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Abstract
In this work we present the industrial application of fiber lay-down models that
enable an efficient simulation of non-woven structures. The models describe the
deposition of fibers on a moving conveyor belt with the help of stochastic differential
equations on manifolds. The model parameters have to be estimated from more
complex models in combination with measurements of the resulting non-woven. In
the application we discuss especially a three-dimensional fiber model for a typical
industrial problem from non-woven production processes.

Keywords: fiber lay-down; stochastic differential equations on manifolds; parameter
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1 Introduction
Technical textiles have attracted great attention to diverse branches of industry over the
last decades due to their comparatively cheap manufacturing. By overlapping thousands
of individual slender fibers, random fiber webs emerge yielding non-woven materials that
find applications e.g. in textile, building and hygiene industry as integral components of
baby diapers, closing textiles, filters and medical devices, to name but a few. A typical
method of production is given by melt-spinning processes, see Figure  for a correspond-
ing plant. There melted polymers are extruded through narrow nozzles leading to plenty
single fibers. Then these fibers are stretched and spun until they solidify due to cooling
air streams. The latter also account for swirling of the fibers before they are laid down
on a moving conveyor belt. The resulting fiber web eventually passes through several pro-
cessing steps of reworking and reinforcement before the finished product is obtained. The
quality of the non-woven can be measured, for example, in terms of homogeneity, basis
weight, or permeability and is already determined to a great extend by the fiber deposition.
Fluctuations in these properties due to stochastic influences during the production pro-
cess cause difficulties for the manufacturer, such as unintended holes in filter materials.
An objective in industry is the simulation of the deposited fiber web and its optimiza-
tion with respect to the desired characteristics. Since in this process, raw material costs
play a more decisive role as compared to the costs of procedure, the optimization aims at
raw material saving that corresponds to a small value of basis weight of the non-woven,
while quality assurance. The primary objective is to generate the microstructure of the
technical textile given the relevant production parameters. Then, on the one hand, the
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Figure 1 Plant for melt-spinning process (Photo by Oerlikon Neumag).

microstructure will be further investigated with respect to the above quality parameters.
On the other hand, a microstructure simulation can be used to predict material properties
of the textile. The material properties can be optimized solving the associated inverse and
optimization problems. Finally, this leads to a complete virtualmaterial design of technical
textiles.
Since the mathematical treatment of the whole process at a stroke is not possible due to

its complexity, a hierarchy ofmodels that adequately describe partial aspects of the process
chain has been developed in research during the last years. In [] the conjunction of those
models has been elaborated using asymptotic analysis, similarity estimates and parameter
identification. More precisely, the description of the fiber dynamics in turbulent air flows
has been realized by a stochastic generalized string model that has been deduced from
a special Cosserat rod under Kirchhoff constraint, consult [, ] for its derivation. This
provides the basis for the software tool FIDYSTa that enables the full simulation of fiber
motion under the influence of surrounding turbulent air flows up to the fiber lay-down on
the transport belt. In this manner, the microstructure of virtual fiber webs can be in prin-
ciple generated. However, this approach is computationally expensive and the complexity
is strongly affected by the number of fibers. For this reason, a class of stochastic surro-
gate models has been proposed in order to compute only the image of the deposited fiber
web, instead of describing the full fiber dynamics that lead to this web. These surrogate
models have in common the structure of a system of ordinary stochastic differential equa-
tions that enables the fast computation of a considerable number of fibers. They contain
parameters that are related to the physical production process, as for example turbulence
influence and fiber coiling, and that have to be identified from the full simulation of a few
fibers with help of the complex string model. Based on the original two-dimensional ver-
sion in [], the surrogatemodels have been frequently improved within the last years. This
includes the addition of a moving conveyor belt [] or, more general, the consideration of
more specific types of production processes as for instance rotational spinning processes
[]. Further enhancements are given by a smooth version in [] where the curvatures of the
fibers are taken into account, and by modelling the lay-down in three dimensions [, ].
The latter has been intended as first step into a realistic generation of three-dimensional
microstructures that can be used for study of flow resistance and elasticity of the non-
woven. The mathematical analysis of these models is sophisticated due to degeneracies
of the associated Fokker-Planck equations. The trend to equilibrium for the original two-
dimensional model has been investigated using Dirichlet forms and operator semi-group
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techniques in [], with a hypocoercivity method in [] and with probabilistic methods
in [–]. The higher-dimensional models have been accordingly analyzed in [, ].
With the help of various techniques from asymptotic analysis connections between these
models have been shown and model reduction in the situation of large or small turbu-
lence have been performed in [–]. A possible strategy for estimating the parameters of
the two-dimensional models has been provided as a heuristic approach in [] which has
been successfully tested by FIDYST simulations of transversal as well as rotational spin-
ning processes in the stated source. In [] an extension of this identification strategy to the
three-dimensional case has been proposed on condition that information about the fiber
orientation is available. In this work we realize this approach in a real industrial problem
for the first time. At the example of a pilot plant of the company Oerlikon Neumag, we
discuss the calibration of the smooth three-dimensional surrogate model and illustrate
the computation of corresponding fiber webs. For this we need both the full simulation of
a few representative fibers with regard to the problem setting and image processing data
from CT-scans of the resulting non-woven.
This paper is structured as follows. At first, we recapitulate the class of surrogate fiber

lay-down models developed in the above mentioned papers. This is done in Section 
where we use a description that can be embedded in the context of geometric Langevin
equations on regular submanifolds as investigated in []. Via this approach, the highly
geometric nature of the class of fiber lay-down models is illustrated.
In Section  we describe a strategy for estimating the parameters of the surrogate mod-

els. The application of the models to the production process in the pilot plant is done in
Section where we are able to simulate virtual fiber webs that are numerically investigated
with regard to their quality characteristics.

2 The fiber lay-downmodels
As mentioned in the Introduction, in this section we recapitulate the class of surrogate
models developed in [, , , , ]. In the surrogate fiber lay-down models the paths of
the deposited fibers (as images of arc-length parametrized curves) are described by sim-
plified stochastic differential equations. For this purpose, distinctive process parameters
that influence the form of the fiber web are incorporated. These are the typical throwing
ranges of the fibers and their coiling behavior, whereas the deposition itself is perturbed
by some random force which is affected by the entanglement of the fibers above the lay-
down region. Other characteristics involve the fiber stiffness and the fiber orientation in
space. Additionally, depending on the production process, different specifications can be
handled using appropriate reference curves. In this work we restrict ourselves on the situ-
ation of a transversal spinning process, that means the fiber lay-down starting from fixed
spinning positions onto a straight moving conveyor belt. Therein the belt velocity as well
as the spinning speed are predetermined parameters given by the production process. The
other parameters have to be appropriately estimated, see Section .
Conceptually, we distinguish between twomajor types of fiber lay-downmodels, a basic

and a smooth version. For better clarity we hide the real environment of the production
process for the moment and focus on the situation of a non-moving conveyor belt. The
motion of the belt as well as anisotropy effects due to physical constraints can be easily
included later on, when we consider the practically relevant D and Dmodels once more
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Figure 2 Scheme (d = 2) of fiber curve ξ with normalized
tangent ω.

separately. In general, the basic model is formulated as a Stratonovich stochastic differen-
tial equation with state space Rd × S

d–, d ∈N, d ≥ , of the form

dξ t = ωt dt,

dωt = –�[ωt]∇V (ξ t) dt +A�[ωt] ◦ dWt ,
()

see [, ]. W denotes a d-dimensional standard Brownian motion. For more details
on manifold-valued stochastic differential equations, see e.g. []. Here the arc-length
parametrized curve ξ : R+

 → R
d represents one deposited fiber. ξ is really arc-length

parametrized since ω lives on S
d–, compare Figure . The drift term in the second equa-

tion models the coiling behavior of the fiber, where �[ω] := I –ω ⊗ ω denotes the projec-
tion of the tangent onto the sphere S

d– with I the identity matrix and x ⊗ y = xyT . The
throwing ranges of the fiber can be controlled with the help of a suitable potential V . The
second term in the equation for ω describes a Brownian motion on S

d– with constant
noise amplitude A ∈ R

+
 and expresses the stochastic forces, i.e. the effect of the turbu-

lent air flows that perturb the deposition of the fibers as desired. We remark that the basic
model () can also be viewed as a geometric Langevin equation having spherical velocities,
see [].
Taking the curvature of the fibers into consideration, which is unavoidable for char-

acterizing bending effects, the smooth fiber lay-down model is developed: The non-
differentiable Brownian motion in () is replaced by a spherical Ornstein-Uhlenbeck pro-
cess, see [] and []. The state space of the new model is then R

d × TSd–, d ∈ N, d ≥ 
where TSd– indicates the tangent bundle of the sphere, see []. This gives the following
Stratonovich stochastic differential equation for the smooth model

dξ t = ωt dt,

dωt = –�[ωt]∇V (ξ t) dt + νt dt, ()

dνt = (ωt ⊗ νt)∇V (ξ t) dt – λνt dt – |νt|ωt dt +μ�[ωt] ◦ dWt .

Therein, the parameter μ ∈R
+
 takes on the role of the noise amplitude, whereas the stiff-

ness of the fibers can be related to λ ∈ R
+
. The connection to () is given by the white

noise limit (compare []), i.e. the basic model can be viewed as a model for non-stiff
fibers.
For the efficient simulation of fiber lay-down, however, these coordinate-free formula-

tions () and () are rather inadequate. Therefore, we consider their description in local
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coordinates. We introduce a parametrization of Sd– or TSd– by

ω = τ (θ ) := τ d–(θ, . . . , θd–),

ν(θ ,κ) =
d–∑
i=

κini(θ ).

Here τ i is inductively defined as

τ i(θ, . . . , θi) :=

(
τ i–(θ, . . . , θi–) sin θi

cos θi

)
, θi ∈ (,π ), i≥ ,

τ (θ) :=

(
cos θ
sin θ

)
, θ ∈R/πZ,

and the spherical unit vectors ni are given by ni := 
|∂θi τ |∂θiτ . So note that the parameters

take values in θ ∈R/πZ× (,π )d– (or inR/πZ in case d = ) and κ ∈R
d– respectively.

Then the basic model in spherical polar coordinates (see []) reads

dξ t = τ (θ t) dt,

dθj,t =
(
–Gj(θ t)nj(θ t) · ∇V (ξ t) +

A


G
j (θ t) (j – ) cot θj,t

)
dt +AGj(θ t) dW

(j)
t

()

with j = , . . . ,d– and Gj := |∂θjτ |– =∏d–
i=j+


sin(θi)

(where the empty product in case j = d–
 is defined to be equal to ). The respective smooth model in local coordinates, compare
with [], is now given by

dξ t = τ (θ t) dt,

dθj,t = –Gj(θ t)nj(θ t) · ∇V (ξ t) dt + Gj(θ t)κj,t dt, ()

dκj,t =
d–∑
i,n=

�inj(θ t)κn,t
(
ni(θ t) · ∇V (ξ t) – κi,t

)
dt – λκj,t dt +μdW (j)

t ,

where j = , . . . ,d –  and �inj = Gi ∂θinn · nj. In all these local coordinate representations
W = (W (), . . . ,W (d–)) denotes a standard (d – )-dimensional Brownian motion. It is
worth mentioning that stationary states can explicitly be computed from the respective
associated Fokker-Planck equations. The equilibrium for the smooth case reads

ps(ξ , θ ,κ) = Ce–(d–)V (ξ )
d–∏
i=

(sin θi)i– exp

(
–

λ

μ

d–∑
i=

κ
i

)
()

with some finite constant C > . Here the empty product is again equal to  in case d = .
In the basic case we obtain the stationary distribution by integrating () over κ .
Now that we have the abstract framework available, we recur to the application point of

view and look at the essential cases d =  and d =  more closely.
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2.1 The 2Dmodel
Setting d =  and θ = α in () leads to the original version of the fiber lay-down models as
it has been introduced in [] as

dξ t = τ (αt) dt,

dαt = –n(αt) · ∇V (ξ t) dt +AdWt .
()

A virtual fiber web can now be simulated by simultaneous use of this model for a large
number of fibers, neglecting the influence of fiber-fiber-contact. The reference points in-
dicating different spinning nozzles are included by adding an appropriate constant to the
ξ t-process. Using this D model, for example, the basis weight distribution of the non-
woven can straightforwardly be determined assuming a uniform thickness of the fibers.
To obtain more realistic and smoother fiber paths the Brownian motion is replaced by

an Ornstein-Uhlenbeck process. Setting d = , θ = α and κ = κ in () the smooth model
reads

dξ t = τ (αt) dt,

dαt = –n(αt) · ∇V (ξ t) dt + κt dt, ()

dκt = –λκt dt +μdWt .

This is a natural smoother version of (). See also [] for a similar model.
The moving conveyor belt can be included in () or () as an additional reference curve,

i.e.

dξ t = τ (αt) dt + ve dt

gives the deviation of the fiber from a reference point determined by the position of the
corresponding spinning nozzle, where v = vbelt

vin
≥  defines the ratio between belt speed

and spinning speed of the fiber, see []. The image of the fiber on the belt, denoted by
(ηt)t≥, is then obtained by ηt = ξ t – vte. Unfortunately, there is no explicit computable
stationary state available in case v > . For a non-moving conveyor belt (v = ) the equi-
librium is given by ().

2.2 The 3Dmodel
In [, , ] three-dimensional fiber lay-down models have been developed. Due to phys-
ical constraints, such as the inpenetrable conveyor belt or gravitation, the possibility of
anisotropic fiber orientations in the resulting fiber web has to be taken into account.
Therefore, it is necessary to amend the isotropic D models, i.e. () and () with d = ,
θ = (α, θ ) and κ = (κ,κ) in order to enable this anisotropy. This has been realized via
some weighting parameter B ∈ [, ]. With the abbreviations

p(ξ ,α, θ ) :=


sin θ
n(α) · ∇V (ξ ),

q(ξ ,α, θ ) := n(α, θ ) · ∇V (ξ )

http://www.mathematicsinindustry.com/content/4/1/4
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one obtains the following (anisotropic) basic D model

dξ t = τ (αt , θt) dt,

dαt = –p(ξ t ,αt , θt) dt +


sin θt
AdW ()

t , ()

dθt = –Bq(ξ t ,αt , θt) dt +


A cot θt dt +A

√
BdW ()

t

as well as the (anisotropic) smooth D model as

dξ t = τ (αt , θt) dt,

dαt = –p(ξ t ,αt , θt) dt +


sin θt
κ,t dt,

dθt = –Bq(ξ t ,αt , θt) dt + Bκ,t dt, ()

dκ,t = p(ξ t ,αt , θt)κ,t cos θt dt – κ,tκ,t cot θt dt – λκ,t dt +μdW ()
t ,

dκ,t = –p(ξ t ,αt , θt)κ,t cos θt dt + κ
,t cot θt dt – Bλκ,t dt +μ

√
BdW ()

t .

Here W = (W (),W ()) denotes a standard two-dimensional Brownian motion. We note
that for B =  the respective D models (), () are obtained. Basically, the weighting pa-
rameter allows for manipulation of the marginal θ -distribution. The stationary solution
of () is given by

ps(ξ , θ ,κ,κ) = Ce–VB(ξ )(sin θ )

B e–

λ

μ
(κ +κ ), ()

compare also with Figure . HereVB := (B+)V denotes a rescaled potential. In the follow-
ing we deal with this rescaled formulation, so we drop off the B to facilitate the reading.
The equilibrium state for the basic model () is obtained by integrating () over the cur-
vatures (κ,κ). Again the moving conveyor belt can be incorporated via

dξ t = τ (αt , θt) dt + ve dt.

Exemplary fiber trajectories computed with () for varying parameter Bwith fixed param-
eters λ = , μ = , v =  and chosen potential V (ξ ) = 

‖ξ‖ are illustrated in Figures -.

Figure 3 Behavior of the stationary θ -density for decreasing B.
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Figure 4 Behavior of fiber trajectories in dependence on the
weighting parameter. Here: B = 0.1.

Figure 5 Behavior of fiber trajectories in dependence on the
weighting parameter. Here: B = 0.01.

Figure 6 Behavior of fiber trajectories in dependence on the
weighting parameter. Here: B = 0.001.

3 Parameter estimation
In this chapter, we specify our strategy to identify the parameters of the surrogate models.
Here we focus on the calibration of the smooth D model () in the situation of a moving
conveyor belt. More precisely, we follow the proposed approach from [] that combine the
heuristic identification method for the D models (compare []) with information about
fiber orientations in the resulting non-woven gained from CT-scan measurements. The
motivation for this approach is associatedwith the utilization of FIDYSTas simulation tool
of the physical fiber lay-down process. Its computations involve themotion of the fibers in
turbulent air flows until they reach the conveyor belt where they are deposited. In this way
FIDYST provides a two-dimensional texture that represents the fiber positions on the belt,
see []. The entanglement of the fibers during their deposition is responsible for their
typical forms, i.e. looping, buckling and coiling, see also [, ]. As already mentioned
these characteristics are recovered by some parameters of the surrogate models. Apart
from the supposedly known speed ratio v, we need estimations of the parametersμ, λ and
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Figure 7 Sketch of fiber lay-down and fixing of the coordinate system.

B as well as the shape of the potential V . We use a potential of the following form

V (ξ ) = V(ξ, ξ) +�(ξ), with V(ξ, ξ) =
ξ 


σ 

+

ξ 


σ 

,

where σ,σ >  represents the standard deviations of the fiber throwing on the belt, com-
pare Figure  for a specification of the coordinate system. Furthermore, � denotes a con-
fining potential taking account of the location of the belt, such that ξ is restricted to [,df ],
where df denotes the thickness of the non-woven.
In summary, the parameters (σ,σ,μ,λ) are identified from a data sample of two-

dimensional fiber locations, denoted by η andprovided by FIDYST,whereas the anisotropy
parameter B is obtained fromCT-scans. For the following considerations, we suppose that
the reference curve γ = –vet is known and that the deviation process ξ = η–γ is centered
in the origin. At first, we dedicate ourselves to the afore-mentioned heuristic approach
from [] that enables the estimation of the D parameters. The advantage of this method
lies in the use of the characteristic parameters that are actually observable in the process.
Since the subsequently defined functional is closely related to the parameter space, the
identification algorithm is very robust. An alternative method in the context of fiber lay-
downmodels using occupation times can be find in []. For more systematic approaches
we refer to [, ]. LetD = (D, . . . ,DN ) ∈ (R ×R×R)N withDi = (ηti ,αti ,κti ), ≤ i≤N ,
be a set of data points obtained from a FIDYST simulation. Here an equidistant time grid
with �t = ti+ – ti is used. The angles αti and curvatures κti are reconstructed from the
fiber points ηti by finite difference approximations. We note that in [] the emphasis is on
the calibration of the model from [], whereas we want to work with the smooth model
() here. Therefore, with ξ t = (ξt,, ξt,), we consider a slightly different functional of char-
acteristic properties than stated in []:

F (D) =
(
S(ξt,),S(ξt,),S(κt),K(κt)

)
,

where we define for a real valued stochastic process (Xt)t∈{t,...,tN },

S(Xt) :=

√√√√√ 
N

N∑
i=

(
Xti –


N

N∑
j=

Xtj

)

,

K(Xt) := max
k∈{,...,k̄}

√∑N–k
i= (Xti+k –Xti )

k(N – k)�t
, k̄ �N ,

http://www.mathematicsinindustry.com/content/4/1/4
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Table 1 Predetermined parameters by the pilot plant and size of data samples

Predetermined FIDYST IPD
vbelt [m/s] vspin [m/s] fdiam [m] �t [m] # points # points

Sample I 0.633 79.400 12·10–6 0.001 13×19,850 4,352,392
Sample II 4.167 79.400 12·10–6 0.001 13×17,850 500,583

which approximate the standard deviations of the processes and of their increments. In
order to find the optimal calibration P = (σ,σ, μ√

λ
,μ) of the surrogate model () with

moving belt and potential V , denoted byDsur(P), we fix the minimization problem

P∗ = argminP
∥∥F(

Dsur(P)
)
–F (Dfid)

∥∥
,

where Dfid indicates the data sample obtained from a FIDYST simulation. This can
be solved by a relaxated quasi Newton method with unit Jacobian, i.e. P(n+) = P(n) +
ω[F (Dsur(P(n))) –F (Dfid)] and starting point P() =F (Dfid), compare []. We note that
F is a very good estimator for P, if the fiber process is close to its stationary state () with
d = , i.e. for adequately large data sample and small speed ratio v, two conditions which
are usually fulfilled in the production processes considered here. It is worth mentioning
that this choice of F is completely detached from the white noise limit situation and can
therefore be used for larger ranges of applications compared to [].
We next describe how the data from CT-scan measurements of a non-woven can be

handled to disclose the orientation of the fibers therein. This method of measurement is
suitable for the examination, since the resolution of the CT-scan is around  μm, which
is about an order of magnitude smaller than a typical fiber diameter, see Table . The CT-
scan provides a real-valued three-dimensional matrix with so-called gray values. These
raw image data are edited by image processing, which translates them into local fiber di-
rections at each pixel with the help of an eigenvalue analysis of the Hessian matrix of the
second partial derivatives of the gray values, for more details consult []. In other words,
the image processing data (IPD) yield spherical polar angles that determine the orientation
of the tangents at the fiber points. With these we generate the corresponding density dis-
tribution p̆(CT)(α, θ ) with (α, θ ) ∈ Ŭ =R/πZ× (, π

 ]. The restriction to the hemisphere is
obligatory, since the data of the CT-scan do not reveal the temporal course of the (undis-
tinguishable) fiber paths. Thus the tangents contain nomore than an unsigned directional
information. Therefore, the density p̆(CT)(α, θ ) has to be distinguished from the (unknown)
angular density distribution obtained by our model () with moving conveyor belt, in the
following denoted by p(M)(α, θ ) with (α, θ ) ∈U =R/πZ× (,π ). The latter can be convert
to the hemisphere via

p̆(M)(α, θ ) =


(
p(M)(α, θ ) + p(M)(α + π ,π – θ )

)
, (α, θ ) ∈ Ŭ ()

which allows us to compare the densities.
Assuming that the fiber lay-down process is close to equilibrium, or in other words, if

v is sufficiently small, we can identify the parameter B without great effort. In that case,
we demand the equality of the standard deviation σB of the θ -marginal of the distribu-
tion function obtained from the CT-scan, denoted by p̆(CT)θ , and the explicitly computed
standard deviation σ̄B of the θ -marginal of the stationary distribution () of our model
(with v = ). The latter reads σ̄B = (

∫ π

 CB(sin θ )

B (θ – π

 )
 dθ )  with normalization constant

http://www.mathematicsinindustry.com/content/4/1/4
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C–
B =

∫ π

 (sin θ )

B dθ . Besides, the influence of the belt speed on the size of B is expected to

be small in contrast to the other parameters, since it involves the deviation from the planar
structure. In the case of very large v, the estimation of B can be straightforwardly embed-
ded in the above heuristic identification approach with a little more effort. For our pur-
poses, however, the described identification strategy will turn out to be adequate anyway.

4 Application
In the following we want to demonstrate the adaptation of the surrogate models on the
basis of a industrial test case describing a real non-woven production process. From a pilot
plant of the company Oerlikon Neumag process data have been available that have been
used to initialize FIDYST simulations of the full process. Plant specific parameters, such
as machine geometry and prevailing air flows have been included in these computations.
In addition, an associated non-woven product has been produced by the pilot plant with
the same configuration data. Pieces of this non-woven have been cut and have been ana-
lyzed in CT-scans. The statistics of the fiber orientation in the non-woven given as image
processing data (IPD) complement the FIDYST informations as described in the previous
chapter.
We discuss two different data samples, denoted by sample I and sample II . Associated

characteristic values and data sizes are summarized inTable . The resolution of FIDYST is
something to be viewed critically. Amore accurate resolution increases the effort and leads
to unreasonable computational costs, compare Chapter . At least the surrogate models
use the same grid sizes and they can be viewed as optimal discrete substitutes for FIDYST,
see also below. The different numbers of IPD points indicate a different usable sample
size of the pieces of nonwoven. A larger number of points leads to smoother α-marginals
p̆(CT)α (α, θ ), compare Figures , , otherwise, it is not relevant. The essential difference be-

Figure 8 Simulated fibers (red) with one
highlighted filament (blue). Here: FIDYST, sample I.

Figure 9 Simulated fibers (red) with one
highlighted filament (blue). Here: surrogate model,
sample I.

http://www.mathematicsinindustry.com/content/4/1/4
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Table 2 Identified parameters to be used in the surrogate model

σ1 [m] σ2 [m] μ [m–3/2] λ [m–1] B v

Sample I 0.0050 0.0049 49,096 1,039 0.398 0.0080
Sample II 0.0055 0.0045 49,885 997 0.375 0.0525

Figure 10 Simulated fibers (red) with one
highlighted filament (blue). Here: FIDYST, sample II.

Figure 11 Simulated fibers (red) with one
highlighted filament (blue). Here: surrogate model,
sample II.

Figure 12 Marginal angular distribution p̆(CT)
θ

(α,
θ ), p̆(M)

θ
(α,θ ). Here: sample I.

tween the two samples is the belt speed. Nevertheless, the speed ratio v is sufficiently small
in both cases, which can be ascertained by the comparison between the standard devia-
tion σ̄B and the one of our model with given v using Monte-Carlo simulations. Thus the
calibration of the surrogate model () is carried out as described above. The estimated pa-
rameters are summarized in Table . In Figures - we illustrate a comparison of fibers
computed by FIDYST and the calibrated D model () with moving transport belt. Qual-
itatively the same fiber lay-down structures are observed. The parameter B is identified
from the CT-scans data as outlined above. This leads to θ -marginal distributions as in
Figures , .
Furthermore, in Figures ,  we compare the α-marginal p̆(CT)α (α, θ ) of the CT-scan data

with the corresponding distributions obtained from FIDYST simulations p̆(MF )
α (α, θ ) and

from the surrogate models p̆(Md)
α (α, θ ) and p̆(Md)

α (α, θ ), which can be computed with the
help of (), (where θ = π/ is fixed for p(MF ) and p(Md)). It seems conspicious, that the large
amplitude in the CT-scans is not reached by the models. On the contrary, both FIDYST

http://www.mathematicsinindustry.com/content/4/1/4
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Figure 13 Marginal angular distribution p̆(CT)
θ

(α,
θ ), p̆(M)

θ
(α,θ ). Here: sample II.

Figure 14 Marginal angular distribution p̆(CT)α (α,θ ),
p̆(M)
α (α,θ ). Here: sample I.

Figure 15 Marginal angular distribution p̆(CT)α (α,θ ),
p̆(M)
α (α,θ ). Here: sample II.

and the surrogate models () and () show an almost uniform distribution, which is not
surprising because of the very small speed ratio. Indeed, the surrogate models show the
same quantitative behavior as the FIDYST simulation.
This discrepancy between the CT-scan measurements and the models with respect to

the α-distribution might be explained by the fact that the CT-scan has analyzed pieces
of non-woven that had already passed through several process steps of reworking and
reinforcement which had influenced the angular distribution. On the contrary, both,
FIDYST and the surrogate fiber lay-down models have described the texture before post-
processing. To investigate this issue more closely, it would be of great interest to have
CT-scans of the deposited fibers without effects due to post-processing.
Finally, we use the calibrated D model to simulate virtual fiber webs by superposing

hundred fibers. The distance of neighboring spinning positions a ≈ . m can be de-
termined from FIDYST simulations, whereas the nonwoven thickness df has to be appro-
priately chosen in the potential V . Unfortunately, it is technically impossible to get at this
parameter. We can only estimate in terms of the fiber diameter fdiam. Exemplary simula-
tions for the two samples with a presumed non-woven thickness df = fdiam are shown

http://www.mathematicsinindustry.com/content/4/1/4
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Figure 16 Simulation of a fiber web corresponding to sample I. Here: side view.

Figure 17 Simulation of a fiber web corresponding to sample I. Here: top view.

Figure 18 Simulation of a fiber web corresponding to sample I. Here: top view (zoomed in).

in Figures -. To compare the quality of the resulting fiber webs, we investigate the ho-
mogeneity more closely. As is common in the practical application, we look at the basis
weight distribution. For this purpose, a D grid is placed over a fixed area of the simulated
fiber web (projected to D) and the basis weight of each cell is numerically determined.
This weightM of a given cell is proportional to the time the fiber process is present in that
cell. In Figures - the relative deviations |E[M]–M|

E[M] between the (expected) averaged and
the actual basis weight in the cells are illustrated for different grid sizes. The standard de-

http://www.mathematicsinindustry.com/content/4/1/4
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Figure 19 Simulation of a fiber web corresponding to sample II. Here: side view.

Figure 20 Simulation of a fiber web corresponding to sample II. Here: top view.

Figure 21 Simulation of a fiber web corresponding to sample II. Here: top view (zoomed in).

viations of these values give the corresponding coefficients of variation (CV -values) which
are summarized in Table . As specimen we choose a square of size  cm for each sam-
ple. Due to the respective smaller CV -values we can state that the simulated fiber web
associated to sample I is more homogeneous than the one given by sample II and hence
better quality characteristics of nonwovens are expected for the machine configuration of
sample I , i.e. for a slower conveyor belt. Due to the different belt speed, however, the basis
weight with respect to sample II is six times smaller compared to sample I .

http://www.mathematicsinindustry.com/content/4/1/4
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Figure 22 Relative deviation of basis weight per grid cell. Here: sample I, 32× 32-grid.

Figure 23 Relative deviation of basis weight per grid cell. Here: sample I, 64× 64-grid.

Figure 24 Relative deviation of basis weight per grid cell. Here: sample I, 128× 128-grid.

http://www.mathematicsinindustry.com/content/4/1/4


Grothaus et al. Journal of Mathematics in Industry 2014, 4:4 Page 17 of 19
http://www.mathematicsinindustry.com/content/4/1/4

Figure 25 Relative deviation of basis weight per grid cell. Here: sample II, 32× 32-grid.

Figure 26 Relative deviation of basis weight per grid cell. Here: sample II, 64× 64-grid.

Figure 27 Relative deviation of basis weight per grid cell. Here: sample II, 128× 128-grid.
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Table 3 Basis weight distribution in terms of CV-values (in %) of the simulated fiber webs

Grid
32× 32 64× 64 128× 128

Sample I 16.4 18.9 22.6
Sample II 31.8 38.9 49.1

5 Conclusion and outlook
Wepresented the application of a D surrogate fiber lay-downmodel to an industrial prob-
lem. The parameters are identified on the basis of experimental data. The calibratedmodel
enables the efficient simulation of a whole virtual fiber web. Further modifications of the
model will include, for example, the impenetrability of the fibers. This is examined in fur-
ther studies. To predict material properties like permeability of the textile, the geometric
model presented here has to be used as a basic model for a complex flow simulation to
determine macroscopic properties of the textile.
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