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Abstract
In this paper, we present a flexible nonmonotone filter method for solving nonlinear
constrained optimization problems which are common models in industry. This new
method has more flexibility for the acceptance of the trial step compared to the
traditional filter methods, and requires less computational costs compared with the
monotone-type methods. Moreover, we use a self-adaptive parameter to adjust the
acceptance criteria, so that Maratos effect can be avoided a certain degree. Under
reasonable assumptions, the proposed algorithm is globally convergent. Numerical
tests are presented that confirm the efficiency of the approach.
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1 Introduction
We consider the following inequality constrained nonlinear optimization problem

(P) min f (x)

s.t. ci(x) ≤ , i ∈ I = {, , . . . , m},

where x ∈ R
n, the functions f : Rn → R and ci (i ∈ I) : Rn → R are all twice continuously

differentiable. For convenience, let g(x) = ∇f (x), c(x) = (c(x), c(x), . . . , cm(x))T and A(x) =
(∇c(x),∇c(x), . . . ,∇cm(x)). And fk refers to f (xk), ck to c(xk), gk to g(xk) and Ak to A(xk),
etc.

There are various methods for solving the inequality constrained nonlinear optimization
problem (P). For example, sequential quadratic programming methods, trust region ap-
proaches [], penalty methods and interior point methods []. But in these works, a penalty
or Lagrange function is always used to test the acceptability of the iterates. However, as
we all know, there are several difficulties associated with the use of penalty function, and
in particular the choice of the penalty parameter. In , Fletcher and Leyffer [] pro-
posed a class of filter methods, which does not require any penalty parameter and has
promising numerical results. Consequently, filter technique has employed to many ap-
proaches, for instance, SLP methods [], SQP methods [, ], interior point approaches []
and derivative-free optimization [, ]. Furthermore, Fletcher et al. [] proved the global
convergence of the filter-SQP method, then Ulbrich and Ulbrich [] showed its superlin-
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ear local convergence. But the filter methods also encounter the Maratos effect. Marotos
effect, observed by Maratos in his PhD thesis in , means some steps that make good
progress toward a solution are rejected by the merit function. To overcome the drawback
in filter methods, Ulbrich [] introduced a new filter method using the Lagrangian func-
tion instead of the objective function as the acceptance criterion. After that, Nie and Ma
[] used a fixed scalar to combine the objective function and violation constraint function
as one measure in the entry of the filter. But both of them used the fixed criterion to decide
whether accept a trial point or not, that means the criterion is invariable no matter what
improvements made by the trial point. Actually, if we can change the criterion according
to the different improvements made by the current trial point, we can avoid Maratos effect
to a certain degree, and decrease the computational costs as well.

On the other hand, the promising numerical results of filter methods owe to their non-
monotonicity in a certain degree. Based on this property, some other non-monotone-type
filter methods are proposed [–]. Gould and Toint [] also introduced a new non-
monotone filter method using the area of the region in h – f plane as the criteria to decide
whether a trial point is acceptable or not, where h = h(x) is the constraint violation function
and f = f (x) is the objective function at the current point x.

Motivated by the idea and methods above, we proposed a class of nonmonotone filter
trust region methods with self-adaptive parameter for solving problem (P). Our method
improves previous non-monotone filter method. Unlike Ulbrich [], we do not use a La-
grangian function in the filter but use the similar type of function as that in Nie and Ma
[]. Moreover, different from Nie and Ma [], the parameter in our method is not fixed
but variable, that means the criterion is adjusted according to the different improvements.
To avoid the trial point from falling into a ‘valley’, we also add the non-monotonic tech-
nique into the criterion. Different from existing SQP-filter methods, we use a quadratic
subproblem that always feasible to avoid the feasible restoration, hence decrease the scale
of the calculation to a certain degree.

This paper is organized as follows: in Section , we introduce the feasible SQP subprob-
lem and the non-monotonic flexible filter. We propose the non-monotone filter method
with self-adaptive parameter in Section . Section  presents the global convergence prop-
erties and some numerical results are reported in Section . We end our presentation in
short conclusion in Section .

2 The modified SQP subproblem and the non-monotone flexible filter method
2.1 The modified SQP subproblem
Our algorithm is an SQP method, to avoid the infeasibility of the quadratic subproblem,
we choose a quadratic program that presented by Zhou []. At the kth iterate, we compute
a trial step by solving the following quadratic problem,

Q(xk , Hk ,ρk): min gT
k d +




dT Hkd

s.t. cj(xk) + ∇cj(xk)T d ≤ �+(
xk ,ρk

)
, j ∈ I,

‖d‖ ≤ ρk ,

()

where

�+(xk ,ρk) = max
{
�(xk ,ρk), 

}
, ()
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�(xk ,ρk) = min
{
�(xk ; dk) : ‖dk‖ ≤ ρk

}
()

and �(xk ; dk) is the first order approximation to �(xk +dk) = max{cj(xk +dk) : j ∈ I}, namely

�(xk ; dk) = max
{

cj(xk) + ∇cj(xk)T dk : j ∈ I
}

()

and ρk > . We notice that these convex programs have the following properties.
We can condense the above definitions by the following form

�+(xk ,ρk) = max
{

min
‖dk‖≤ρk

{
max

j∈I

{
cj(xk) + ∇cj(xk)T dk

}}
, 

}
. ()

Lemma  [] If dk =  is the solution to Q(xk , Hk ,ρk), then xk is a KKT point of the prob-
lem (P).

Proof The proof is similar to that of Lemma . in []. �

2.2 The non-monotone flexible filter with a self-adaptive parameter
In traditional filter method, originally proposed by Fletcher and Leyffer [], the accept-
ability of iterates is determined by comparing the value of constraint violation and the
objective function with previous iterates collected in a filter. Define the violation function
h(x) by h(x) = ‖c(x)+‖∞, where ci(x)+ = max{ci(x), , i ∈ I}. Obviously, h(x) =  if and only if
x is a feasible point. So a trial point should either reduce the value of constraint violation
or the objective function f .

Definition of filter set is based on the definition of dominance as following,

Definition  A pair (hk , fk) is dominated by (hj, fj) if and only if hk ≤ hj and fk ≤ fj for each
j �= k.

Definition  A filter set F is a set of pairs (h, f ) such that no pair dominates any other.

To ensure the convergence, some additional conditions are required to decide whether
to accept a trial point to the filter or not. The traditional acceptable criterion is as follow-
ing.

Definition  A trial point x is called acceptable to the filter if and only if

either h(x) ≤ βhj or f (x) ≤ fj – γ hj for ∀(hj, fj) ∈F , ()

where  < γ < β <  are constants. In practice, β is close to  and γ close to .

Actually, in traditional filter method, some good point such as superlinear convergent
step may be rejected due to the increase of both objective function value and constraint
violation value compared to other entries in filter. That is the reason why the Maratos
effect occurs. So motivated by [], we substitute the original objective function f (xk) at
the kth iterate by the following function

l(xk) = f (xk) + δkh(xk) = f (xk) + δk
∥∥c(xk)+∥∥∞, ()
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Figure 1 Traditional filter with δk = 0.

Figure 2 Increase δk to impose stricter acceptance
criterion.

where ci(xk)+ = max{ci(xk), } for i = , , . . . , m. Here δk is a self-adaptive parameter at kth
iterate, it can be changed according to the different improvements that made by the cur-
rent trial point. Note that the traditional filter methods are the special cases with δk = ,
and we hope overcome the Maratos effect with suitable δk .

We aim to reduce the value of both h(x) and l(x). By original criterion, the trial point is
acceptable if and only if () holds. Nie and Ma [] proposed a trust region filter method
with a given penalty parameter which is negative, but in this paper, different from [],
the parameter δk is a variable scalar which is changed according to the different improve-
ments caused by the trial point. Specifically, at the beginning, let δ = , that is what the
traditional filter method does, and f (xk) = l(xk) (see Figure ).

There are four regions in the right-hand half space I, II, III, IV. At the current iterate k, if
the trial point xk moves into the region IV, that means the pair (hk , lk) is located in region
IV, we say that the trial point is rejected according to our criterion. If xk moves into the
region I, II, or III, we accept it, but need to adjust the parameter δk in the criterion. For
region III, we say that the algorithm does not make a good improvement, since we do not
want to accept points with larger constraint violation. Thus we intent to impose stricter
acceptance criterion, that means to increase the value of δk , which will result in the bigger
reject area and smaller acceptable area (see Figure ). So update δk as following:

δk+ = min

{
ρk , δk +

∣
∣∣
∣

lk – l+
k

hk – h+
k

∣
∣∣
∣

}
. ()

If xk moves into the region II, we say that the algorithm makes good improvement since
it reduces not only the objective function l(xk) but also the constraint violation h(xk), so
we intend to loosen the acceptance criterion to hope for more improvements. That means
to decrease the value of δk so that make the reject area become smaller and the acceptable
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Figure 3 Decrease δk to loosen the acceptance criterion.

area bigger (see Figure ). So update δk as following:

δk+ = max

{
–ρk , δk –

∣
∣∣∣

lk – l+
k

hk – h+
k

∣
∣∣∣

}
. ()

If xk moves into region I, we will also accept it because the value of constraint violation
does decrease, and we can also accept the increase of l(xk) in finite steps. Meanwhile, the
value of δk will not be changed. If xk moves into region IV, that means this trial point is
rejected, and δk also should be remained in the next iterate.

As we all know, because of the non-monotone properties of filter method in a certain
degree, it has the good numerical results. Su and Pu [] also proposed a modified non-
monotone filter method to exhibit a further non-monotone technique. Motivated by this,
we loosen the acceptance criterion by non-monotonic technique and give the following
criteria.

Definition  A point x is acceptable to the filter if and only if

h(x) ≤ β max
≤r≤m(k)–

hk–r or l(x) ≤ max

[

lk ,
m(k)–∑

r=

λkrlk–r

]

– γ h(x), ()

where (hk–r , lk–r) ∈ F for  ≤ r ≤ m(k) – , and  ≤ m(k) ≤ min{m(k – ) + , M}, M ≥  is
a given positive constant,

∑m(k)–
r= λkr = , λkr ∈ (, ) and there exists a positive constant λ

such that λkr ≥ λ.

Similar to the traditional filter methods, we also need to update the filter set F at each
successful iteration, the technique is equivalent to the traditional method with the modi-
fied acceptance rule ().

To control the infeasibility, an upper bound condition of violation function is needed,
namely h(x) ≤ u, where u is a positive scalar, which can be implemented in the algorithm
by initiating the filter with the pair (u, –∞).

3 A nonmonotone flexible filter algorithm
At the current kth iterate, the trial point xk is accepted by our algorithm if it satisfies two
conditions, first is accepted by the filter set, second is sufficiently reduction. We define the
sufficient reduction condition is as following:

raredl
k ≥ η predf

k and hl(k) ≤ α‖dk‖α∞ , ()
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where α, α are constants, the relaxed actual reduction raredl
k and the predicted reduction

predf
k are defined as

raredl
k = l(xk + dk) – max

{

l(xk),
m(k)–∑

r=

λkrlk–r

}

, ()

predf
k = –gT

k dk –



dT
k Hkdk , ()

hl(k) = max
≤r≤m(k)–

hk–r ()

and the matrix Hk is the Hessian matrix ∇f (xk) or an approximate to it,
∑m(k)–

r= λkr = ,
λkr ∈ (, ),  ≤ m(k) ≤ min{m(k – ) + , M}, M ≥  is a given positive constant.

A formal description of the algorithm is given as follows.

Algorithm A

Step . Let  < ρ < ,  < γ < β < ,  < λ ≤ ,  < γ < γ ≤  < γ, M ≥ , u > , α = α =
.. Choose an initial point x ∈ Rn, a symmetric matrix H ∈ Rn×n and an initial
region radius 
 ≥ 
min > , F = {(u, –∞)}. Set k = , m(k) = .

Step . Solve the subproblem Q(xk , Hk ,ρk), if ‖dk‖ = , stop.
Step . Let x+

k = xk + dk , compute h+
k , l+

k .
Step . If x+

k is acceptable to the filter Fk , go to step , otherwise go to step .
Step . If x+

k is located in the region I or region IV, let δk+ = δk , if x+
k is located in the region

II, let δk+ is updated by (), if x+
k is in the region III, let δk+ is updated by ().

Step . If raredl
k ≤ η predf

k and hl(k) ≤ α‖dk‖α∞ , then go to step , otherwise go to step .
Step . Let ρk ∈ [γρk ,γρk], go to step .
Step . Let xk+ = x+

k , update the filter set. ρk+ ∈ [ρk ,γρk] ≥ ρmin, update Hk to Hk+, m(k +
) = min{m(k) + , M}, k = k +  and go to step .

Remark  At the beginning of each iteration, we always set ρk ≥ ρmin, which will avoid
too small trust region radius.

Remark  In above algorithm, let M be a nonnegative integer. For each k, let m(k) satisfy

m() = ,  ≤ m(k) ≤ min
{

m(k – ) + , M
}

for k ≥ .

In fact, if M = , the algorithm actual is a monotone method, the nonmonotonicity is
showed as M > .

4 The convergent properties
In this section, to present a proof of global convergence of algorithm, we always assume
that following conditions hold.

Assumptions
A. The objective function f and the constraint functions ci (i ∈ I = {, , . . . , m}) are

twice continuously differentiable.
A. For all k, xk and xk + dk all remain in a closed, bounded convex subset S ⊂ Rn.
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A. The matrix sequence {Hk} is uniformly bounded.
A. The functions A = ∇c are uniformly bounded on S.

By the above assumptions, we can suppose that there exist constants v, v, v such that
‖f (x)‖ ≤ v, ‖∇f (x)‖ ≤ v, ‖∇f (x)‖ ≤ v, ‖c(x)‖ ≤ v, ‖∇c(x)‖ ≤ v, ‖∇c(x)‖ ≤ v.

Definition  [] The Mangasarian-Fromowitz constraint qualification (MFCQ) is said to
be satisfied at a point x ∈ R

n with respect to the underlying constraint system g(x) ≤ , if
there is a z ∈R

n such that

∇ci(x)T z < , i ∈ {
i : ci(x) ≥ , i ∈ I

}
. ()

Lemma  [] Let Assumptions hold, and let x̄ be a feasible point of problem (P) at which
MFCQ holds but which is not a KKT point. Then there exists a neighborhood N of x̄ and
positive constants ξ, ξ, ξ such that for all xk ∈ N ∩ S and all ρk for which

ξhk ≤ ρk ≤ ξ ()

it follows that SQP subproblem has a feasible solution dk , and the predicted reduction sat-
isfies

predf
k ≥ 


ρkξ. ()

If ρk ≤ ( – η)ξ/nv, then

f (xk) – f
(
x+

k
) ≥ η predf

k , ()

where η < η.
If hk >  and ρk ≤

√
βhk
nv

then h(x+
k ) ≤ βhk .

Lemma  Suppose that Assumptions hold, then Algorithm A is well defined.

Proof We will show that the trial point x+
k is acceptable to the filter when ρk , is small

enough. We consider the following two cases.
Case . hk = .
To prove the implementation of Algorithm A, we have to show for all k such that ρk ≤ δ

it holds raredl
k ≥ η predf

k . We know aredl
k = l(xk) – l(x+

k ).
In fact,

∣
∣aredl

k – predf
k
∣
∣ =

∣∣
∣∣l(xk) – l

(
x+

k
)

+ gT
k dk +




dT
k Hkdk

∣∣
∣∣

=
∣∣
∣∣f (xk) + δkh(xk) – f

(
x+

k
)

– δk+h(xk + dk) + gT
k dk +




dT
k Hkdk

∣∣
∣∣

≤
∣
∣∣
∣




dT
k
(∇f (yk) – Hk

)
dk + δkh(xk) – δk+h

(
x+

k
)
∣
∣∣
∣

≤ ρ
k



∥∥∇f (yk) – Hk

∥∥ + |δk+|h
(
x+

k
)
, ()
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where yk = xk + ξdk , ξ ∈ (, ) denotes some point on the line segment from xk to x+
k . By

the update of δk and the definition of h(x+
k ), we know |δk+| ≤ ρk ,

h
(
x+

k
)

=
∥
∥c+(xk + dk)

∥
∥ =

∥∥
∥∥c+(xk) + A(xk)dk +




dT
k ∇c(sk)dk

∥∥
∥∥ ≤ νρk +



νρ


k ,

where sk denotes some point in the line from xk to x+
k .

Hence we obtain that

∣
∣aredl

k – predf
k
∣
∣ ≤ ρ

k b + ρk

(
νρk +



νρ


k

)

≤
(

b + ν

(
 +



δ

))
ρ

k , ()

where b = 
 (sup‖Hk‖ + maxx∈S ‖∇f (x)‖), together with Lemma 

∣∣predf
k
∣∣ =

∣
∣∣
∣–gT

k dk –



dT
k Hkdk

∣
∣∣
∣ ≥ 


ξρk .

We have

∣∣
∣∣
aredl

k – predf
k

predf
k

∣∣
∣∣ ≤ (b + ν( + 

δ))ρ
k


ξρk

→  as ρk → . ()

We deduce that raredl
k ≥ aredf

k ≥ η predf
k for some η ∈ (, ), since

raredl
k = max

{

l(xk),
m(k)–∑

r=

λkrlk–r

}

– l
(
x+

k
) ≥ l(xk) – l

(
x+

k
)

= aredl
k . ()

By max{l(xk),
∑m(k)–

r= λkrlk–r} – l(x+
k ) ≥ η predf

k > γ h(xk), we can see

l
(
x+

k
) ≤ max

{

l(xk),
m(k)–∑

r=

λkrlk–r

}

– γ h(xk),

so x+
k is acceptable to the filter.

Case . hk > .
There exists a constant δ >  and k such that ρk ≤ δ when k < k. Let δ =

√
βhk
nM

by
Lemma , we have h+

k ≤ βhk , that is h+
k ≤ β max≤j≤m(k)–{hk–j}. So x+

k must be acceptable
to the filter by the definition.

With the similar analysis to case , we have

∣
∣aredl

k – predf
k
∣
∣ ≤

∣∣
∣∣




dT
k
(∇f (yk) – Hk

)
dk + σkh(xk) – σk+h

(
x+

k
)
∣∣
∣∣

≤ ρ
k



∥∥∇f (yk) – Hk

∥∥ + |σk|h(xk) + |σk+|h
(
x+

k
)

≤ ρ
k b + ρk

(
 + βh(xk)

)

≤
(

b +
 + β

ξ

)
ρ

k . ()
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Then it holds

∣
∣∣∣
aredl

k – predf
k

predf
k

∣
∣∣∣ ≤ (b + +β

ξ
)ρ

k

ξρk

→  as ρk → . ()

The conclusion follows. This is the end of proof. �

Lemma  Suppose that Assumptions hold and Algorithm A does not terminated finitely,
then limk→∞ hk = .

Proof If Algorithm A can not be terminate finitely, then there are infinite many points
accepted by the filter. We prove the result in two cases by the definition of filter.

(i) K = {k|h+
k ≤ β max≤r≤m(k)– hk–r} is an infinite set.

(ii) K = {k|l+
k ≤ max[lk ,

∑m(k)–
r= λkrlk–r] – γ hk} is an infinite set.

In view of convenience, let

h(xl(k)) = max
≤r≤m(k)–

hk–r ,

where k – m(k) +  ≤ l(k) ≤ k.
(i) Since m(k + ) ≤ m(k) + , we have

h(xl(k+)) = max
≤r≤m(k+)–

[
h(xk+–r)

]

≤ max
≤r≤m(k)

[
h(xk+–r)

]

= max
{

h(xl(k)), h(xk+)
}

= h(xl(k)) ()

which implies that {h(xl(k))} converges. Then by h(xk+) ≤ β max≤r≤m(k)–[h(xk–r)], we have

h(xl(k)) ≤ βh(xl(l(k)–)). ()

Since β ∈ (, ), we deduce that h(xl(k)) →  (k → ∞).
Therefore

h(xk+) ≤ βh(xl(k)) → 

holds by Algorithm A. That is limk→∞ h(xk) = .
(ii) We first show that for all k ∈ S, it holds

lk ≤ l – λγ

k–∑

r=

hr – γ hk– ≤ l – λγ

k–∑

r=

hr . ()

We prove this by induction.
If k = , we have l ≤ l – γ h ≤ l – λγ h.
Assume that () holds for , , . . . , k, then we consider () holds for k + in the following

two cases.
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Case . max[lk ,
∑m(k)–

r= λkrlk–r] = lk ,

l+
k ≤ lk – γ hk ≤ l – λγ

k–∑

r=

hr – γ hk ≤ l – λγ

k∑

r=

hr . ()

Case . max[lk ,
∑m(k)–

r= λkrlk–r] =
∑m(k)–

r= λkrlk–r .
Let p = m(k) – , then

lk+ ≤
p∑

t=

λktlk–t – γ hk

≤
p∑

t=

λkt

(

l – λγ

k–t–∑

r=

hr – γ hk–t–

)

– γ hk

= λk

(

l – λγ

k–p–∑

r=

hr – λγ

k–∑

r=k–p–

hr – γ hk–

)

– γ hk

+ λk

(

l – λγ

k–p–∑

r=

hr – λγ

k–∑

r=k–p–

hr – γ hk–

)

+ · · · + λkp

(

l – λγ

k–p–∑

r=

hr – γ hk–p–

)

≤
p∑

t=

λkrl – λγ

k–p–∑

r=

( p∑

t=

λkr

)

hr –
p∑

t=

λkrγ hk–t– – γ hk . ()

By the fact that
∑p

t= λkt = , λkt ≥ λ, and hr ≥ , we have

lk+ ≤ l – λγ

k–p–∑

r=

hr – λγ

k–∑

r=k–p–

hr – γ hk

= l – λγ

k–∑

r=

hr – γ hk

≤ l – λγ

k∑

r=

hr . ()

Then for all k ∈ S, () holds.
Moreover, since {lk} is bounded below, let k → ∞, we can get that

λγ

∞∑

r=

hr < ∞.

It follows that hk →  (k → ∞). �

Lemma  Suppose that Assumptions hold. If Algorithm A does not termination finitely,
then limk→∞ ‖dk‖ = .
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Proof Suppose by contradiction that there exist constants ε >  and k̄ >  such that ‖dk‖ >
ε for all k > k̄.

Then by Lemma , predf
k > 

ξ‖ρk‖ > 
ξ‖dk‖ > 

ξε > , because of raredl
k ≥ η predf

k , we
have max[lk ,

∑m(k)–
r= λkrlk–r] – lk+ ≥ η predf

k . We take the sum at the both sides, together
with the sequence lk is bounded below, we have η

∑
predf

k < ∞, that follows predf
k →  as

k → ∞, which contradicts to predf
k > . Hence the conclusion follows. �

Theorem  Suppose {xk} is an infinite sequence generated by Algorithm A. Then every
cluster point of {xk} is a KKT point of problem (P).

5 Numerical results
In this section, we give some numerical experiments to show the success of our proposed
method. All examples are chosen from [] and [].

() [] Updating of Hk is done by

Hk+ = Hk +
yT

k yk

yT
k sk

–
HksksT

k Hk

sT
k Hksk

,

where yk = θkŷk + ( – θk)Hksk ,

θk =

⎧
⎨

⎩

, sT
k ŷk ≥ .sT

k Hksk ,
.sT

k Hk sk
sT
k Hk sk –sT

k ŷk
, otherwise

()

and ŷk = gk+ – gk , sk = xk+ – xk .
() We assume the error tolerance is –.
() The algorithm parameters were set as follows: H = I ∈ Rn×n, β = ., γ = .,

ρ = ., α = α = ., σ = –., 
min = –, 
 = . The program is written in
Matlab.

In Table , the problems are numbered in the same way as in Hock and Schittkowski []
and Schittkowski []. For example, ‘HS’ is the problem  in Hock and Schittkowski []
and ‘S’ is the problem  in Schittkowski []. Some equality constrained problems are
also included in our test problems, such as S, S, S and so on. NF, NG represent
the number of function and gradient calculations respectively. In Table , the results in
first column are calculated by Algorithm A, those in second column are calculated by
traditional filter method, which are shown in [], those in third column are calculated
by Matlab function ‘fmincon’, compared the three methods, our algorithm has a smaller
number of function calculations and gradient calculations.

To show the effect of the non-monotone method, we also list the numerical results in
Table , these tests are done for M = , M =  and M =  respectively, that means the
degree of non-monotonicity is increasing.

First numerical results show that the nonmonotone algorithm is more effective than
monotone one for most test examples and our algorithm is effective and satisfactory.

6 Conclusions
In our method, the criterion used to test the trial points is flexible, the refuse region is
variable according to the different improvement made by the previous trial point, while in
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Table 1 The numerical results of different algorithm

Algorithm A (NG-NF) Filter (NG-NF) Matlab (NF)

HS2 27-36 19-32 28
HS6 9-9 37-41 23
HS11 59-82 - 32
HS13 102-102 - 203
HS14 6-6 6-6 23
HS15 102-192 24-46 50
HS16 17-17 22-34 23
HS17 44-44 44-44 15
HS18 38-47 36-43 40
HS19 8-8 8-8 27
HS20 17-17 21-34 63
HS21 8-8 8-8 15
HS22 2-2 2-2 19
HS23 7-7 7-7 31
HS41 15-15 15-15 41
HS45 2-2 2-2 20
HS59 10-40 13-46 53
HS64 54-62 57-86 301
HS65 28-28 40-40 44
HS72 52-72 38-50 101
HS73 1-22 1-22 35
HS106 17-55 - 509
HS108 7-7 14-29 182
S216 4-13 3-13 21
S235 36-38 36-38 110
S252 18-34 58-58 139
S265 2-2 2-2 17
S269 9-9 14-31 48

Table 2 The results of different M in our algorithm (i.e. using different degree of
nonmonotone)

M = 1 (NG-NF) M = 3 (NG-NF) M = 10 (NF)

HS2 28-40 27-36 -
HS6 26-36 9-9 9-9
HS11 29-58 59-82 39-98
HS13 102-102 102-102 102-102
HS14 6-6 6-6 6-6
HS15 18-34 102-192 27-60
HS16 63-70 17-17 17-17
HS17 44-44 44-44 44-44
HS18 30-37 38-47 -
HS19 23-23 8-8 8-8
HS20 85-92 17-17 17-17

the traditional filter methods, the elements in the filter structure are fixed. By the numeri-
cal results, we also find the new method has more effective results and less computational
costs than not only the traditional methods but also the Matlab algorithms. Moreover, the
use and adjustment of the self-adaptive parameter in our method is a good way to balance
the value of objective function and the violation constraint function. On the other hand,
the application of non-monotone in criterion avoids the Maratos effect to a certain de-
gree, because more trial points are accepted by the filter according to the algorithm. We
also compared the results of different nonmonotonic degree, although we can not decide
which value of M is the best one, at least the results with nonmonotone is better than that
with monotone technique.
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