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Abstract
Efficient and accurate hydrothermal and mechanical mathematical models in porous
media constitute a fundamental tool for improving the understanding of the
subsurface dynamics in volcanic areas. We propose a finite-difference ghost-point
method for the numerical solution of thermo-poroelastic and gravity change
equations. The main aim of this work is to study how the thermo-poroelastic solutions
vary in a realistic description of a specific volcanic region, focusing on the topography
and the heterogeneous structure of Campi Flegrei (CF) caldera (Italy). Our numerical
approach provides the opportunity to explore different model configurations that
cannot be taken into account using standard analytical models. Since the physics of
the investigated hydrothermal system is similar to any saturated reservoir, such as oil
fields or CO2 reservoirs produced by sequestration, the model is generally applicable
to the monitoring and interpretation of both deformation and gravity changes
induced by other geophysical hazards that pose a risk to human activity.
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1 Introduction
Volcano geophysics focuses on integrating data from different monitoring techniques and
developing numerical and physical models to explain the observations. The geophysical
observations collected in volcanic areas are the surface expressions of processes that oc-
cur deeply within the volcanic edifice. Integration of different geophysical observations
and mathematical models enables to identify renewed volcanic activities, forecast erup-
tions, and assess related hazards []. Unrest periods are defined as variations in the geo-
physical and geochemical state of the volcanic system with respect to the background
behaviour. Usually, geophysical changes observed during unrest periods are modelled in
terms of volume and pressure changes in a magma chamber embedded within an elastic
medium [–]. Indeed, this approach often appears at odds with the complex processes
accompanying volcanic unrest. Particularly, the interplay between magma chambers and
hydrothermal systems may result in the heating and pressurization of hydrothermal fluids,
which in turn induce ground deformation and variations in the rock and fluid properties
[–]. A quantitative evaluation of this interaction is fundamental for a correct hazard
assessment in volcanic areas.

A thermo-poroelastic numerical model is here proposed to jointly evaluate ground de-
formation and gravity changes caused by hydrothermal fluid circulation in complex media
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with surface topography and mechanical heterogeneities in a D axis symmetric formu-
lation.

Although the model is applicable to a generic volcanic system, in this paper we set up the
model parametrisation on the Campi Flegrei caldera (CFc), a volcanic area situated to the
west of Naples. After a long period of quiescence, two main uplift episodes (- and
-) highlighted a reawakening phase of the CFc without culminating in an eruption
[]. The total amount of uplift of . m induced the evacuation of about , people
from the town of Pozzuoli and surrounding areas. A slow subsidence followed the second
uplift episode, periodically interrupted by mini-uplifts. Since  CFc started uplifting
again, with a particularly increased rate from  [, ].

To reduce the uncertainty related to hydrothermal activities, significant complexities
must be accounted when a mathematical model is adopted, such as real topography
and mechanical heterogeneities, which are indeed neglected by most of existing models
[, , , ]. In addition, highly efficient and accurate numerical solvers are required
when a large number of simulation runs must be executed for a single simulation sce-
nario, such as for optimization purposes related to geophysical data inversion or when
the thermo-poroelastic response must be calculated at each time step in a coupled hy-
drothermal/mechanical model [].

The thermo-poroelastic numerical method proposed in this paper is second order ac-
curate and based on a finite-difference ghost-point discretization for complex geometries
successfully adopted in [] to solve elliptic equations and in [] for elasto-static D prob-
lems with plane-strain assumptions. Here, the methods proposed in [, ] are extended
to account for thermal expansion and pore pressure effects (caused by the perturbation of
the hydrothermal system) in a D axis symmetric framework. Although a D model would
be suitable to represent a more accurate scenario, the axis symmetric assumption is a rea-
sonable approximation for representing caldera systems and volcano edifices in general,
which are usually characterized by radial structures.

In order to avoid artifacts introduced by finite truncation of the domain, a coordinate
transformation method is adopted in order to prescribe vanishing solutions at infinite
distances maintaining the second order accuracy []. An extension of the multigrid solver
described in [, ] is adopted as well.

Hydrothermal activity is simulated by TOUGH, a well known multi-phase multi-
component software for fluid flow and heat transfer in porous media []. The hydrother-
mal system is perturbed by injecting fluids of magmatic origin at the base of a central
conduit for a prolonged period (until steady-state conditions), simulating the fumarolic
activity at La Solfatara []. Following unrest periods are modelled by an increased in-
jection rate. Variations in relevant geophysical signals (pore pressure, temperature and
density) between the initial condition (steady-state) and unrest period are computed at
each time step and fed into the thermo-poroelastic model (one-way coupling) to com-
pute associated ground deformations and gravity changes. A similar one-way approach
has been implemented at CF in previous works (e.g., [, , ]).

The model proposed in this paper is widely applicable to a large number of relevant sci-
entific and engineering problems for addressing subsurface flow and transport problems,
such as geological carbon sequestration, nuclear waste disposal, energy production from
geothermal, oil and gas reservoirs as well as methane hydrate deposits, environmental
remediation, vadose zone hydrology. The coupling with the suite of TOUGH simulators
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makes the model suitable for simulating and interpreting geophysical changes induced by a
wide range of alterations in the subsurface flows, such as CO sequestration and geother-
mal exploitation. However, the main scope of this paper is related to the methodology
rather than the application to case studies and comparison with real data, and then the fo-
cus is restricted to the simulation of ground deformation and gravity changes in a generic
volcanic area whose model parametrisation is set up on the Campi Flegrei caldera.

2 Hydro-geophysical model
The mathematical model is based on the governing equations of the thermo-poroelasticity
theory (Mechanical model, Section ..), which describes the elastic response of a porous
medium to the propagation of hot fluid through pores (Hydrothermal model, Section .)
by the effects of variations in pore pressure and temperature. Alterations in the gravity field
associated to fluid density variations are evaluated by the model described in Section ...

2.1 Thermo-poroelasticity model
.. Mechanical model
Assuming that the deformation induced by pore pressure and temperature changes occurs
slowly compared to the time scales of elastic waves, and that the system behaves as elastic
(neglecting then the elasto-plastic and viscoelastic effects, which, to a first approximation,
is a reasonable assumption for shallow crusts), the rock can be considered in static equilib-
rium and the displacement is found by solving the equations of equilibrium coupled with
thermo-poroelastic extension of Hooke’s law [], giving the following set of equations
[]:

∇ · σ =  in �M,

σ = λ tr(ε)I + με + αBW�PI + (λ + μ)α�T I, ()

ε =


(∇u + (∇u)T)

,

where σ and ε are the stress and strain tensors, respectively, u is the deformation vector,
λ and μ are the Lame’s elastic medium parameters and I is the identity tensor. Eqs. ()
are solved in the domain �M (the mechanical domain) for the unknown u. In our sim-
ulations �M is an infinite domain in the radial and downward vertical directions, i.e.
�M = {(x, y, z) ∈R

 : z < fTOP(x, y)} (see Figure ).

Figure 1 Axis symmetric domain. 3D representation (not in scale)
of the mechanical (�M) and hydrological (�H) domains. The model
is axis symmetric, then the topography fTOP depends only on the
radial direction r =

√
x2 + y2, and a vertical section of the domain is

represented in the figure. The mechanical domain extends toward
infinity in the radial and downward vertical directions, while the
hydrological domain is truncated at a finite distance. The
hydrothermal system �H is perturbed by the injection of water and
carbon dioxide (simulating fluids of magmatic origin rising from high depth and entering the system)
through a circular area at the base of�H surrounding the axis of symmetry. Atmospheric boundary
conditions are prescribed on �H . Perturbations in pore pressure, temperature and density are evaluated in the
domain �H and affect the mechanical behavior of the entire domain �M . Stress-free boundary conditions (9)
are prescribed at �M .
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A suitable set of boundary conditions is posed to close the mathematical problem,
namely zero displacements at infinity and stress-free boundary conditions σ · ns =  on
the ground surface �M = {z = fTOP(x, y)}.

Analyzing the stress tensor (second equation of ()), we observe that two terms are
added to the elastic stress tensor of the general Hooke’s law: the �P pore-pressure con-
tribution from poroelasticity theory through the αBW Biot-Willis coefficient and the �T
temperature contribution from thermo-elasticity theory through the linear thermal ex-
pansion coefficient α. Both �P and �T refer to perturbations with respect to a previous
equilibrium state.

.. Gravity model
Fluid circulation, temperature and pore-pressure changes necessarily alter the fluid den-
sity distribution, which, in turn, affects the gravity field. Gravity variations in active vol-
canic areas range in amplitude between a few μGal ( μGal = – m/s) and several hun-
dred μGal with a spectrum varying from seconds to years depending on the involved sub-
surface mass-redistribution processes. The gravity change �g, arising from fluid density
redistribution, can be calculated by solving the following boundary value problem (Pois-
son equation) for the gravitational potential φg []:

∇φg = –πG�ρ in R
,

�g = –
∂φg

∂z
,

()

where G is the gravitational constant and �ρ is the density distribution change. The prob-
lem is closed imposing the condition of vanishing gravitational potential at infinity. Den-
sity changes in the medium are computed with respect to an initial density distribution
�ρ = ρ(�x, t) – ρ(�x), where ρ(�x, t) = φ(�x, t)

∑
β ρβSβ , with φ being the porosity, Sβ and ρβ

the saturation and density of the phase β , respectively.

2.2 Axis symmetric formulation
In order to reduce the computational burden associated with D models we reformulate
problems () and () in cylindrical coordinates and assume that they are axis symmetric,
reducing then to a D formulation (Figure ). We recall the coordinate transformation
expressing the cylindrical coordinates (r, θ , z) in terms of Cartesian coordinates (x, y, z):

⎧
⎪⎪⎨

⎪⎪⎩

x = r cos(θ ),

y = r sin(θ ),

z = z,

r ≥ , θ ∈ [, π ], z ∈ ]–∞, +∞[,

where r, θ and z are the radial, angular and vertical coordinates, respectively. For simplic-
ity, we maintain the same nomenclature for all quantities, even if they are expressed in
cylindrical coordinates, {σ ,ε, u,λ,μ,�P,�T ,�ρ}(r, θ , z), fTOP(r, θ ).

The components of tensors σ , ε, u are named in such a way the cylindrical coordinate
formulation is highlighted by a proper subscript, as follows.

σ = (σij)i,j=r,θ ,z, ε = (εij)i,j=r,θ ,z, u = (ui)i=r,θ ,z.
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Strain tensor ε components expressed in terms of u components read [, ]:

εrr =
∂ur

∂r
, εrθ =




(
∂uθ

∂r
+


r
∂ur

∂θ
–

uθ

r

)
,

εθθ =
ur

r
+


r
∂uθ

∂θ
, εθz =




(

r
∂uz

∂θ
+

∂uθ

∂z

)
, ()

εzz =
∂uz

∂z
, εrz =




(
∂ur

∂z
+

∂uz

∂r

)
.

Stress-strain relationship presents the same functional formulation as in Cartesian coor-
dinates, namely the second Eq. of ():

σ = λ tr(ε)I + με + αBW�PI + (λ + μ)α�T I. ()

Using the cylindrical coordinates formulation of the divergence operator acting on a sec-
ond order tensor field, Eq. () (∇ · σ = ) becomes [, ]:


r
∂σθθ

∂θ

+
∂σrθ

∂r
+

σrθ

r
+

∂σθz

∂z
= ,

∂σrr

∂r
+


r
∂σrθ

∂θ

+
σrr – σθθ

r
+

∂σrz

∂z
= , ()

∂σzz

∂z
+


r
∂σθz

∂θ

+
∂σrz

∂r
+

σrz

r
= .

The axis symmetric formulation corresponds to assuming that: (i) all quantities are in-
dependent of the angular coordinate θ , namely ∂q/∂θ =  for q ∈ {σij, εij, ui,λ,μ,�P,�T ,
fTOP}, (then they can be expressed only in terms of the radial and vertical coordinates by
q(r, z)); and (ii) the displacement along the angular coordinates is zero (i.e. uθ = ). By
these assumptions, Eqs. () simplify to:

εrr =
∂ur

∂r
, εθθ =

ur

r
, εzz =

∂uz

∂z
,

εrθ = εθz = , εrz =



(
∂ur

∂z
+

∂uz

∂r

)
.

()

Using () and (), the stress components become (observe that σθθ is not necessarily zero):

σrr =
μ

 – ν

[
( – ν)

∂ur

∂r
+ ν

(
ur

r
+

∂uz

∂z

)]
+ αBW�P + (λ + μ)α�T ,

σθθ =
μ

 – ν

[
( – ν)

ur

r
+ ν

(
∂ur

∂r
+

∂uz

∂z

)]
+ αBW�P + (λ + μ)α�T ,

()

σzz =
μ

 – ν

[
( – ν)

∂uz

∂z
+ ν

(
∂ur

∂r
+

ur

r

)]
+ αBW�P + (λ + μ)α�T ,

σrθ = σθz = , σrz = μ

(
∂ur

∂z
+

∂uz

∂r

)
,
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and finally Eqs. () reduce to a PDE system of two equations (since the first Eq. of ()
vanishes) in the  unknowns ur and uz :

∂σrr

∂r
+

σrr – σθθ

r
+

∂σrz

∂z
= ,

∂σzz

∂z
+

∂σrz

∂r
+

σrz

r
= .

()

The D normal vector to an axis-symmetric surface �M = {z = fTOP(r)} is n = (nr , , nz),
leading to the following axis symmetric formulation of the stress-free boundary conditions
σ · n = :

⎛

⎜
⎝

σrr  σrz

 σθθ 
σrz  σzz

⎞

⎟
⎠ ·

⎛

⎜
⎝

nr


nz

⎞

⎟
⎠ =  �⇒

⎧
⎨

⎩
σrrnr + σrznz = ,

σrznr + σzznz = .
()

The D domain �M and the surface �M reduce to a D domain and a curve, respectively
(that we continue to call �M and �M for simplicity), expressed as (see Figure ):

�M =
{

(r, z) ∈ [, +∞[×R : z < fTOP(r)
}

, ()

�M =
{

(r, z) ∈ [, +∞[×R : z = fTOP(r)
}

. ()

In summary, Eqs. () (with σij expressed by Eqs. ()) in the domain () with stress-free
boundary conditions () on () and zero displacement at infinity constitute the D axis-
symmetric thermo-poroelastic model.

By a similar argument, the axis-symmetric formulation of Eq. () becomes:


r

∂

∂r

(
r
∂φg

∂r

)
+

∂φg

∂z = –πG�ρ in R
, with φg =  at infinity,

�g = –
∂φg

∂z
. ()

2.3 Numerical method
Pressure, temperature and density changes induced by fluid circulation are computed us-
ing the TOUGH numerical code []. Starting from these quantities, ground deforma-
tion and gravity changes are solved through Equations () and () using a finite-difference
ghost-point method developed in the context of elliptic problems [] and recently ex-
tended to solve elastostatic equations in D plane strain configuration for unbounded do-
mains []. Here, we extend the methods developed in [, ] to solve the axis symmetric
formulations of Section ..

The method consists of three stages: firstly, the unbounded domain problem is trans-
formed in a bounded one by the coordinate transformation method. Secondly, the new set
of equations and boundary conditions in the bounded domain is discretized by a finite-
difference ghost-point approach. Finally, the discrete equations are solved by a proper ge-
ometric multigrid technique.
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.. Coordinate transformation method
By the coordinate transformation method, the unbounded problem with variables (r, z) is
mapped into a bounded one with new variables (ξ ,η) as follows:

⎧
⎨

⎩
r = χ (ξ ) ∈ [, +∞],

z = χ (η) ∈ [–∞, +∞],
⇐⇒

⎧
⎨

⎩
ξ = χ–(r) ∈ [, ],

η = χ–(z) ∈ [–, ],
()

where χ : [–, ] → [–∞, +∞] is a differentiable strictly increasing function in ] – , [ such
that χ () =  and lims→± χ (s) = ±∞. Equations () and () (as well as the associated
boundary conditions) are transformed according to (), namely following the transfor-
mation of differential operators:

∂

∂r
=


χ ′(ξ )

∂

∂ξ
=: Dξ ,

∂

∂z
=


χ ′(η)

∂

∂η
=: Dη. ()

The computational domain C = [, ] × [–, ] is therefore discretized by a uniform
Cartesian grid, which automatically results in a quasi-uniform grid for [, +∞]×[–∞, +∞]
(see, for example, Figure ). Imposing vanishing solution at infinity is equivalent to require
zero Dirichlet boundary condition on ∂C for the transformed problem. The choice of the
mapping function χ is crucial to define the mesh distribution in such a way a loss of ac-
curacy of the numerical method is avoided. This is accomplished by two requirements:
(i) the finest region of the quasi-uniform grid must cover the areas where the sources are
concentrated, and (ii) the asymptotic behavior of the solution must be correctly captured.
To satisfy the requirement (i), we observe that in the case of Eqs. () and () sources are
concentrated where �P, �T and �ρ are different from zero. Since these quantities are
evaluated by the hydrothermal model (detailed in Section .), this area is certainly con-
tained in �H . Therefore, an acceptable mesh distribution should guarantee to cover a large

Figure 2 Coordinate transformation method.
The function χ (s) = cs

(1–s2)
maps the bounded

domain [0, 1]× [–1, 1] (left) with coordinates (ξ ,η)
into the unbounded domain [0, +∞]× [–∞, +∞]
(right, truncated in this plot at a distance of 12 km)
with coordinates (r, z) by the coordinate
transformation (13). A uniform Cartesian grid for the
bounded domain (left) automatically results in a
quasi-uniform grid for the unbounded domain
(right). In this plot, an example of grids obtained by
using a spatial step h =�ξ =�η = 1/25 in �b

M is
represented (note that, for representation purpose,
we have chosen a larger spatial step than that
adopted in numerical tests). The original domain �M

with surface �M (right) is therefore associated to a
domain �b

M with surface �b
M in the bounded domain (left). Equations (8) in �M (as well as the stress-free

boundary condition (9) on �M) are transformed according to (14) into a new set of equations in �b
M (with

stress-free boundary conditions on �b
M), solved by the finite-difference method described in Section 2.3.2.

A level-set function φ is used to discriminate between internal points (φ < 0, represented by black dots) and
external points (see (15)). Among the latter, grid points close to the surface (ghost points, represented by red
circles) are included to the discretized problem and a suitable value is assigned to them by enforcing
boundary conditions (by the ghost-point method described in Section 2.3.2). The coordinate transformation
method is used also to solve Eq. (12) in the domain R

2 (then without a ghost-point level-set method).
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region containing �H by a fine grid. The resolution of the grid then decays going to infinity
at the same order as the solution, to satisfy (ii). In practice, knowing the a priori asymp-
totic decay of solutions of Eqs. () and (), it is possible to calibrate the mapping function
in order to satisfy (ii) (namely, the gradient of the solution of the bounded problems does
not have to develop singularities at the boundary of [, ]× [–, ]). A good choice of map-
ping function is χ (s) = cs

(–s) . We refer the reader to [] for an accurate discussion on the
choice of a proper mapping function of elasto-static problems. The parameter c regulates
the length scale of the computational grid (and then the maximum resolution). In practice,
to ensure a fine resolution in �H , we impose that the spatial resolution at the boundary
of �H is half the resolution at the origin (where there is the minimum grid spacing). We
choose c so that this condition is satisfied. In detail, we impose χ ′(χ–(α)) =  ·χ ′(), where
α is the radius of the hydrothermal system (in our case α =  km). If m = , after some
algebra we obtain the condition:

c = α

√



.

By requirements (i) and (ii) the numerical method will achieve second order accuracy
in a natural way, unlike the case when artificial truncation of the domain is used to assign
zero displacement and zero potential boundary conditions.

.. Finite-difference ghost-point method
The discretization technique is applied to solve the transformed set of PDE’s in the
bounded domain (�b

M for Eq. () and [, ] × [–, ] for Eq. ()) discretized by a uniform
Cartesian grid. A straightforward finite-difference scheme solves the transformed prob-
lem of (), since it consists of a boundary value problem in a square domain discretized
by a uniform Cartesian grid. This is not the case of the transformed problem of (), where
stress-free boundary conditions must be prescribed on an arbitrary topography, which is
a part of the boundary of �b

M . The domain �b
M and surface �b

M are implicitly described by
a level-set function φ(ξ ,η):

�b
M =

{
(ξ ,η) ∈ C : φ(ξ ,η) < 

}
, �b

M =
{

(ξ ,η) ∈ C : φ(ξ ,η) = 
}

. ()

Observe that, if the topography function fTOP is known, a level-set function can defined
by φ = z – fTOP(r). In the applications, the topography is often defined by a set of grid
points (ξk ,ηk) with k = , . . . , NT . A reasonably accurate level-set function can be obtained
by φ(P) = ±d(P, t), namely the signed distance between the point P and the line t passing
through the two topography points (ξk ,ηk) closest to P. The sign is determined by the
mutual position between P and the two closest boundary points in such a way φ(P) <  if
and only if P ∈ �b

M .
Level-set methods are a powerful tool to implicitly describe moving geometries as well

as complex topological changes []. Although in this paper we do not face moving ge-
ometries, the level-set function comes useful for two main reasons: (i) it provides accurate
information, such as normal direction and curvature,

n =
∇φ

|∇φ| , κ = ∇ · n, ()
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that can be adopted in the discretization technique to improve the accuracy of the method,
and (ii) it allows us to provide a general numerical method that can be embedded in a
more generic framework of time-dependent problems with (complex) moving geometries.
Reason (i) is strictly related to the discretization technique adopted, which is described
below.

The level-set function is able to discriminate between internal (φ < ) and external (φ ≥
) grid points. For each internal grid point Eqs. () are discretized using the standard
central finite-difference discretization. In details, observe that the differential terms of Eqs.
() (with σ components given by ()) are a linear combination of:

∂

∂ξ

(
γ

∂w
∂ξ

)
,

∂

∂ξ

(
γ

∂w
∂η

)
,

∂

∂η

(
γ

∂w
∂η

)
,

∂

∂η

(
γ

∂w
∂ξ

)
,

where γ is a smooth coefficient and w = ur or uz . The finite-difference discretization of
the previous terms is:

∂

∂η

(
γ

∂w
∂η

)
≈ γi+/,j(wi+,j – Wi,j) – γi–/,j(wi,j – wi–,j)

h ,

∂

∂η

(
γ

∂w
∂ξ

)
=

∂γ

∂η

∂w
∂ξ

+ γ
∂w
∂η∂ξ

≈ (γi+,j – γi–,j)(wi,j+ – wi,j–)
h + γi,j

wi+,j+ + wi–,j– – wi+,j– – wi–,j+

h ,

∂

∂ξ

(
γ

∂w
∂η

)
=

∂γ

∂ξ

∂w
∂η

+ γ
∂w
∂η∂ξ

≈ (γi,j+ – γi,j–)(wi+,j – wi–,j)
h + γi,j

wi+,j+ + wi–,j– – wi+,j– – wi–,j+

h ,

∂

∂η

(
γ

∂w
∂η

)
≈ γi,j+/(wi,j+ – wi,j) – γi,j–/(wi,j – wi,j–)

h ,

where h = �ξ = �η is the (uniform) spatial step and γi+/,j = (γi,j + γi+,j)/. Finite-
difference discretization for an internal grid point involves then the surrounding grid
nodes. Some of these surrounding points may lie outside of �b

M , defining the so-called
set of ghost points. Therefore the list of unknowns of the discrete linear system consists
of the discrete values {uP

r , uP
z }, where the subscript P varies within the set of internal and

ghost nodes. To close the linear system (i.e. to have a number of equations as much as the
number of unknowns) two discrete equations must be generated for each ghost point G
(to equate the two unknowns uG

r and uG
z ). This discrete equations are recovered by pre-

scribing the stress-free boundary condition on �b
M with second order accuracy using the

level-set function. In practice, referring to Figure , the discretization technique associ-
ated to a ghost point G consists of the following three stages.

• First we compute the projection B of G to the boundary by the level-set function. In
details, we compute the outward unit normal vector nG by discretizing Eq. () on G
using a standard finite-difference scheme; then we apply the bisection method to solve
the D nonlinear equation φ(B) =  on the segment between points G and
G = G –

√
 h nG, with h being the spatial step.

• Then, we identify a nine-point stencil made by internal and ghost points, containing
G and whose convex hull (the smallest convex set containing the stencil) contains B.
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Figure 3 Stencil configuration. Nine-point stencil (red circles)
associated with the ghost point G and used to compute the
biquadratic interpolations of the terms composing the boundary
conditions (9). Boundary conditions are then enforced on the
boundary point B, computed by solving (via a bisection method) the
1D nonlinear equation φ(B) = 0 on the segment between points G and
G1 = G –

√
2hnG , with h being the spatial step.

In Figure  the nine-point stencil is represented by red circles. Although there are
different stencils satisfying these conditions, an appropriate choice will often avoid
numerical instabilities in the solution (see [] for more details and examples).

• Stress-free boundary conditions () are then imposed on B, providing then the
following two equations of the linear system for uG

r and uG
z :

⎧
⎨

⎩
(σ̃rr

∂φ̃

∂r + σ̃rz
∂φ̃

∂z )|B = ,

(σ̃rz
∂φ̃

∂r + σ̃zz
∂φ̃

∂z )|B = ,
()

where σ̃rr , σ̃rz, σ̃zz and φ̃ are the biquadratic interpolant on the nine-point stencil of σrr ,
σrz , σzz and φ, respectively.

.. Multigrid solver
The discrete linear systems involving the unknowns {uP

r , uP
z }, with P varying within the sets

of internal and ghost points, is solved by an efficient geometric multigrid solver, which is
an extension of the multigrid approach proposed in [] (to which the reader is referred
for more details).

2.4 Hydrothermal model
The circulation of hot fluids in the hydrothermal system is modelled by TOUGH [],
a well-known software to simulate multiphase multicomponent fluid flow and heat trans-
fer in porous media. For a generic multiphase fluid with k components a set of k+ equa-
tions (k mass equations and one energy equation) is solved. The k +  equations can be
resumed as follows []:

∂Qα

∂t
+ ∇ · Fα – qα = , α = M, . . . , Mk , E, in �H , ()

where Qα = Qα(�x, t) is the accumulation term, Fα = Fα(�x, t) the flux and qα = qα(�x, t) the
source (or sink) term. Subscript α = Mi or E refers to the mass balance equation of the
i-th component or to the energy balance equation, respectively. Accumulation terms and
fluxes for the mass balance equations α = Mi and energy equation α = E are

QMi = φ
∑

β

ρβSβχ i
β , FMi =

∑

β

χ i
βFβ , ()

QE = φ
∑

β

(ρβeβSβ ) + ( – φ)ρrCrT , FE = –λ∇T +
∑

β

hβFβ , ()
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Table 1 Description of the quantities appearing in Eqs. (19)-(20)

Notation Description Status

φ(�x) Porosity Assigned
ρr (�x) Density of the rock Assigned
Cr (�x) Specific heat of the rock Assigned
λ(�x) Thermal conductivity of the rock Assigned
K (�x) Permeability of the rock Assigned
ĝ Gravity acceleration Assigned
ρβ (�x, t) Density of the phase β Unknown
Sβ (�x, t) Saturation of the phase β Unknown
χ i

β (�x, t) Mass fraction of the i-th component in the phase β Unknown
eβ (�x, t) Internal energy of the phase β Unknown
hβ (�x, t) Enthalpy of the phase β Unknown
kβ (�x, t) Relative permeability of the phase β Unknown
ηβ (�x, t) Viscosity of the phase β Unknown
Pβ (�x, t) Pressure of the phase β Unknown
T (�x, t) Temperature Unknown

Dependence on �x and/or t is also highlighted in the first column. All quantities that do not depend on time are a priori
assigned. The subscript β refers to the liquid (β = l) or gas (β = g) phase.

where the subscript β = l or g refers to the liquid or gas phase, respectively, and Fβ =
K kβ ρβ

μβ
(∇Pβ – ρβ ĝ) is the fluid flux of the phase β , based on the Darcy law. Refer to Table 

for the description of the quantities introduced in Eqs. ()-(). Quantities depending on
time constitute the unknown variables of the model. A suitable set of k +  primary vari-
ables is chosen among the unknowns, and, to close the system (), the remaining variables
(secondary variables) are expressed in terms of the primary variables. Each combination
of values of primary variables then identifies uniquely the state of the fluid. The functional
dependences of the secondary variables with respect to the primary variables are based on
the Equations Of State (EOS), which depend on the number and nature of components.
In the simulations considered in this paper, we use k =  or k =  to simulate pure water
(EOS module of TOUGH) or water and carbon dioxide (EOS module of TOUGH)
injection, respectively.

We call �H ⊂ R
 the spatial domain in which we solve Eq. () (the domain of the hy-

drothermal model). Due to the axis-symmetric configuration of the problem, the domain
can be expressed in terms of the radial distance r =

√
x + y and the vertical variable z,

as �H = { ≤ r ≤ R, zmin ≤ z < fTOP(r)}, where fTOP(r) represents the topography function
(see Figure ). Since TOUGH does not account for infinite domains, �H differs from �M

and is truncated at a radial distance of r = R and a depth of z = zmin. On the portion of
the ground surface within a radial distance r ≤ R, �H , atmospheric (Dirichlet) boundary
conditions for pressure and temperature are prescribed.

In multi-phase system, each phase may be at a different pressure Pβ due to interfacial
curvature and capillary forces. The difference between the gas and liquid pressures is re-
ferred as capillary pressure Pc. Capillary pressure and relative permeabilities kβ , β = l, g ,
are usually posed as a function of the liquid saturation Sl . In this paper we use the capillary
pressure and relative permeabilities set according to the following Brooks-Corey functions
[]:

Pc = PS
e ,

kl = S
e , ()
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kg =
(
 – S

e
)
( – Se),

Se =
Sl – Slr

 – Slr – Sgr
,

where Se is the effective saturation, Slr = . the residual liquid saturation and Sgr = .
the residual gas saturation.

3 Simulation of unrest at Campi Flegrei
The method is applied at the Campi Flegrei area to simulate an unrest caused by a deep
injection of hot fluid in the caldera [–]. The ground surface is represented by a pro-
file of the real topography of the Campi Flegrei area computed from the Digital Elevation
Model of the Shuttle Radar Topography Mission (Figure ). The computational domain
�H for the TOUGH simulations extends up to a radial distance of R =  km and a depth
of zmin = . km computed from the intersection between the ground surface and the axis
of symmetry. The domain �H was discretized in the radial direction by a set of logarith-
mically spaced nodes with a horizontal resolution starting from . m along the axis of
symmetry and decreasing to  m at the external boundary. Vertically, the domain was
divided into  equally spaced layers, which corresponds to a resolution of  m/layer.
This discretization leads to , cells.

In the thermo-poroelastic and gravity models the domain extends toward infinity (Fig-
ure ), warranting zero displacement and potential. The computational grid is vertex-
centered and has a maximum resolution of �r = �z = . m at r = z = .

Firstly, TOUGH is run to evaluate temperature, pressure and density variations with
respect to their initial distributions, which, then, are fed into the thermo-poroelastic solver
to compute the deformation and gravity changes. Due to the different grids adopted,
these quantities are interpolated from the TOUGH grid to the thermo-poroelastic solver
nodes.

In all the TOUGH simulations, atmospheric boundary conditions P = . MPa and
T = ◦C are prescribed on the surface �H = {z = fTOP(r)}, while adiabatic and impervious

Figure 4 Campi Flegrei area. Digital Elevetion Model of the studied area.
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Table 2 Rock properties used in calculations of the hydrothermal model

Density 2000 kg/m3

Permeability 10–14 m2

Conductivity 2.8 W m–1 K–1

Porosity 0.2
Specific heat 1000 J kg–1 K–1

Table 3 Elastic properties of the medium

Region Rigidity [GPa] Poisson ratio

L1 4 0.25
C1 2.3 0.33
L2 5 0.25
C2 3.6 0.33
L3 6.5 0.25
C3 5 0.33
L4 20 0.25

Figure 5 Model set-up. Axis-symmetric model
geometry and elastic medium heterogeneity of the
Campi Flegrei area.

conditions are set on the remaining boundaries {r = R} and {z = zmin}, except at the inlet
near the symmetry axis, where inflow boundary conditions are prescribed.

Values of the hydrological and thermal properties of rocks are defined on the basis of
literature data [, ] (Table ). The elastic medium properties are defined on the basis
of tomographic studies [], which depict the heterogeneity of the shallow structure of
Campi Flegrei (Table ). Following [], the shallow area of the medium is divided into
three horizontal layers having a thickness of  km. The inner caldera is modelled as a
 km wide cylinder, coaxial with the axis of symmetry, with an internal variation of the
elastic parameters. A further layer extends from  km depth to the bottom of the (infinite)
computational domain (Figure ). The thermal expansion coefficient α is –K– and the
Biot-Willis coefficient αBW is ( – K/Ks), where K is the isothermal drained bulk modulus
( GPa) and Ks is the bulk modulus of the solid constituent ( GPa) [].

Although hydrothermal fluids are not pure substances, but generally mixtures of sev-
eral mass components or chemical species, the dominant fluid component is usually wa-
ter, and it is often reasonable to ignore other components. However, in volcanic regions
the aqueous phase generally contains also dissolved incondensable gases, such as CO.
To investigate the effect of a CO component in water, two different scenarios are inves-
tigated, simulating: () a pure water injection using the TOUGH/EOS module, which
models a water system in its liquid, vapor, and two-phase states; () a mixture of water
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and carbon dioxide injection using the TOUGH/EOS module, which accounts for the
non-ideal behavior of gaseous CO and dissolution of CO in the aqueous phase.

We observe that the depth of �H is chosen in such a way the focus of the simulations is on
the shallower hydrothermal activity, in order to maintain temperature and pore pressure
within the range considered by TOUGH, which does not take into account super-critical
fluids. Therefore, in all the simulations of this paper we investigate only sub-critical fluids.

Observe that we do not aim to simulate the subsidence period following the main unrest
phase, and therefore the simulation is confined to the first years of unrest.

3.1 Injection rates
In the following sections two scenarios will be studies: pure water injection and water
and carbon dioxide injection. The injection rates adopted in the scenario of water and
carbon dioxide injection are obtained from previous works according to geochemical data
collected at the CFc and providing a good matching to observed data [, , ]. The
injection rates adopted for the scenario of pure water injection are chosen in such a way
the total mass of fluid injected is the same for both scenarios.

3.2 Pure water injection
In this first scenario the fluid is composed of pure water, whose properties and phase tran-
sitions are calculated based on the thermodynamic conditions, according to the steam ta-
ble equation []. Initial conditions are obtained reaching a steady-state solution by simu-
lating a  thousand year long phase with a deep injection of hot water with a constant flux
rate of . kg/s at temperature of °C. The fluid is injected in a  m wide inlet located
at the bottom of the domain around the symmetry axis. This extent has been estimated
from the area affected by fumaroles activity [].

The unrest is simulated increasing the flux rate to . kg/s for  years. The distri-
butions of saturation and pressure, temperature and density changes at the end of the
unrest with respect to the steady-state initial conditions are displayed in Figure . Tem-
perature changes are restricted near the inlet, whereas pressure changes of a few MPa
are distributed in a larger area. The saturation shows that the fluid is gas-saturated at the
base and a two-phase fluid reaches the ground surface. The saturation distribution con-
trols the fluid density, which shows negative variations at the edge of the inlet and positive
variations at a mid-depth of the domain. Using these solutions the evolution of ground
deformation and gravity changes are then evaluated.

The deformation field (Figure ) computed solving Eq. () resembles the patterns ob-
tained in [–], although there are some discrepancies in the amplitudes, likely arising
from the medium heterogeneity rock properties and the single component injection. It is
similar to deformation field arising from spherical point pressure sources. During the un-
rest the deformation monotonously increases reaching an amplitude of . cm and . cm
in the horizontal and vertical component, respectively.

A comparison with a homogeneous model, in which the rigidity is  GPa and the Pois-
son’s ratio is . is performed. An enhancement in the deformation field is observed since
the rigidity is lower with respect to the heterogeneous model (Figure ).

The deformations are accompained by significant gravity changes induced by the fluid
density variations. The gravity changes computed at the axis of symmetry on the ground
surface (Figure ) increase almost linearly through time and reache about  μGal after
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Figure 6 Fluid flow solutions. Temperature,
pressure and density (first, third and forth plot from
top to bottom, respectively) variations (with respect
to the stady-state solution) and saturation (second
plot from top to bottom) after 3 years of continuous
injection of a pure water.

Figure 7 Ground deformation. Horizontal and vertical deformation on the ground surface over time
induced by continuous injection of pure water in a heterogenous medium. The solutions (lines) are reported
every two months.

 years of constant injection. The ratio �g/�h increases monotonously reaching a value
of about  μGal/cm. These results are in fully agreement with those obtained by Coco et
al. [] using the HYDROTHERM flow code [].

3.3 Water and carbone dioxide injection
In this second scenario the fluid is a mixture of water and carbon dioxide. The initial con-
ditions are achived by injecting for  thousand years a fluid at temperature of °C com-
posed of a water component with a flux rate of . kg/s and a CO component with a
flux rate of . kg/s. Then, the unrest is simulated increasing the flux rates to . kg/s
for the water and to . kg/s for the CO. The distributions of saturation and pressure,
temperature, and density variations after  years from the unrest are displayed in Figure .
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Figure 8 Ground Deformation. Horizontal and vertical deformation on the ground surface over time
induced by continuous injection of pure water in a homogeneous medium. The solutions (lines) are reported
every two months.

The distributions are quite different with respect to the first scenario, when only water
is injected (Figure ). The pressure changes affect a wider area, whereas the temperature
changes are almost similar to the previous scenario. The saturation shows two areas of
gas-saturated zones, one at the inlet and the other one below the ground surface. The
fluid density variations are almost negative at the edge of the rising plume, where liquid
phase is substituted by gas phase. The pressure and temperature changes greatly affect
the ground deformation as shown in Figure . These behaviors are in agreement with the
results obtained in [].

Under a constant injection rate, the temporal pattern of ground deformation shows an
exponential increase (Figure ). After  years of continuous fluid injection the horizontal
deformation reaches a maximum value of about  cm at  m from the symmetry axis
and the vertical uplift attains about . cm at the simmetry axis. It is worth of noting that
the amplitude of the displacement is enhanced with respect to the first scenario when only
pure water is injected. Contrarily, Troiano et al. found in [] that similar deformations are
obtained injecting either water or a mixuture of water and CO. This discrepancy among
the results could be ascribed to the different ratio between water and carbone dioxide
components. Indeed, Troiano et al. used in [] a flux rate of . kg/s for water and of
. kg/s for CO, leading to a molar ratio of ., which is one tenth of the value used
in our simulations. The effect of the CO component is much more evident by comparing
the results on gravity changes (Figures , ).

In presence of CO the temporal variations of the gravity field caused by changes in
the average fluid density (Figure ) show a peculiar pattern. A positive increase, which
reaches a maximum value of about  μGal, is observed until . years after the onset of
the unrest. Then, a decreasing trend marks the evolution of the gravity changes. This be-
haviour could be attributed to the negative density variations generated by the ascent of the
gas-rich fluids (Figure ). Most intriguing is the controversial trend between the gravity
changes and the vertical deformation. Their ratio ranges between –. and . μGal/cm.
However, these results are in agreement with previous works, such as [].
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Figure 9 Vertical uplift and gravity changes. Temporal evolution of the vertical uplift and gravity field for
3 years of continuous injection of pure water computed at the symmetry axis on the ground surface. The ratio
of gravity change to vertical deformation is also shown.

Figure 10 Fluid flow solutions. Temperature,
pressure and density (first, third and forth plot from
top to bottom, respectively) variations (with respect
to the stady-state solution) and saturation (second
plot from top to bottom) after 3 years of continuous
injection of a mixture of water and CO2.

4 Conclusion
A finite-difference ghost-point method for solving the elasto-static and Poisson equations
on an arbitrary unbounded domain has been presented. The proposed strategy, which
adopts the coordinate transformation method, has been applied to thermo-poroelastic
models to evaluate deformation and gravity changes in volcanic areas. The method has
been coupled with the TOUGH code to investigate the role of pressure, temperature and
density changes on the geophysical observables. The results from two scenarios have been
compared in order to explore the effect of the presence of carbon dioxide in the fluid mix-
ture. Although the total flux rate is similar in both scenarios, the presence of CO strongly
alter the solutions. Particularly, the injection of the CO engenders an enhancement in the
deformation field and perturbs the temporal evolution of the gravity changes. This last fea-
ture could be a useful signature to constrain the relative ratio between water and carbon
dioxide content. It turns out that the ratio between gravity and vertical deformation de-
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Figure 11 Ground Deformation. Horizontal and vertical deformation on the ground surface over time
induced by continuous injection of a mixture of water and CO2 in a heterogenous medium. The lines refer to
solutions computed every two months.

Figure 12 Vertical uplift and gravity changes. Temporal evolution of the vertical uplift and gravity field for
3 years of continuous injection of a mixture of water and CO2 computed at the symmetry axis on the ground
surface. The ratio of gravity change to vertical deformation is also shown.

creases for higher ratios of CO/HO. The comparisons between gravity and deformation
may help to discriminate between injection with or without carbon dioxide content and
to provide inferences on the nature of the source. Since unrest periods are accompanied
by increases of the CO/HO ratio, a decrease in the ratio between gravity and vertical
deformation could help in detecting the onset of unrest phases. Moreover, our findings
seem able to justify what observed in some volcanic regions, where major gravity changes
appear without any significant deformation. In many volcanoes worldwide, there are ev-
idences that the ratio between gravity and height changes is far beyond what could be
predicted by simple models, in which volume and pressure changes in a magma chamber
are considered. When significant gravity changes occur without any significant deforma-
tion, or vice versa, it is often difficult, if not impossible, to jointly explain the observations
using the popular Mogi model. Our results may provide an alternative explanation to the
observations and help in resolving the controversy between geodetic and gravity observa-
tions as a volcano moves from rest to unrest state.

However, there are some limitations of the model presented in this paper that must be
considered. The shallow hydrothermal system is only . km deep, while a deeper model is
more realistic to represent volcanic areas [, ]. The shallow injection depth considered in
this paper is constrained by the range of applicability of TOUGH, which does not account
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for supercritical fluids. Some recent models investigated the influence of super-critical flu-
ids to the results, allowing to consider deeper domains []. The D axi-symmetric repre-
sentation may not be able to describe the complex D network that characterises caldera
systems. However, to a first approximation calderas present a radial structure and then
can be approximated by the axis symmetric assumption. The one-way coupling between
the hydrothermal model and the thermo-poroelastic model represents a reasonable sim-
plification when a short period of unrest is simulated, but it is not adequate for simulations
of longer processes, where stress and strain alterations may induce a significant variation
in the relevant hydrological parameters (permeability, porosity), modifying the long term
processes of fluid flows in the porous medium and then the associated geophysical signals
[, ].

The effects of these limitations may be reduced by considering a more realistic fully
coupled D model that accounts for super-critical fluids. The implementation of a more
effective simulator is part of our future investigations, with the aim to extend the simula-
tion to more realistic cases of multi-component fluids.
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