuation strategy. We scale the drag function F
with the factor C 2 and the right-hand side of the temperature equation with Cr and
treat Re, Rb, Fr, £, Cr and Cr as continuation parameters. We start from the solution
for (Re, Rb, Fr, ¢, Cg, C7r) = (1, 1, 1, 0.15, o0, 0) which corresponds to an isothermal
rod without aerodynamic forces that has been intensively numerically investigated
in [19]. Its determination is straight forward using the related string model as initial
guess. Note that we choose £ so small to ensure that the glass jet lies in the air flow do-
main. The actual continuation is then divided into three parts. First, (Re, Rb, Fr, Cp)
are adjusted, then C7 and finally €. In the continuation we use an adaptive step size
control. Thereby, we always compute the interim solutions by help of one step and
two half steps and decide with regard to certain quality criteria whether the step size
should be increased or decreased.

4.2 Weak iterative coupling algorithm

The numerical difficulty of the coupling of glass jet and air flow computations, Sjess
and Sy, results from the different underlying discretizations. Let ;, denote the rod
grid used in the continuation method and /A be an equidistant grid of step size As
with respective jet data W for data exchange. Moreover, let €2; denote the finite
volume mesh with the flow data W, y for the cell V, (so the chosen mesh realizes
the necessary averaging). For the air associated exchange functions, the flow data is
linearly interpolated on Ij. Precisely, the linear interpolation IL. with respect to f(s),
sj € I, is performed over all V € N (s), where NV (s;) is the set of the cell containing
f(s;) and its direct neighbor cells,

fuir(sj) & F(W(s;). Ly [Pa v 1),
air(sj) ~ Q(V(s)), LN(sj)[‘I&,v])-
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For the jet associated exchange functions entering the finite volume scheme, we
need the averaged jet information for every cell V € ;. We introduce Ia v = {s; €
IAlf(s;) € V} and |Iy| = As|Ia v/, then the averaging E with respect to V is per-
formed over the I y-associated data,

2 [ . NIy »
2 / Fies (6, 1) dr dr & == F(Ey [Wa], U v),
iy V]
2 NIy
—/ Fqjers(x, 1) dx dr ~ — 4 Q(Ey[Wal, W v).
iy V]

The ratio | Iy |/| V| can be considered as the jet length density for the cell V. In case of
M jet representatives, we deal with /o v ; and |Iy ;| fori =1, ..., M. Consequently,
we have Ip v = U,Ai1 Iy, and |Iy| = Zlﬂil |1y ;|. Note, that the interpolation and
averaging approximation strategies have the disadvantage that they are qualitatively
different. Thus, momentum and energy conservation are only ensured for very fine
resolutions.

Summing up, the algorithm that we use to couple glass jet Sjess and air flow Sy
computations has the form:

Algorithm 1

Generate flow mesh Qy,

Perform flow simulation S,; without jets to obtain \Il*(o)
Initialize k =0

Do

Compute: ‘-IJZ.(k) = Sjm(\lifk))fori =1,..., M where flow data is linearly interpo-
lated on I,
- Interpolate jet data on equidistant grid Iz

Find for every cell V in Qy, the relevant rod points I v and average the respective
data

- Compute: \I/fk—H) = Sy (W)

- Update: k =k +1

while ||W® — w&=D| > 101

Remark 2 From the technical point of view, the efficient management of the simula-
tion and coupling routines is quite demanding. In a preprocessing step we generate
the finite volume mesh 2, via the software Gambit and save it in a file that is available
for FLUENT and MATLAB. The program of Algorithm 1 is then realized with FLU-
ENT as master tool. After the air flow simulation FLUENT starts MATLAB. MATLAB
governs the parallelization of the jets computation via MATLAB executables. Collect-
ing the jets information, it provides the averaged jets data on 2y in a file. FLUENT
reads in this data and performs a new air flow simulation with immersed jets.
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Fig. 4 Finite volume mesh €2,
for air flow computations (mesh
detail).

5 Results

In this section we illustrate the applicability of our asymptotic coupling framework to
the given rotational spinning process. We show the convergence of the weak iterative
coupling algorithm and discuss the effects of the fluid-fiber-interactions.

For all air flow simulations we use the same finite volume mesh €25 whose re-
finement levels are initially chosen according to the unperturbed flow structure, inde-
pendently of the glass jets. This implies a very fine resolution at the injector of the
turbulent cross flow which is coarsen towards the centrifugal disk. For mesh details
see Figure 4. The turbulent intensity is visualized in Figure 5. As expected it is high at
the injector and moderate in the remaining flow domain. In particular, it is less than
2% in the region near the centrifugal disk where the glass jets will be presumably
located. Thus, we neglect turbulence effects on the jets dynamics in the following.
However, note that such effects can be easily incorporated by help of stochastic drag
models [24, 37, 40] that are based on RANS turbulence descriptions (for example, k-€
model or k- model). For the jet computations the grid I, is automatically generated
and adapted by the continuation method in every iteration. To ensure that sufficient
jet points lie in each flow cell and a proper data exchange is given we use an equidis-

Fig. 5 Turbulent intensity of
the air flow.

Turbulent intensity
09

0.08
0.06

L 004
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Fig. 6 Convergence of the -1 \ \ ‘ ‘ ‘ ‘ ‘ ‘
weak iterative coupling ——n —coord!nate
algorithm. Relative error of all & 157 —*— r2—COOFd!na'(e‘
M curve coordinates in C_‘; ol — r3—coordlnate<
L2 (I)-norm over number of o
iterations, plotted in logarithmic _g 2.5t J
scale. é
g9 1
S 3.5/ i
o
8 -4t )
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tant grid /o with appropriate step size As (at minimum 2 jet points per interacting
flow cell).

The weak iterative coupling algorithm is fully automated. Each iteration starts with
the same initialization. There is no parameter adjustment. The algorithm turns out to
be very robust and reliable in spite of coarse flow meshes. For our set-up an air flow
simulation takes around 30 minutes CPU-time, and the computation of a single jet
takes approximatively just as long. The algorithm converges within 12-14 iterations.
Figure 6 shows the relative £2-error of all jet curve components over the number of
iterations k, that is,

M xk) _ of
Z ”rjj - rj’i”[lz(li)

o7
iz W7l

f

, with Fji final solution, j =1, 2, 3.

The effects of the fluid-fiber interactions and the necessity of the two-way coupling
procedure for the rotational spinning process can be concluded from the following
results. Figure 7 shows the swirl velocity of the air flow and the location of the im-

Swirl velocity (m/s)

40

30
20
|'10
0

1. lteration 2. Iteration 5. Iteration 10. lteration

Fig. 7 Illustration of iterative coupling procedure. Iteration results for air swirl velocity and immersed
glass jets (plotted as white curves).
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Fig. 8 Final simulation result. 'l Axial velacity (m/s)
Glass jets and air flow in given
rotational spinning process. The

color map visualizes the axial -40
velocity of the air flow. In |
addition, the immersed M = 35 -80
glass jet representatives are 120
colored with respect to their i
corresponding quantity u. For -180

temperature information see
Figure 9. Moreover, the
dynamics and properties of the
highest and lowest jets are
shown in detail in Figures 10,
11, 12 and 13.

mersed glass jets over the iterations. In the unperturbed flow without the glass jets
there is no swirl velocity. In fact, the presence of the jets cause the swirl velocity,
since the jets pull the flow with them. Moreover, the jets deflect the downwards di-
rected burner flow, as seen in Figures 8 and 9. The jets behavior looks very reason-
able. Trajectories and positions are as expected. Furthermore, their properties, that
is, velocity # and temperature 7', correspond to the axial flow velocity and flow tem-
perature, which implies a proper momentum and heat exchange. For jet details we
refer to Figures 10, 11, 12 and 13. They show the influence of the spinning rows. The
jet representative of the highest spinning row is warmer than the one of the lowest
row which implies better stretching capabilities. It is also faster and hence thinner
(A =u~"). This certainly comes from the fact that the highest jet is longer affected
by the fast hot burner flow. However, in view of quality assessment, slenderness and
homogeneity of the spun fiber jets play an important role. This requires the optimal
design of the spinning conditions, for example, different nozzle diameters or various

Fig. 9 Final simulation result.
Glass jets and air flow in given
rotational spinning process. The

Temperature (K)
800

. : R 1600
color maps visualize axial
velocity and temperature of the 1200
air flow, respectively. In |
addition, the immersed M = 35 - 80O
glass jet representatives are I 400
colored with respect to their 250

corresponding quantity 7'. For
velocity information see
Figure 8. Moreover, the
dynamics and properties of the
highest and lowest jets are
shown in detail in Figures 10,
11, 12 and 13.
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Fig. 10 Dynamics of the jets
emerging from the highest and
lowest spinning rows of the
centrifugal disk. Side view of
the plant. See associated
Figures 11, 12 and 13.
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0.55¢ —— Disc
0.5
0.45
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0.35
0.05 0.1 0.15 0.2 0.25 0.3 0.35

sqrt(r22+r32) [m]

distances between spinning rows. But for this purpose, also the melting regime has to
be taken into account in modeling and simulation which is left to future research.

6 Conclusion

The optimal design of rotational spinning processes for glass wool manufacturing in-
volves the simulation of ten thousands of slender viscous thermal glass jets in fast air

Fig. 11 Dynamics of the jets
emerging from the highest and
lowest spinning rows of the
centrifugal disk. Top view of the
plant. See associated Figures 10,
12 and 13.
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Fig. 12 Dynamics of the jets 80 T
emerging from the highest and — Fiber 1
lowest spinning rows of the 70t Fiber 35
centrifugal disk. Jets velocity

u(s), s € [0, L]. See associated 601

Figures 10, 11 and 13.
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streams. This is a computational challenge where direct numerical methods fail. In
this paper we have established an asymptotic modeling concept for the fluid-fiber in-
teractions. Based on slender-body theory and homogenization it reduces the complex-
ity of the problem enormously and makes numerical simulations possible. Adequate
to problem and model we have proposed an algorithm that weakly couples air flow
and glass jets computations via iterations. It turns out to be very robust and converges
to reasonable results within few iterations. Moreover, the possibility of combining
commercial software and self-implemented code yields satisfying efficiency off-the-
shelf. The performance might certainly be improved even more by help of future
studies. Summing up, our developed asymptotic coupling framework provides a very
promising basis for future optimization strategies.

In view of the design of the whole production process the melting regime must
be taken into account in modeling and simulation. Melting and spinning regimes in-
fluence each other. On one hand the conditions at the spinning rows are crucially

Fig. 13 Dynamics of the jets 1600 : : : : : . . . .
emerging from the highest and — Fiber 1
lowest spinning rows of the 1500 Fiber 35|
centrifugal disk. Temperature
T (s), s € [0, L]. See associated 1400
Figures 10, 11 and 12. 2
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§ 1300
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g 1200
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Arc length [m]
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affected by the melt distribution in the centrifugal disk and the burner air flow, re-
garding, for example, cooling by mixing inside, aerodynamic heating outside. On the
other hand the burner flow and the arising heat distortion of the disk are affected by
the spun jet curtains. This obviously demands a further coupling procedure.
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