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more recent and related results [�, �]. Hence there is the need to evaluate the term

�xf (Ax) = AT • �zf (z), (�.�)

where z = Ax. In the case of ill-conditioned A, (�.�) gives only little information and hence
long run-times ensue, see also [	, 
].
The purpose of this paper is introduce a new preconditioning process through altering

the singular value spectrum of A and then transforming (�.�) into a more benign problem.
Our proposed algorithmic scheme can be used as a preconditioning process in many op-
timization procedures; but due to their simplicity and nice geometrical interpretation we
focus here on ProjectionMethods. For related work using preconditioning in optimization
with applications see [�, ��] and the many references therein.
The paper is organized as follows. In Section � we present some preliminaries and def-

initions that will be needed in the sequel. Later, in Section � the new Singular Value Ho-
mogenization (SVH) transformation is presented and analyzed. In Section � we present
numerical experiments to linear least squares and dose deposition computation in IMRT;
these results are conducted and compared with LAPACK solvers and projectionmethods.
Finally we summarize our �ndings and put them into larger context in Section �.

2 Preliminaries
In our terminology we shall always adhere to the subsequent de�nitions. We denote by
C�(Rm) the set of all continuously di�erentiable functions f :Rm �R.

Definition . Let a � Rn, a �= � and β � R, then H�(α,β) is called a half-space, and
it is de�ned as

H�(α,β) :=
{
z �Rn | �a, z� � β

}
. (�.�)

When there is equality in (�.�) then it is called a hyper-plane and it is denoted by
H(α,β).

Definition . LetC be non-empty, closed and convex subset ofRn. For any point x �Rn,
there exists a point PC(x) in C that is the unique point in C closest to x, in the sense of the
Euclidean norm; that is,

∥∥x � PC(x)
∥∥ � 	x � y	 for all y � C. (�.�)

The mapping PC : Rn � C is called the orthogonal or metric projection of Rn

onto C. The metric projection PC is characterized [��], Section �, by the following two
properties:

PC(x) � C (�.�)

and

〈
x � PC(x),PC(x) � y

〉

 � for all x �Rn, y � C, (�.�)

where equality in (�.�) is reached, if C is a hyper-plane.
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A simple example when the projection has a close formula is the following.

Example . The orthogonal projection of a point x �Rn onto H�(α,β) is de�ned as

PH�(α,β)(x) :=

⎧
⎨

⎩
x � �a,z��β

	a	� a if �a,x� > β ,

x if �a,x� � β .
(�.�)

2.1 Projection methods
Projection methods (see, e.g., [�����]) were �rst used to solve systems of linear equations
in Euclidean spaces in the ����s and were subsequently extended to systems of linear in-
equalities. The basic step in these early algorithms consists of a projection onto a hyper-
plane or a half-space. Modern projection methods are more sophisticated and they can
solve the general Convex Feasibility Problem (CFP) in a Hilbert space, see, e.g., [��].
In general, projection methods are iterative algorithms that use projections onto sets

while relying on the general principle that when a family of (usually closed and convex)
sets is present, then projections onto the given individual sets are easier to perform than
projections onto other sets (intersections, image sets under some transformation, etc.)
that are derived from the given individual sets. These methods have a nice geometrical
interpretation, moreover their main advantage is low computational e�ort and stability.
This is the major reason they are so successful in real-world applications, see [��, �	].
As two prominent classical examples of projection methods, we avail the Kaczmarz [�
]

and Cimmino [��] algorithms for solving linear systems of the form Ax = b as above. De-
note by ai the ith row ofA. In our presentation of these algorithms here, they are restricted
to exact projection onto the corresponding hyper-plane while in general relaxation is also
permitted.

Algorithm . (Kaczmarz method)

Step : Let x� be arbitrary initial point in Rn, and set k = �.
Step : Given the current iterate xk , compute the next iterate by

xk+� = PH(ai ,bi)
(
xk

)
:= xk +

bi � �ai,xk�
	ai	�

ai, (�.�)

where i = k mod m + �.
Step : Set k � (k + �) and return to Step .

Algorithm . (Cimmino method)

Step : Let x� be arbitrary initial point in Rn, and set k = �.
Step : Given the current iterate xk , compute the next iterate by

xk+� :=
�
n

n∑

i=�

(
xk + �

bi � �ai,xk�
	ai	�

ai
)
. (�.	)

Step : Set k � (k + �) and return to Step .

Moreover, in order to develop the process by which we improve a matrix�s condition,
understanding of the following concepts is essential.
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Definition . Let A be an m × n real (complex) matrix of rank r. The singular
value decomposition of A is a factorization of the form A = U�V � where U is an
m × m real or complex unitary matrix, � is an m × n rectangular diagonal matrix with
non-negative real numbers on the diagonal, andV � is an n×n real or complex unitaryma-
trix. The diagonal entries σi of �, for which holds σ� 
 σ� 
 • • • 
 σr > � = σr+� = • • • = σn,
are known as the singular values of A. The m columns �u�, . . . ,um� of U and the
n columns �v�, . . . , vn� of V are called the left-singular vectors and right-

singular vectors of A, respectively.

Definition . The condition number κ(A) of anm× nmatrix A is given by

κ(A) =
σ�

σr
(�.
)

and is ameasure of its degeneracy.We speak ofA being well-conditioned if κ(A) 
 �
and the more ill-conditioned the farther away κ(A) is from unity.

3 Singular Value Homogenization
The ill-conditioning of a linear inverse problem Ax = z is directly seen in the singular
value decomposition (SVD) A = U�VT of its associated matrix, namely as the ratio of
σmax/σmin. Changes in the data along the associated �rst and last right singular vectors (or
more generally along any two right singular vectors whose ratio of corresponding singular
values is large) are only re�ected in measurement changes along the major left singular
vector - which poses challenges in achieving su
cient accuracy with respect to the minor
singular vectors.c

A new geometrical interpretation of the above can be described in the language of pro-
jection methods. This con�icting behavior along singular vectors corresponds to projec-
tions onto hyper-planes whose normal vectors are to a high degree identically aligned,
i.e. for any two such normal vectors n�,n� � Rn their dot product is close to unity. A toy
example for A � R�×� that will be used for visualization is provided on the left in Figure �.
Such high degree of alignment poses challenges to classical projection methods since

the progress made in each iteration is clearly humble. A much more favorable situation

Figure 1 Illustration of ill-conditioning (left) as a challenge to linear comparing to the
preconditioning step (SVH) described herein (right).
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applies when the normal vectors� directions are spread close to evenly over the unit cir-
cle so as to lower the conditioning of the problem. The system depicted on the right in
Figure � is obtained from the previous ill-conditioned one through the easily invertible
Singular Value Homogenization (SVH) transformation (described below) and visibly fea-
tures such better condition. Also plotted is the progress made by the classical Kaczmarz
projectionmethod which con�rms the improved run-time (left: �rst �� iterations without
convergence, right: convergence after seven steps).

3.1 The transformation
To achieve better condition number κ(A) of A we directly manipulate its SVD through
introducing the SVHmatrix � = diag(γ�,γ�, . . . ,γn) �Rn×n (γi �= �) tomultiply the singular
values (σ�,σ�, . . . ,σr), where r � min{n,m} is the rank of A:

�A =U��VT . (�.�)

By proper choice of γ�, . . . ,γr , the singular values �σ�, . . . , �σr of �A can be set to any arbi-
trary values. In particular, they may be chosen such κ( �A) = �. Consequently, solving the
transformed problem

�Ax = z (�.�)

iteratively does not pose di
culties to most (projection) solvers. Assume (�.�) admits a
solution �x�, the question then is whether we can recover (easily) a solution x� satisfying

Ax� = z (�.�)

that is, the original linear subproblem.
Since � leaves the range of A, ranA �Rn, invariant, solutions to (�.�) exist if and only if

(�.�) admits such. Moreover, setting

x� = V�VT �x� (�.�)

a solution to (�.�) is obtained:

Ax� =
(
U�VT)(

V�VT)
�x� =

(
U��VT)

�x� = �A�x� = z. (�.�)

Thus by a scaling of the components of �x� in the coordinate system of A�s right singular
vectors, which computationally does not pose any di
culties, we can solve the original
problem (�.�) by working out the solution to the simpler formulation (�.�).

Example . For geometric intuition, the assignment in (�.�) can be rewritten as

x� =
(
V

[
(� � I) + I

]
VT)

�x�

= �x� +
n∑

i=�

�αi(γi � �) • vi, (�.�)

where �αi are the V -coordinates of �x� and vi the right singular vectors.
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Figure 2 Reconstruction of x0 (= xopt).

Equation (�.�) illustrates that the�-transformation is in fact a translation of the solution
set along these right singular vectors, proportional to the choice of γi. The toy example
from Figure � is used to demonstrate this e�ect in Figure �.
Here

A =

⎛

⎜
⎝

� �.

� �
� �.�

⎞

⎟
⎠ , z = A •

(
���
���

)

, x� =

(
���
���

)

(�.	)

with

σ� = �.��, σ� = �.��, κ(A) = ��.�� (�.
)

and right-singular vectors visualized in red.
Applying the �-transformation with γ� = σ� and γ� = σ�/σ� the transformed inverse

problem �Ax = z is optimally conditioned with κ( �A) = � and hence easily solvable with so-
lution

�x� = (���.�, ��.�)T (�.�)

which is exactly the translation expected from (�.�).

3.2 Main result
The application of this preconditioning process to optimization problems with linear sub-
problems as in (�.�) is the natural next step.

Theorem . Given a convex function f � C�(Rn), then the minimization problem

min
x�Rm

f (Ax) (�.��)

has solution

x� = V�VT �x�, (�.��)
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where � is a diagonal matrix with non-zero diagonal elements and �x� solves

min
�x�Rm

f ( �A�x) (�.��)

with �A as in (�.�).

Proof For the minimizer x� we have

�xf (Ax�) = AT • �zf (z)|Ax� = � (�.��)

and hence

�zf (z)|Ax� � ker
(
AT)

. (�.��)

The statement of the theorem is thus equivalent to showing

�zf (z)| �A�x� � ker
( �AT)

�� �zf (z)|Ax� � ker
(
AT)

(�.��)

which follows from our previous observation that �-transformations leave kernel and
range of A invariant together with (�.�). �

3.3 The algorithmic scheme
The results of the previous two sections are straightforward to encode into a program
usable for actual computation. What follows is a pseudo-code of the general scheme.

Algorithm . (Singular Value Homogenization)

Step : Let f and A be given as in (.).
Step : Compute the SVD of A =U�VT and choose � = diag(γ�, . . . ,γm) such that

κ
( �A =U��VT)


 �. (�.��)

Step : Apply any optimization procedure to solve (.) and obtain a solution �x�.
Step : Reconstruct the original solution x� of (.) via

x� = V�VT �x�. (�.�	)

The optimal choices of � in Step � and the concrete solver to �nd �x� in Step � are likely
problem speci�c and are as of now left as user parameters. A parameter exploration to
�nd all-purpose con�gurations is included in the next section.
Furthermore, due to the near-optimal conditioning in Step � the time complexity of Al-

gorithm �.� is O(min{mn�,m�n}) since it is dominated by the SVD of A.
This does not necessarily prohibit from solving large linear systems as inmany cases (e.g.

in IMRT [��]) either the spectral gap of A is big or large and small singular values cluster
together - which allows for reliable k-SVD schemes that can be computed in O(mn logk)
time.
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4 Numerical experiments
All testing was done in both Matlab and Mathematica with negligible performance
di�erences between the two (as both implement the same set of standard minimization
algorithms).

4.1 Linear feasibility and linear least squares
The �rst series of experiments concerns the simplest and most often encountered formu-
lation of (�.�) with

f (Ax) = 	Ax � b	�� (�.�)

which corresponds to solving a linear system of equations exactly if a solution exist or in
the least squares sense if it has empty intersection (here b �Rn is �xed).
As projection methods in general, and the Kaczmarz and Cimmino algorithms in par-

ticular, are known to perform well in such settings, we chose to compare execution of
Algorithm �.� to these two for benchmarking. Moreover, to isolate the e�ects of the �-
transformation most visibly, these two algorithms are used as subroutines in Step � as
well.
Performancewasmeasured on a set {Ai �R���×�} of �,��� randomly generatedmatrices

with κ(Ai) � [�, ���] and data x� = (�, �, �)T that the respective algorithms were run on. The
convergence threshold in all cases was set to ���� and � chosend such that�� = σ� • I . The
results are depicted in Figure � and Figure � (the presence of two graphs for Algorithm �.�
indicate whether Kaczmarz (green) or Cimmino (red) was used as subroutine).
As expected from the results obtained in the preceding sections, both projection solvers

scale poorly (indeed exponentially) with the condition number of A while Algorithm �.�
retains constant time (
 �.�� s ande 
 �.�� s respectively) and numbers of iteration (
 ��)
necessary.

Figure 3 Comparison with respect to number of iterations as a function of condition number
between Kaczmarz, Cimmino and SVH with Kaczmarz and SVH with Cimmino. Stopping criteria is
	xopt – x	 � 10–3, where xopt = (1, 1, 1)T
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Figure 4 Time needed: Algorithm 3.3 (red, green) and Kaczmarz (blue) and Cimmino (black) methods.

In addition, reducing the accuracy threshold (< ����) or constructing matrices of ex-
treme condition (κ(A) 
 ���) that result in failure to converge of Cimmino, Kaczmarz and
LAPACK solvers native to Matlab and Mathematica does not impair the performance of
Algorithm �.�. That is, through appropriate �-transformation we were able to solve very
ill-conditioned linear problems for the �rst time to ���� accuracy within seconds.

4.2 Lp penalties and one-sided Lp penalties
In the biomedical �eld of cancer treatment planning problems of the kind (�.�) occur often
in calculating the optimal dose deposition in patient tissue. A typical formulation involves
the linearized convolutionA of radiation x into dose d and a reference dose r �Rn which is
to be achieved under Lp penalties 	Ax�r	p or their one-sided variations 	max{�,Ax�r}	p
and 	min{�,Ax � r}	p.
We examined �vef cases {Ai, ri} that were collected frompatient data under the penalties

f�(d) = 	d � r	�, (�.�)

f�(d) = 	d � r	
, (�.�)

f�(d) =
∥∥max(�,d � r)

∥∥
�, (�.�)

f�(d) =
∥∥min(�,d � r)

∥∥
�, (�.�)

f�(d) = f�(d • s�) + f�(d • s�) + f�(d • s�) + f�(d • s�), (�.�)

where si � {�, �}n with
∑

si = 1Rn is a partition of the unit vector accounting for varied
sensitivity of distinct body tissue to radiation.
The performance of Algorithm �.� in comparison to native Matlab and Mathematica

methods is given in Table �. t�i is the time in seconds until convergence that Mathemat-
ica�s NMinimize andMatlab�s fminunc routines require on average whereas t�i seconds are



Erdmann-Pham et al. Journal of Mathematics in Industry  (2016) 6:1 Page 10 of 11

Table 1 Comparison for nonlinear objective function

A1 A2 A3 A4 A5

dim 504× 250 336× 192 408× 128 457× 206 500× 82
κ 6× 1016 2× 1016 2× 1018 6× 1012 9× 109

t�1 nC nC nC nC 2,381

t�1 44 123 82 85 2

t�2 nC nC nC nC 2,445

t�2 44 117 102 90 3

t�3 nC nC nC nC 2,579

t�3 48 117 98 92 5

t�4 nC nC nC nC 2,502

t�4 40 108 106 79 3

t�5 nC nC nC nC 2,524

t�5 42 117 105 87 3
μ 2 8 6 3 0

needed for Algorithm�.� to converge. In the case of neitherMathematica norMatlab �nd-
ing a solution (nC for not converging), the accuracy of Algorithm �.��s output x� is tested
through the parameter μ. This is done by randomly sampling a neighborhood of x� and
counting instances that improve the objective. These hits are then sampled similarly until
no further such points can detected. μ is the total number of neighborhoods so checked.
In all cases, the improvement in f remained below ����.
The results are parallel to what could be seen in the linear feasibility formulation and

encourage further exploration.

5 Conclusion
We were able to reduce the time needed to solve a general convex optimization problem
with linear subproblem for modestly sized matrices. The performance of the proposed
algorithm was compared to classical LAPACK and projection methods which showed an
improvement in run-times by a factor of up to �,���. Additionally, in many cases where
LAPACK and projection solvers failed to converge, the singular value homogenization
found ���� accurate solutions. These results are promising and encourage further explo-
ration of SVH. Especially its application to structured large matrices and constrained op-
timization as well as in-depth parameter explorations may well turn out to be worthwhile.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
D.-D. Erdmann-Pham, A. Gibali and P. Süss contributed equally to the writing of this paper. K.-H. Küfer, the head of the
Optimization Department in Fraunhofer - ITWM provide technical and general support. All authors read and approved
the final manuscript.

Author details
1Mathematics Department, Jacobs University, Bremen, 28759, Germany. 2Mathematics Department, ORT Braude College,
Karmiel, 21982, Israel. 3Optimization Department, Fraunhofer - ITWM, Kaiserslautern, 67663, Germany.

Acknowledgements
This work was supported by the Fraunhofer Institute for Industrial Mathematics - ITWM.

Endnotes
a We chose R only as it is more pertinent to most practical applications, the extension of all results to C is

straightforward.
b Which is particularly important in intensity modulated radiation therapy IMRT from which later numerical

experiments will be drawn.
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c Major andminor here refer to the size of the singular values associated with a singular vector.
d Experimental evidence suggests that in this setting of randomized matrices such homogenization to one singular

value represents the most reasonable choice; different � display similar behavior with overall longer run-times.
e This time difference is due to the higher overhead required for the block projections of the Cimmino algorithm.
f The dose calculations are of cancerous tissue in the brain, the neck region and the prostate.
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