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Abstract

In this article we address the numerical study of 3D semiconductor devices for
applications in electronics industry including charge generation phenomena due to
impact ionization. With this aim, we propose two novel 3D finite element (FE) models
(methods A and B), for electron and hole Drift-Diffusion (DD) current densities.
Method A is based on a primal-mixed formulation of the DD model as a function of
the quasi-Fermi potential gradient, while method B is a modification of the standard
DD formula based on the introduction of an artificial diffusion matrix. Method A is a
Galerkin FE approximation of the density current (written in generalized ohmic form)
where the harmonic average of the electrical conductivity is used instead of the
standard average while method B is a genuine 3D extension of the classic 1D
Scharfetter-Gummel difference formula interpreted as a stabilized Galerkin FE
approximation with the use of an ‘optimal’ artificial diffusion. The proposed methods
are compared in the 3D simulation of a p-n junction diode and of a p-MOS transistor
in the on-state regime. Results show that method A outperforms method B in
physical accuracy and numerical stability. Method A is then used in the 3D simulation
of a n-MQS transistor in the off-state regime including impact ionization. Results
demonstrate that the model is able to accurately compute the I-V characteristic of the
device until drain-to-bulk junction breakdown.
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1 Introduction and motivation

Semiconductor technology is undergoing a continuously increasing advancement in the
aggressive scaling of device length [1]. In this scenario, three-dimensional (3D) device
modeling and numerical simulation techniques play a critical role in the prediction of
the electrical performance of the system under investigation. In the case of novel mem-
ory devices, due to the different undergoing physical phenomena, a self-consistent multi-
physics approach is preferred with respect to the simulation of independent phenomena
such as chemical reactions, electrical conduction and material properties modification.
To respond to this need the software FEMOS (Finite Element Modeling Oriented Sim-
ulator) has been designed: FEMOS is a general-purpose modular numerical code based
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on the use of the Galerkin Finite Element Method (GFEM) implemented in a fully 3D
framework through shared libraries using an objected-oriented programming language
(C++). The first results of this new approach have been recently presented in [2, 3] and
[4]. In the present work we extend the FEMOS computational platform in the study of
the Drift Diffusion model (DD) [5, 6] and focus on the issue of endowing the simulation
tool of a consistent, stable and accurate procedure for the approximation of electron and
hole current densities in the device. This is of utmost importance in: (i) visualization and
post-processing; (ii) evaluation of conduction currents at device terminals; and (iii) inclu-
sion in the DD model of generation phenomena due to Impact lonization (II). Here, our
attention is devoted to (iii), because of the critical role of II in the convergence and nu-
merical stability of the iterative algorithm used to solve the DD system (see [7], Chapter 3
and [8]), although the methods we propose for the treatment of (iii) can also be profitably
employed for (i) and (ii).

To allow a consistent treatment of the generation term due to II within the FE procedure,
we propose two novel discrete models for electron and hole current densities over the
computational grid. The two methods provide a constant approximation of the current
density inside each mesh element and for this reason they can be easily implemented in any
simulation environment not necessarily employing the GFEM but utilizing, instead, the
Box Integration Method (BIM) that is widely employed in contemporary device simulation
tools. We refer to [9, 10] for an introduction to the mathematical structure of the BIM; we
refer also to [5], Chapter 6, for a detailed discussion of the implementation of the BIM in
the context of a finite box geometrical discretization, and to [11] for a general overview of
the BIM in the solution of a general transport model including electro-thermal effects.

The first scheme (method A) is based on the use of a primal-mixed formulation of the
DD model written as a function of the quasi-Fermi potential gradient (see [12] and [13]).
The second scheme (method B) is a modification of the standard DD formula based on
the introduction of an artificial diffusion matrix (see also [14]). Method A can be classi-
fied as a Galerkin FE approximation of the density current (written in generalized ohmic
form) where the harmonic average of the electrical conductivity is used instead of the
standard average (cf. [15, 16]), while method B is a genuine 3D extension of the classic 1D
Scharfetter-Gummel (SG) difference formula for the computation of the current density
over a 1D element [17], having interpreted this latter formula as the result of a stabilized
Galerkin FE approximation with the use of an ‘optimal’ artificial diffusion (cf. [18]). The
proposed finite element models are validated in the numerical study of 3D device struc-
tures (p-# junction diode and MOS transistors) under on-state and off-state regimes. Re-
sults clearly indicate that method A provides the best performance in terms of physical
accuracy and numerical stability, and demonstrate the ability of the simulation model in
accurately computing the I-V characteristic of the device until the onset of drain-to-bulk
junction breakdown.

The outline of the article is as follows. In Section 2 we review the DD model and the
algorithms for its finite element discretization. In Section 3 we illustrate the novel methods
proposed to calculate the current densities in the device. In Section 4 we carry out their
extensive validation by comparing the obtained results with a reference simulation suite
in the study of 3D p-n and MOS structures including the II generation term. Concluding

remarks and perspectives are addressed in Section 5.
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2 Physical models, solution map and finite element discretization

In this section we present the mathematical model of the problem, the functional iteration
for its decoupled solution and the finite element approximation of the linearized subprob-
lems obtained through decoupling.

2.1 Drift-Diffusion model
The Drift Diffusion model (DD) is described by the Poisson equation coupled with the

continuity equations for the mobile carriers, electrons and holes (see [5-7]):

V-D=gq(p-n+D), (1)
—q%+v~ln=q(R—G), (1b)
ap
qg +V-J,=—qR-G), (1c)
D =¢E, (1d)
E=-Vy, (1e)
Ju =quanE + gD, Vn, (1f)
Jp = aipPE — gDy Vp, (1)

where D, E, J, and J, are the electric displacement, electric field and electron and hole
current densities, while € is the dielectric constant, ¢ the electrostatic potential, p and
n the hole and electron concentrations, D the total net doping, g the elementary charge,
iy and 1, the electron and hole mobilities, D, and D, the electron and hole diffusivi-
ties, while R and G are the net recombination and generation rates. Adopted models for
iy and i, account for an appropriate description of the scattering mechanism from lat-
tice and impurities and the degradation due to high electric fields. Adopted models for R
account for two-particle (Shockley Read and Hall model) and three-particle net recom-
bination mechanisms (Auger model) while the function G is a pure generation term and
accounts for particle rate per unit volume due to Impact Ionization (Van Overstraeten-De
Man model) with the projection of electric field along current density direction as a driving
force. We refer to [5], Chapter 4 for an exhaustive discussion of recombination/generation
mechanisms in semiconductors and associated model parameters used in numerical sim-

ulations.

2.2 Geometrical notation and boundary conditions

The DD equation system (la)-(1g) is solved in a 3D computational domain 2 that rep-
resents the geometrical model of the semiconductor device under investigation. In our
analysis stationary conditions are always assumed (i.e., dn/d¢ = dp/dt = 0), without com-
promising the validity of the proposed approximation methods.

The device domain € is the union of two open disjoint subsets, Q2g; (doped silicon part),
and Q. (oxide part) which it is assumed to be a perfect insulator. The device boundary
9 is divided into three disjoint subsets, I'p, I'y and iy = 9Q2g; N 9R20x. The subset I'p
includes the ideal ohmic contacts of the device, i.e., equipotential surfaces where Dirichlet
boundary conditions for the dependent variables ¢, n and p are applied. On the subset
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'y homogeneous Neumann boundary conditions are applied to prevent any exchange of
electric and current flux with the surrounding environment. On the interface subset I'jy
continuity of electric potential and of the normal component of the electric displacement
is assumed, while tangentially flowing electron and hole current fluxes are enforced. This
latter condition reflects the fact that the oxide region is assumed to behave as a perfect
insulator and prevents from simulating current injection from the semiconductor into
the oxide region.
The complete set of boundary conditions is:

@ =¢p;, D-n=0, [[D'l’l]]zo,
n=np onlp, J, - n=0 onTly, J, - n=0 on [y, 2)
P =PD; ]p‘nzor ]p‘nzor

where ¢p, pp and np are boundary data for the dependent variables (computed as de-
scribed in [5], Chapter 5), n is the outward unit normal vector over 92 = I'p U 'y and
over [y, while [-] is the jump operator across the interface Tiy;.

2.3 The Gummel solution map

The highly nonlinear coupled nature of the DD system makes its analytical treatment very
difficult, if not impossible. For this reason, numerical schemes must be used to compute
an approximate solution. To this purpose, we introduce the Maxwell-Boltzmann (MB)
statistics for electrons and holes:

n=mn;exp((¢ — ¢n)/ Vi) (32)

p =niexp((¢p — )/ Vi), (3b)

where #; is the intrinsic concentration in the semiconductor material, ¢, and ¢, are the
quasi-Fermi potentials for electrons and holes while Vi, is the thermal voltage. The Gum-
mel’s decoupled algorithm for the iterative solution of the DD system (2.1) consists of
solving first the Poisson equation (1a) with respect to the dependent variable ¢, having
expressed # and p with the Maxwell-Boltzmann statistics (3a) and (3b). This makes (1a)
exponentially nonlinear with respect to the electric potential so that to update this latter
dependent variable the Newton method is employed [19]. The continuity equations (1b)-
(1c) are then successively solved in linear form with respect to the dependent variables #
and p inside the adopted decoupled Gummel map algorithm [20]. The lagging procedure
introduced and analyzed in [6] is used to treat the recombination/generation terms in such
a way that each decoupled continuity equation enjoys a continuous maximum principle.
This ensures the well-posedness of each subproblem and the strict positivity of the carrier
densities as physically required. Then, once a step of the Gummel iteration is completed,
the MB relations (3a) and (3b) are inverted to update the quasi-Fermi potentials using the
computed iterates for ¢, n and p, until convergence. Linear convergence of the Gummel al-
gorithm is theoretically proved in [6], although practical computational experience often
shows superlinear convergence behavior.

2.4 Finite element approximation
The simulation domain €2 is divided in a discrete partition 7, made by elements K, each
element K being a tetrahedron such that Q = [ J KeT, K. Then, each differential problem
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in the Gummel decoupled algorithm of Section 2.3 is written in weak form (see [21],
Chapter 5) and numerically approximated using the displacement-based Galerkin Finite
Element Method (GFEM) with piecewise linear conforming elements for potential and
carrier densities (see [21], Chapter 6). In the particular case of the linearized continu-
ity equations, to avoid numerical instabilities due to possible dominance of the drift term,
the variant of the GFEM denoted Edge Averaged Finite Element (EAFE) method proposed
and analyzed in [22-25] is used in the numerical approximation. The EAFE scheme enjoys
several good properties (numerical stability, robustness and convergence with respect to
the mesh discretization parameter). In particular, in the 2D case if 7}, is a Delaunay tri-
angulation, then the stiffness matrix associated with (1c) and (1b) is a M-matrix [24]. As
a consequence, the computed solution (electron and hole density) satisfies the Discrete
Maximum Principle (DMP) and is strictly positive over the computational domain. Unfor-
tunately this property is no longer valid in a 3D framework because the Delaunay condition
on the mesh is not enough to guarantee the M-matrix property, so that a more restrictive
condition, sufficient to ensure the DMP, is presented in [22] (cf. Eq. (2.5), Lemma 2.1). In
the numerical experiments shown in Section 4 we have used this latter condition to check
the geometrical quality of the triangulation 7}, in the critical case where the generation
term due to impact ionization phenomena becomes the dominating driving force in the

simulation of charge transport in the device.

3 Finite element models for the current density

The construction of a stable and accurate approximate current density field in a primal-
based FE formulation is not a trivial task because of possible numerical problems arising
from differentiation and cancellation in the DD transport relations (1f)-(1g). Throughout
the remainder of this section we assume that the solution of the DD system (1a)-(1g) is
carried out using the Gummel decoupled algorithm described in Section 2.3. We first in-
troduce a simple finite element formula for the representation of the current density over
each mesh element which is a straightforward implementation of (1f)-(1g). Then, we pro-
pose two novel finite element methodologies for current density discretization. The novel
approaches have a much simpler implementation than other more sophisticated formula-
tions (such as the dual-mixed hybridized FEM with exponential fitting, see [16, 26]) and
are completely compatible for use in the classical Box Integration Method (BIM) [9, 10]. Of
the three examined methods, one reveals to be particularly robust and accurate, as demon-
strated by several tests discussed in Section 4. In the remainder of the article, for a given
element K in 7, we denote the volume of K by vol(K); moreover, with the subscript K we
refer to a quantity defined in the interior of K while the subscript / refers to a quantity de-
fined at the vertices of K. For a given function f : K — R we define (f)x := [ f dK/ vol(K)
the mean integral value of f over K. We also assume that carrier mobility (and the associ-
ated diffusivity through Einstein’s relation) is constant in K, while the electric potential is

linear (so that the associated electric field is a constant vector in K).

3.1 The DD formula
The simplest FE model for the current densities (method DDFE) is obtained by substitut-
ing into the transport equations (1f)-(1g) the functions n, p and ¢ with their corresponding

FE approximations ny, p; and ¢, and then by computing the integral average of the re-
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sulting expressions over the element K. This yields

Jux = qun(n)xEx + gD,V k, (4a)

Jo.x = qup(P)kEx — gD, Vi . (4b)

It is immediate to see that the discrete current densities (4a) and (4b) automatically repro-
duce the limiting cases of pure diffusive flow (Ex = 0) and pure ohmic flow (#, x = constant
and pj, x = constant). In the case of thermal equilibrium (J,,x = J,,x = 0), we can anticipate
computational difficulties with the use of (4a) and (4b) because of exact cancellation of
drift and diffusive current contributions. Thus, by a continuity argument, we also see that
method DDFE does not seem appropriate in the numerical treatment of the subthreshold
current regime, where currents are not exacty equal to zero but are very small. The two

following formulations are designed to overcome this limitation.

3.2 Method A
To describe method A we consider the case of electron continuity equation because a
completely similar treatment holds for the hole continuity equation. Using (3a) into (1f)

yields the equivalent ohmic form of the electron current density

Jn=04E, (53)
where:

O = quinnt = quuaniexp((@ — o)/ Vin), (5b)

E,=-Vy, (5¢)

are the electrical conductivity and the effective electric field experienced by electrons,
respectively. We notice that the use of the ohmic representation yields a nonlinear gradient
form of the DD current density. To construct the finite element model for J,, as in (5a), we
use the primal-mixed (PM) FEM introduced and analyzed in [12] and recently extended
to the case of advective-diffusive operators in [13]. In the PM FEM of lowest order, the
approximate current density is constant over each K € 7;, while the approximate quasi-
Fermi potential is piecewise linear and continuous over 7j,. Let us introduce the finite

element spaces of piecewise constant and piecewise linear continuous functions over 7j:

Qn = {w e L*(Q): wlx € Po(K) VK € Ty}, (5d)

Vi ={ue C°(Q): ulx € P1(K) VK € Ty} (5¢)

and the approximate electrical conductivity o, := gu.n; exp((n — @un)/ Vin) where ¢, €
Vi and ¢y, € V}, are the finite element discrete analogues of ¢, and ¢, respectively. Then,
the PM-FE approximation of (5a) reads: find J,,;, € [Q]® such that

/ o Iun - 4n dQ2 +/ Vo qdQ2=0 Yq, € [Qu°, (5f)
Q Q
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where J,,; € [Qu]? is the finite element discrete analogue of J,,. Since functions in [Qy]? are
discontinuous, relation (5f) amounts to

/ o Ini - A dK + / Vi @ndK =0 Va, € [Po(K)]. (5g)
K K

Using in (5g) the standard basis functions for [Py (K)]? we obtain

a‘pn,h
896,‘

Unnli = =Hr(oun) » i=1,2,3,VK €Ty (5h)
where Hy(0y,) := ({0, 1)x)7! is the harmonic average of o,,, over the element K.

We notice that the approximation of the current density with a constant vector may
appear inadequate because of the exponential dependence of the electron conductivity on
the quasi-Fermi potential (cf. (5b)), except in the case of a constant electron concentration.
It can be proved (see [12]) that [|J,, =], [l 12(q) = O(h), where & denotes the mesh parameter,
so that an appropriate reduction of the grid size may be required to achieve a desired fixed
tolerance.

To numerically compute in a simple and accurate manner the harmonic average of the
electrical conductivity, we use the following quadrature rule (see also [27, 28])

(/‘K 0, 4K )‘1 - ( T de)‘l 5)

vol(K) le*|

e* being the edge of 0K where the maximum drop of ¢, occurs and |e*| its Euclidean
length. Upon introducing the linear dimensionless potential ®,, := (¢, — ¢,4)/Vin and
the two vertices of K: x,, s.t. ®,(x,,) = D, := ming(P,,) and xa1 s.t. O, (xp1) = Dyps :=
maxg (P,), we define e* to be the edge of 9K which connects x,, and x,, so that (5i) yields

/ Grt_,lli dK =~ qinn; exp(q)n,m)B(CDn,m - (Dn,M): (5))
K

where B(Z) := Z/(exp(Z) — 1) is the inverse of the Bernoulli function, such that 5(0) = 1.
Using MB statistics (3a), relation (5j) can be written as

_/Kan‘,}q dK =~ qu,nyB(D 0 — Ppnr), (5k)
where n,, := n;e® . Expression (5j) can be also written as

/Kon"}q dK >~ qu,n; exp(D,,m) exp(P,ur) exp(— D ar) B(Pm — Par)
which, using again (3a) and the property exp(Z)B(Z) = B(-Z), becomes

/K 0o AK 2 quuanyB(® s — Ppm), (51)

where n; := n;e®»M, Combining (5k) and (51), we find

nt(_A(Dn,max) + nMB(A q:'n,max)
2

Juk = _QMn|: ]V%,h, (5m)
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where A®, .y := ©ypr — Py - In the case where A®,, . is sufficiently large, we see that
the 1D harmonic average of n;, along the edge e* has the effect of ‘favoring’ the smallest
nodal concentration in the element K rather than the largest one, so that we approximately
have

(n = Pup)

Vo, 5n
2‘/th DPn,h ( )

Jux =~ —qunn, max
K

If, instead, A®,, o« is small then the 1D harmonic average behaves appreciably as the stan-
dard average and we obtain

Ny + Npp
]n,]( = —-qun MT V(;0;'1,1'1- (50)

Following the same procedure as above also for the hole current density we have

(5p)

me(_Aq)p,max) + pMB(A cI)p,max)
2 v§0p hr

Jox = —QMp|:
where @, := (@, — ©n)/ Vih and A®, oy := maxg @, — ming .

3.3 Method B

In the previous section the discrete form of the current density is constructed by starting
from the equivalent ‘ohmic’ representation in terms of the quasi Fermi potential, and then
by performing a suitable approximation of the electrical conductivity over the finite ele-
ment K. Here, we continue along the same line of thought, but starting from the classic
DD format (1f)-(1g), with the intent of using the method of Streamline Upwind artificial
diffusion proposed in [18] for the advective-diffusive model to stabilize the computation
in the presence of a high electric field.

3.3.1 The 1D SG method as an artificial diffusion scheme
In the 1D setting the artificial diffusion technique consists of replacing the electron diffu-
sion coefficient D, with the modified quantity

D, =D, + D, ®(Pe|g), (6a)

where & is a suitable nonnegative stabilization function of the 1D local Peclet number
Pe|x = (h|0x0n])/(2Vin) = |A@|/(2Vi), h and Ag being the length of the 1D interval and
the potential drop over the interval, respectively. The local Peclet number gives a measure
of how much the drift term dominates over the diffusion term in the transport mechanism.
If Pe|g > 1 the problem is locally drift (advection)-dominated and in such a case we need
introduce an extra amount of diffusion in (6a) (given by D, ®(IPe|x)) to prevent the occur-
rence of unphysical spurious oscillations in the computed solution, which might even lead
to a negative electron concentration. If Pe|x < 1 the problem is locally diffusion-dominated
and there is no need of adding an extra diffusion, so that the standard GFEM is enough
for obtaining an accurate and numerically stable solution. Based on the last observation,
the function @ has to satisfy the property of consistency

lim ®(Pelx)=0 VK 7Ty (6b)

Pe|g—0
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The 1D approximation of the electron current density to be used in a stabilized GFEM is
thus given by the following relation

Jun(mn) |k = qun(n)kEnk + gDy (1 + ®(Pelx)))dsny, VK € T (6¢c)

To design in a physically sound and consistent manner the optimal stabilization function
®, we assume the modified method to exactly satisfy some limiting cases that often occur
in practical important electronic applications. Using a 3D notation, for sake of generality
and because this will be used in later extension, the considered cases are:

Cl. Constant carrier concentrations (only drift contribution): J,, = g, #E.

C2. Constant potential (E = 0, only diffusive contribution): J,, = gD, Vn.

C3. Constant quasi Fermi potential (no current flow): J,, = —qu,nVe, = 0.
Notice that case C3 implies that

7= Ce?!Vin, (6d)

where C is an arbitrary constant such that C = exp(-¢,/ Vi), @, being a given constant
value. Thanks to assumption (6b) the stabilized current (6¢) automatically satisfies cases
Cl and C2. Case C3 is recovered by imposing (in the 1D setting)

Jun (T (Ce?'V)) = 0, (6e)

where TIK is the P;-interpolant over the element K. Using (6e) in (6c), noting that Ex =
—dx¢y, and using Einstein’s relation, we obtain the following relation for the stabilization

function
<n>1< ax‘ph
®d(Pe|x) = —— 1. 6f
( |K) ‘/th axl—I{((e(p/Vth) ( )
Enforcing relation (6d) at the two vertices x; of the interval, i = 1,2, yields
er/Vth + e‘/’Z/Vth 6261%\1( +1
¢(Pe|1<)=(7p3|1(m _1=0P6|KM -1, (6g)

where 7; and n, are the two nodal values of n;, while o := sign(Ag). Setting for brevity
X :=20Pe|g, relation (6g) becomes

X/ X 1 1
d(X) = §<ﬂ + ﬂ) -1= E(B’(—X) +B(X)) -1

= %(X+B(X) +B(X)) -1=B(X) + %( -1
and replacing the definition of X we obtain for both Agp >0 and Ap <0
O(Pe|x) = B(2Pe|x) + Pelx — 1 (6h)
which, upon substitution into (6c), recovers the well known 1D Scharfetter-Gummel
scheme [17]. This latter method was originally proposed as an ‘exponential fitting’ differ-

ence scheme by Allen and Southwell in [29] and subsequently referred to as an artificial
diffusion stabilized scheme with ‘optimal viscosity’ by Brooks and Hughes in [18].
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3.3.2 The 3D SG Artificial Diffusion method

In a 3D framework a straightforward extension of the 1D Scharfetter-Gummel stabiliza-
tion (6g)-(6h) can be obtained by introducing a 3 x 3 diagonal stabilizing tensor ®* de-
fined on each element K € 7}, as follows N

P (Hf(e(wwm)/Vth))Kaxi(p _
=i Ay, TIX (elWn—ean) Vi) Vi,

1, i=1,2,3, (6i)

where we have used, as a reference value for the potential reference to avoid overflow
exceptions in the machine evaluation of (6i), the maximum ¢, of ¢, in K.
The 3D approximate electron current density is then

Juk = qun(n)kEx + gDy (L + @, )Vny, (6))

where Z is the 3 x 3 identity tensor. In a completely similar manner we have the relation
for the hole current density

Jpk = aup(P)kEx —qDy(Z + 2, )V P, (6k)
where

e (Hf(e(tpm—%)/Vm))Kaxiw ~

= 1, | = 1; 2’ 3’ 61
—ii ax,' H{((e(Wm—fph)/Vth)Vvth l ( )

¢m being the minimum of ¢ over K. It is immediate to check that the two proposed novel
approximations (6j) and (6k) satisfy all cases C1, C2 and C3 in Section 3.3.1.

4 Numerical experiments

This section is devoted to the illustration of several numerical experiments. Specifically,
Section 4.1 is aimed to check the correctness of the implementation of the 3D-EAFE
method within the FEMOS code and to compare the performance of this finite element
approach with a reference-commercial tool based on the BIM [30]. Section 4.2 is aimed
to compare the performance of the various methods for current calculation of Section 3
against physical expectation. The conclusion of these tests is that method A turns out to be
the most stable and accurate, so that Section 4.3 employs such method in a self-consistent
simulation of semiconductor devices in the presence of II generation terms. 3D ideal and
realistic devices commonly employed in semiconductor industry are taken into consid-
eration: (1) a p-n ideal diode; (2) a p and n-MOS ideal devices; and (3) a p-MOS device
resulting from a realistic 2D-process simulation accounting for non ideal doping profiles.
Device (3) represents a severe benchmark to highlight the accuracy and the stability of the
different current density calculation methods.

4.1 Accuracy of the 3D-EAFE discretization

Several tests have been performed in order to assess the correctness of the EAFE approach
in the simulation of semiconductor devices in 3D framework. For reading benefits we just
report a benchmark with a reference commercial tool based on n-p-channel MOSFET
structure of Figure 1(a) (GateLength : 100 nm; GateOx : 30 nm and contacts S = Source,
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GATE [cm-3]

R 3§ DRAIN 1.0e+18
6.0e+17
4.0e+17
2.0e+17

[ -
X BULK -1 Oe+17

(a) Finite element mesh b) Doping profile

Figure 1 MOS structure: Left: 3D tetrahedral mesh. Right: Doping profile in the case of the n-channel device.
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Figure 2 MOSFET forward bias: comparison between FEMOS (line) and Ref. [30] (symbol). Left:
n-channel Id-Vg. Right: p-channel Id-Vg.

Gate, D = Drain, Body) with analytical doping profiles: Figure 1(b) reports the doping
profile for the n-channel device (the p-channel device is obtained just by the inverting the
doping type). The agreement with the reference simulation tool is very good as reported in
Figure 2(a) for the n-channel device and in Figure 2(b) for the p-channel device for several
Drain bias conditions (electron and hole mobilities have been calculated using the Canali
model [31]). We point out that the calculation of the current at the contacts is carried out
by extending to the 3D case the approach proposed in [32] for the 2D case: this novel for-
mulation, known as residual method, is based on the approach proposed in [33]. We also
notice that the 3D-profiles of carriers are indistinguishable between FEMOS and Ref. [30]
as reported in Figure 3 in the case of electrons in the n-channel device at Vigae =2 V and
VDrain = 0.1 V.

4.2 Evaluation of the performance of current calculation methods

To evaluate the simulation performance of the methods for current calculation introduced
in Section 3 we have firstly considered a diode structure with a p-# junction geometrically
represented by the cubic region Q = (0,0.3)3 um3 (see Figure 4(a)). A Gaussian implanta-
tion of donors with a peak of 10 cm™ and a depth of 0.15 pum (see Figure 4(b)) is made
over a p-type region with a constant acceptor profile of 10'® cm~3 magnitude. One contact
is defined for each of the doped regions: for the n-type part a rounded-shape contact is
used (Top), while the p-type part is contacted at the bottom face (Body). As mentioned
in Section 2.2, contacts are considered of pure Ohmic-type with appropriate Dirichlet
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Figure 3 n-MOSFET electron concentration at Vgate = 2 V and Vpyain = 0.1 V. Left: FEMOS calculation.
Right: Ref. [30] calculation.

Top

Mi NN
stskh 8

N
ﬁssmmmy Dopinglcm-3)

[ ] 2.0E+21

7.2E417
2.6E+14
-2.5E+12

. -7.3E+15
-2.0E+19

AENMN \N
N
mn%%%nif

NN

N
N N NN
Y [um)
(a) Mesh (b) 2D cut of Mesh for doping profile visualization

Figure 4 Diode structure: Left: mesh. Right: 2D cut of the doping profile.

boundary conditions: the Top is maintained at ground while the Body is ramped at 0.8 V.
In Figure 5 the results of the calculation of the current density vector field for electrons
and holes in the semiconductor bulk are represented through streamlines connecting the
Body with the Top contact. As expected the current calculation obtained with method
DDFE (eq. (4a) and (4b)) is affected by a critical behavior, in particular close to and inside
the n-junction as shown in Figure 5(a) and Figure 5(b) where instability has to be ascribed
to numerical cancellation of the drift and diffusion contributions. Results get definitely
better by employing method B using Egs. (6j) and (6k) where the improvement can be
appreciated in Figure 5(e) and Figure 5(f). However, a careful inspection of the hole cur-
rent density reveals that some numerical instability is still evident inside the n-junctions.
The extension of the 1D SG scheme to 3D provided by method A in Eq. (5h) and (5p) re-
sults in the streamlines presented in Figure 5(c) and Figure 5(d): no spurious instability
can be observed anymore and our calculations are in excellent agreement with the results
of a commercial code (not shown here). The comparison between the different current
computational methods has also been carried out on a p-channel MOSFET. The doping
profiles have been obtained by using a 2-D process simulator with implantation and diffu-
sion steps [30] with the purpose to have a realistic doping as reported in Figure 6(a) with
a GateLength : 180 nm and a GateOx : 4.5 nm. The presence of floating non-compensated
p-type regions in the channel body increases the computational difficulties. The 2D dop-
ing profile has been then extruded in three spatial dimensions, and the generated mesh
is shown in Figure 6(b) where the device contact has been highlighted with purple color
(the body contact is not shown in the picture but is located in the bottom face of the sili-
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Figure 5 Electron (left column) and hole (right column) current densities of Diode test case at
Vbody = 0.8 V. Top: Method DDFE. Middle: Method A. Bottom: Method B.

con region). Regarding the calculation of J,,, the numerical difficulties found with method
DDFE are still confirmed as clearly depicted in Figure 7(a) not only inside the p-type re-
gion but also around the floating regions present in the body (the visualization are referred
to the bias conditions Vi = -1V and Vp = —0.1 V). The marginality found using formula
(6k) is increased as reported in Figure 7(c): this comes by the fact that the evaluation of
the coefficient in (6i) is again undergoing numerical problems related to roundoff error.
However method B is giving a much better current density evaluation with respect to the
pure application of the Drift-Diffusion approach at the element level. We conclude this
section by noting that, again, the best description of the expected physical behavior of the
device is obtained by adopting method A, that turns out to provide an accurate and stable
3D extension of the 1D SG formula, as clearly demonstrated by Figure 7(b).

4.3 Application of method A to the study of a reverse-biased MOS with Il

In this section we implement method A for current calculation inside the Gummel map
algorithm to evaluate the II generation term by projecting the electric field along the ob-
tained current streamlines. Since we are using the Van Overstraeten-de Man model for 11
we have run the simulation not beyond the limits of validity of this model, i.e. when the
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Figure 7 Hole current density calculation of p-MOSFET at Vg =-1.0 V and Vp =-0.1 V: Top left: Method
DDFE. Top right: Method A. Bottom: Method B.

avalanche field is in the range of 6 - 10° Vem™. Computations are performed by keeping
all the contacts at ground and applying a reverse bias to the Drain contact. Figure 8(a)
and Figure 8(b) compare the FEMOS simulations with those obtained using [30] for both
n and p channel device under condition of reverse bias. The current calculated at Drain
and Source contact are quite aligned with the reference tool while the Bulk component
is lower due to the different generation value of II terms (not shown here). Figure 9 and
Figure 10 visualize the increase of the II generation term with the increasing of the re-
verse bias in the case of the n-MOS and p-MOS device. The drain-to-bulk breakdown is
starting in the Drain-Gate overlap region and proceed until it reaches the drain contact
where the current streamlines are more dense as shown in Figure 11(b). A final insight into
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Figure 9 n-MOSFET: evolution of the Il generation term (all contacts are grounded except drain). Left:
Vp=34V.Right: Vp =48 V.
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Figure 10 p-MOSFET: evolution of the Il generation term (all contacts are grounded except drain).
Left: Vp =-34 V. Right: Vp =-4.8 V.

the simulation of the #-MOS device using method A is offered by Figure 11 which reports
the visualization of J,, in the off and on states: in accordance to physical expectation, in
the on-state the electron current density is confined under the gate from drain-to-source

while in the off-state it is flowing from source-to-drain and from source-to-body.
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(a) J,, on-state (b) J,, off-state

Figure 11 n-MOSFET: electron current density streamlines obtained with method A. Left: On-state at
V6 =1VandVp=0.1V.Right: Off-state at V5 =0V and Vp =0.85V.

5 Conclusions

In this article we have addressed the problem of representing in 3D the carrier current
density by extending the beneficial properties emanating from the classic 1D Scharfetter-
Gummel difference formula. To this purpose, we have adopted the Galerkin Finite Element
Method for the numerical simulation of the Drift-Diffusion model in the 3D case, and we
have proposed two novel methods for current density evaluation, denoted method A and
B, to which, for comparison, we have added also the basic method DDFE using the DD
formula. The three schemes compute a piecewise constant approximation of the current
density over a tetrahedral partition of the device domain.

Method DDFE turns out to provide the worst results in the test experiments. Method B
is a 3D extension of the method of optimal artificial diffusion and gives reasonably accu-
rate results. Method A is based on a primal-mixed formulation endowed with a suitable
quadrature formula for the approximate evaluation of the harmonic average of the electri-
cal conductivity. It is by far the best of the three considered approaches, providing simula-
tion results in excellent agreement with a commercial software. The three FE formulations
are numerically verified in the study of realistic 3D device structures, also including the
presence of Impact Ionization phenomena. Even in this latter case, method A is able to
correctly describe the complex carrier flow patterns inside the device bulk and to track
the I-V curve of the device up to the avalanche breakdown region.

Despite the fact that the proposed formulations are illustrated and validated in the study
of the classic DD transport model in semiconductors, they can be applied in a straight-
forward manner to the numerical treatment of general conservation laws for advective-
diffusive fluxes where the advective term is in gradient form, as is the case for ion elec-
trodiffusion in electrochemistry and biology with the Poisson-Nernst-Planck model [34]
and hydrodynamic and quantum-corrected charge transport in semiconductors [35-37].
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