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Abstract Purpose: Describe a high-throughput method for the analysis of uncertain
models, e.g. in biological research.
Methods: Generalized modeling for conceptual analysis of large classes of models.
Results: Local dynamics of uncertain networks are revealed as a function of intuitive
parameters.
Conclusions: Generalized modeling easily scales to very large networks.
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1 Background

The ongoing revolution in systems biology is revealing the structure of important sys-
tems. For understanding the functioning and failure of these systems, mathematical
modeling is instrumental, cp. Table 1. However, application of the traditional model-
ing paradigm, based on systems of specific equations, faces some principal difficulties
in these systems. Insights from modeling are most desirable during the early stages
of exploration of a system, so that insights from modeling can feed into experimental
set ups.
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Table 1 Three different levels
of modeling. Diagrammatic representation

Ẋ = G(X) − L(X) Generalized model

Ẋ = aX
k+X

− mXp Conventional model

However, at this stage the knowledge of the system is often insufficient to restrict
the processes to specific functional forms. Further, the number of variables in the
current models prohibits analytical investigation, whereas simulation does not allow
efficient exploration of large parameter spaces.

2 Method

Here we present the approach of generalized modeling. The idea of this approach is to
consider not a single model but the whole class of models which are plausible given
the available information. Modeling can start from a diagrammatic sketch, which is
translated into a generalized model containing unspecified functions. Although such
models cannot be studied by simulation, other tools can be applied more easily and
efficiently than in conventional models. In particular, generalized models reveal the
dynamics close to every possible steady state in the whole class of systems depending
on a number of parameters that are identified in the modeling process.

3 Results

In the past it has been shown that generalized modeling enables high-throughput anal-
ysis of complex nonlinear systems in various applications [1, 2]. In particular it was
shown that generalized models can be used to obtain statistically highly-significant
results on systems with thousands of unknown parameters [3].

4 Discussion

For illustration consider a population X subject to a gains G and losses L,

d

dt
X = G(X) − L(X), (1)

where G(X) and L(X) are unspecified functions. We consider all positive steady
states in the whole class of systems described by Equation 1 and ask which of those
states are stable equilibria. For this purpose denote an arbitrary positive steady state
of the system by X∗, i.e. X∗ is a placeholder for every positive steady state that exists
in the class of systems. For determining the stability of X∗ one can use dynamical
systems theory and evaluate the Jacobian of Equation 1 at X∗

J∗ = ∂G

∂X

∣
∣
∣
∣
X=X∗

− ∂L

∂X

∣
∣
∣
∣
X=X∗

.
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For expressing the Jacobian as a function of easily interpretable parameters we use
the identity ∂F

∂X
|X=X∗ = F(X∗)

X∗
∂ logF
∂ logX

|X=X∗ , which holds for positive X∗ and F(X∗).
We write

J∗ = G(X∗)
X∗ gX − L(X∗)

X∗ �X,

where gX := ∂ logG
∂ logX

|X=X∗ and �X := ∂ logL
∂ logX

|X=X∗ are so-called elasticities, a term

mainly used in economics. The prefactors G(X∗)
X∗ and L(X∗)

X∗ denote per-capita gain
and loss rates, respectively. By Equation 1 gain and loss rates balance in the steady
state X∗ such that we can define

α := G(X∗)
X∗ = L(X∗)

X∗ ,

which can be interpreted as a characteristic turnover rate of X. We can thus write the
Jacobian at X∗ as

J∗ = α(gX − �X).

To interpret gX and �X note that for any power law L(X) = mXp the elasticity is
�X = p. Constant functions have an elasticity 0, all linear functions an elasticity 1,
quadratic functions an elasticity 2. This also extends to decreasing functions, e.g.
G(X) = m

X
has elasticity gX = −1. For more complex functions G and L the elastic-

ities can depend on the location of the steady state X∗. However, even in this case the
interpretation of the elasticity is intuitive, e.g. the Holling type-II functional response
G(X) = aX

k+X
is linear for low density X (gX ≈ 1) and saturates for high density X

(gX ≈ 0).
So far we succeeded in expressing the Jacobian of the model as a function of three

easily interpretable parameters. A steady state X∗ in a dynamical system is stable if
and only if the real parts of all eigenvalues of the Jacobian are negative. In the present
model this implies that a given steady state is stable whenever the elasticity of the loss
exceeds the elasticity of the gain gX < �X . A change of stability occurs if gX = �X

as Equation 1 undergoes a saddle-node bifurcation.

5 Conclusion

The simple example already shows that generalized modeling

• reveals boundaries of stability, valid for a class of models and robust against un-
certainties in specific models

• avoids expensive numerical approximation of steady states and can be scaled to
high-dimensional models

Also in larger models it is generally straight forward to derive an analytical expression
that states the Jacobian of the generalized model as a function of simple parameters.
This Jacobian can then analyzed analytically or numerically by a random sampling
procedure. Both approaches are illustrated in a recent paper on bone remodeling [4].
Here, the generalized model analysis showed that the area of parameter space most
likely realized in vivo is close to Hopf and saddle-node bifurcations, which enhances
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responsiveness, but decreases stability against perturbations. A system operating in
this parameter regime may therefore be destabilized by small variations in certain
parameters. Although theoretical analysis alone cannot prove that such transitions
are the cause of pathologies in patients, it is apparent that a bifurcation happening
in vivo would lead to pathological dynamics. In particular, a Hopf bifurcation could
lead to oscillatory rates of remodeling that are observed in Paget’s disease of bone.
This result illustrates the ability of generalized models to reveal insights into systems
on which only limited information is available.
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