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barriers include drug clearance mechanism from blood and lymphatics. Strategies for
delivering drugs to the posterior segment most often consist in topical ocular
medications or systemic administrations, but dose/response profiles are generally
very poor. Intravitreal injections and transscleral delivery are new emerging
techniques with promising results. Purpose of this study is to develop a mathematical
model to assess drug levels subsequent to a transscleral drug implant. Both
computational and analytical techniques are adopted. The model comprises sclera,
choroid, retina and vitreous along with the retina pigment epithelium at the
choroid-retina boundary and the inner blood retinal barrier of the retinal vessels.
Darcy equations are used to compute the filtration velocity of the interstitial fluid and
a fictitious velocity field is added to model active pumping from the retinal
pigmented epithelium. Convective-diffusive-reactive equations for drug
concentration are then solved. Permeability parameters and partition coefficients
simulate the presence of internal membranes and barriers, with possible different
values in outward and inward directions. An important result of the model is the
evaluation of the roles of the different physical parameters, which offers key points to
improve drug delivery techniques. Namely, the sensitivity study suggests that
diffusion in tissue, clearance rates, membrane permeabilities and active pumping play
important roles in determining drug peak concentration and time-to-peak. However,
their relative influence can be dramatically different depending on the rate-limiting
parameter.

Keywords: ocular drug delivery; RPE active pumping; blood retinal barrier; ocular
membrane permeability; mathematical model

1 Introduction

The understanding of drug delivery mechanisms in the posterior segment of the eye (PSE)
- including sclera, choroid and retina - is one of the most challenging tasks in the phar-
maceutical industry [1]. The efficiency of drug delivery to the PSE is hindered by several
barriers. Static barriers consist of physical obstacles to drug diffusion such as the sclera
itself, the retinal pigment epithelium (RPE, the so-called outer blood retinal, oBRB) and
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the retinal vessels (the so-called inner blood retinal barrier, iBRB). Dynamic barriers in-
clude drug clearance mechanisms through blood and lymphatic vessels and degradation
processes. Drug solubility, lipophilicity, charge, degree of ionization, molecular size and
shape affect the penetration rate of the drug across the various barriers [2]. Convection by
interstitial fluid filtration can play a certain role especially when considering low-diffusible
molecules [3]. There is also considerable evidence suggesting that active transport (‘pump-
ing’) across the RPE can induce significant effects, sucking out fluid, and thus dissolved
drugs, from the retina towards the choroid [4, 5].

Literature on mathematical models of the pharmacokinetics of ocular and periocular
delivery systems is relatively sparse (see Chapter 4 of [6] for a recent review on this sub-
ject). Table 1 presents - at the best of our knowledge - a schematic survey of the existing
most recent mathematical models of ocular drug delivery. There is a general agreement in
distinguishing between small (molecular weight < 1 kDa, as fluoroscein) and large (molec-
ular weight > 10 kDa, as albumin, antibodies) molecules, since they display different dif-
fusivities. Interstitial fluid filtration is also kept into account in several papers by Darcy
equations, under the hypothesis of steady flow. Interface boundary conditions for the drug
concentration between different subdomains (vitreous, retina, choroid, sclera or combi-

Table 1 Schematic prospect of existing mathematical models in recent literature on ocular
drug delivery

sub—domains filtration field blood phase
| Reference vIrR[c]s][v][r[c]s|v[r]c]s

Kavousanakis et al. [17],3D | v | v v v v v v
Kotha et al. [21], 3D viviv]v v
Stay et al. [7], 3D v v
Tojo [29], 3D v
Kim et al [30], 3D v v v v
Ninawe et al. [12], 0D VIV |V
Balachandran et al. [8], 3D v |V v v v v v
Missel at al. [20],3D VIV VY v v v |V
Mac Gabhann et al. [13], 1D VvV
Amrite et al. [9], OD v v v
Park et al. [31], 3D v v ] vi | vd | v

active pumping interface bcs for drug molecule weight
Reference VIR [c[s[VR[Rc] cs [ small [ large
Kavousanakis et al. [17], 3D Ve l v l v
Kotha et al. [21], 3D VP ‘ Ve Ve Ve averaged
Stay et al. [7], 3D v v v v
Tojo [29], 3D v v
Kim et al. [30], 3D v
Ninawe et al. [12], 0D v v v v
Balachandran et al. [8], 3D Ve v
Missel at al. [20],3D v v
Mac Gabhann et al. [13], 1D Ve Ve Ve v v
Amrite et al. [9], 0D v v
Park et al. [31], 3D ? v v

Symbols: nD, n=0,1,3: spatial dimensions of the model; V = vitreous, R = retina, C = choroid, S = sclera. 9: treated with an
addictional fictitious advective term; b: treated with different inward and outward membrane permeabilities. Merged cells in
a row indicate that the corresponding domains are treated as a sole entity. Interface boundary conditions are checked when
a Robin-type boundary conditions with a specific membrane permeability is used for drug at interface; ¢: a partition
coefficient is considered at the interface; : Navier-Stokes equations are considered.

Page 2 of 19



Causin and Malgaroli Journal of Mathematics in Industry (2016) 6:9 Page 3 of 19

nations of them) are assigned via simple continuity of normal fluxes or via more complex
Robin-type conditions modeling the presence of a permeable membrane. More controver-
sial, less investigated, points are represented by the inclusion of active transport mecha-
nisms (see [7, 8]) and the interaction of the drug with blood flow in circulatory vessels (see
[8,9]). These latter aspects turn out to be very relevant when computing drug levels in the
retina after periocular administration. The retina is an important therapeutic target but
only a few studies address it specifically (refer to Table 1). The present paper aims at ad-
dressing this topic. We present a 1D model including vitreous, retina, choroid and sclera
subdomains with a blood phase in the retina. We compute the filtration velocity of the
interstitial fluid and we solve convective-diffusive-reactive equations for drug concentra-
tion. Permeability parameters and partition coefficients simulate the presence of internal
membranes and barriers. We carry out numerical simulations based on transscleral drug
delivery, which is an attractive alternative to the intravitreous mode of administration.
We investigate the problem sensitivity with respect to the above mentioned parameters,
which allow to evaluate the importance of tuning these properties when devising a new
drug and their relative importance.

The paper is organized as follows. In Section 2, we present the geometrical assumptions
and the mathematical model of the PSE. In Section 3, we show the results obtained from
numerical solution of the mathematical model and sensitivity analysis. In Section 4, we
discuss the significance of the model and the main results relevant for devising new drug
formulations and delivery techniques. Eventually, in Section 4, we draw the conclusions of
the work. A theoretical analysis is carried out in the Appendix to establish lower and upper
bounds for the drug concentration in the retina, an important target for drug delivery.

2 Mathematical model of the posterior segment of the eye

2.1 Geometrical description of the PSE

Compartmental models of the PSE have been presented in [10-12] to describe drug ad-
ministration via a subconjunctival application or an episcleral hydrogel implant. Consen-
sus has been reached about the necessity of including separate compartments which rep-
resent the different anatomical structures in the PSE. In [9], a study has been carried out
to evaluate the compartment subdivision which provides the best fitting of experimen-
tal data. The most effective identified configuration includes compartments representing
site of drug release, periocular tissue, sclera/choroid/RPE, retina and a non-specified dis-
tribution compartment. An analogous identification of relevant independent structures
is carried out in [13], where a 1D continuum model describes levels of fluoroscein after
periocular administration.

According to the above arguments, we model the PSE as the union of four different

layers, treated as 1D slabs (see Figure 1), representing:

+ sclera (S), an avascular and largely acellular coat of extracellular matrix relatively
permeable to molecules;

« choroid (C), a dense network of large and small blood vessels with a relatively sparse
population of cells;

« retina (R), composition of several layers of densely packed neuronal and glial cells,
vascularized by arterioles and venules which run superficially along the retinal inner
surface and supply/drain the embedded capillary plexi (see Figure 2, top panel);

« vitreous (V), a clear, avascular, gelatinous body which accounts for about 80% of the

volume of the eye.
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Figure 1 Globe of the eye and schematics of the PSE regions considered in the mathematical model.
RPE: retinal pigmented epithelium, oBRB: outer blood retinal barrier, iBRB: internal blood retinal barrier, ILM:

Figure 2 Schematic depiction of retinal
circulation and corresponding mathematical
model. Top: retinal tissue and circulation. Blood
vessels are embedded in the inner retinal region,
while the outer retina is avascular. The rightmost
plexum is the arteriolar/venular network, middle and
leftmost plexi are constitued by capillary networks.
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We denote by Qg = (0,Lsc), Q¢ = (Lsc,Lcr), Qr = (Ler,Lry) and Qy = (Lgy,Ly) the
computational domains corresponding to the S, C, R, V layers, respectively. For j =
S,C,R,V, we denote by #; its unit normal vector directed outward. For i = S,C,R and
j=C,R,V, we denote by I';; the interface between two adjacent layers i and j.

2.2 Mathematical model of the PSE

Letj=S,C,R, V. For space x € Q; and time ¢ € (0, T), we let v; = v;(x) (cm/s) be the steady
filtration (seepage) velocity in layer j, (K/u); the corresponding hydraulic conductivity
(cm?/mmHg/s). We let C; = Cj(t,x) (g/cm?) be the drug concentration in layer j and D;
(cm?/s) and k; (1/s) the corresponding drug diffusivity and clearance/decay rate, respec-
tively. Fori=S,C,Rand j =
permeability at the interface I'; and we let £;; (cm/s) and Pj (-) be the drug membrane

C,R,V, welet R (cm/s/mmHg) be the membrane hydraulic

permeability and the partition coefficient between the two layers.

Filtration velocity in the PSE. We model the interstitial flow as an incompressible fluid
which permeates through the PSE porous layers according to the steady-state Darcy equa-
tion:

K\ dp;
()
1% jax
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pj = pj(x) being the hydrostatic pressure. For i = §,C,R and j = C, R, V, the following con-
ditions hold at the interface I';:
« velocity continuity

V,"I/l,'=V]'~l’ll';

« pressure jump condition (reduced Kedem-Katchalsky conditions for solvent, see

vi- 1 = Rij(pi - pj).

Drug mass balance in the PSE. Drug mass balance is enforced in each layer according to
the characteristic features of the layer itself.
In the sclera and vitreous, the following equation holds:

0C;,  _9°C 3G

Bt Diga TV KG =SV @

where v; is computed from equation (1) in layer ;.

Drugs in the choroid bloodstream rapidly equilibrate with the extravascular space, due
to the fenestrated structure of choriocapillaris [15, 16]. For this reason, a unique concen-
tration value is considered both for tissue and blood domains, yielding

aCc 32Cc aCc

— =Sc(t) + D —ve— —kcCo, 3
o c®) + c o2 Ve, “keCe 3)

where S¢ = Sc(¢) is a systemic drug source rate, v¢ is computed from equation (1) solved
in the choroid and k¢ the clearance rate due to choriocapillaries.

Drug concentration in the retina is modeled assuming the domain to contain a mixture
of tissue and blood vessels. We denote by ¢ = ¢(x) € (0,1) the retinal vascular porosity,
which represents the volumetric fraction occupied by the vascular space, the remaining
volumetric fraction being extravascular space. We have that ¢ — 1 in the inner regions
where the vascular beds are located and ¢ — 0 in the outer regions. We consider a math-
ematical representation of the function ¢ as in Figure 2 (bottom panel) which results from
the superposition of Gaussian functions centered in the anatomical location of each vessel
plexum. The standard deviation of the Gaussian is chosen in such a way that the function
is significantly greater than zero in a region roughly corresponding to the thickness of
the vessel plexum itself (superficial layer and two capillary beds). We let 8 = B(¢) (1/s)
be the rate of drug transport across the blood vessels representing the effect of the iBRB
(see also [8, 17]). We set B = L, Avessel 0, Wwhere L,,, > 107% (cm/s) is the permeability of
the blood vessel wall [18], Ayessel = 9 - 107° (cm?) the average lateral surface of a vessel
(arteriole, capillary, venule [19]) and p = pmax® the number of vessels per cm? of tissue,
with pmax 2~ 4.55 - 10° (1/cm?®) [15]. Denoting by Cr; = Cgs(t,x) and Cgp = Crp(t,x) the
drug concentration in tissue and vascular spaces, respectively, drug mass conservation is
represented by the system:

(1-9)
dCrp
dt

aC, 92C, oC
o = (1= 9)Dr— 2% — (re + Vaer) =~ kreCiel + B(Crw — Cie),
t X X (4)

¢

= Spp(t, %) — B(Crp — Cre) — ¢krp Cros
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where Sgp (¢, x) = ¢p(x)A(£) is a prescribed rate of drug concentration from systemic sources
and vg; is computed from equation (1) solved in the retina. The additional filtration ve-
locity v, pointing towards the negative x direction, is included in equation (4) to model
active pumping by the RPE, which extracts fluid from the retina towards the choroid [8].

For i =S,C,R and j = C, R, V, the following conditions for drug concentration are en-
forced at the interface I'y:

« drug flux continuity

aC; aC;

Di—'l’ll'ZD

ax i Digy

+ drug concentration jump condition (reduced Kedem-Katchalsky conditions for solute,
see e.g., [14])
—Di% -y = Lij(PyCi - C)),
where the partition coefficient P; takes into account the possible different
hydrophilicity/lipophilicity between layers i and ;.

The complete model for amounts to solve equation (1) along with equations (2)-(4) with
the respective interface conditions. We enforce at the external boundary of the vitreous a
hydrostatic pressure equal to 15 mmHg, corresponding to a normal intraocular pressure
(IOP), and at the external boundary of the sclera a hydrostatic pressure equal to 10 mmHg,
corresponding to the episcleral venous pressure [8]. For the drug, if not differently speci-
fied, we prescribe at the sclera external boundary a concentration exponentially decreasing
in time from the initial value 1 mg/cm?3 fitting the trend obtained from a model of drug

—Sclera

035 ——Choroid )
Retinal tissue (outer)
03 —Retinal tissue(inner)|
—Retinal blood (outer)
0254 O\ | Retinal blood (inner) |

Vitreous
14 02 L

(g

0.15

|
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005

0

Peak concentration [mg/cm

0 10 20 304050 60 70 80 90

Time [h]

Figure 3 Drug peak concentration as a function of time in the different layers considered in the
model. The curves relative to the retina are specified into tissue and blood phases and further divided into
inner and outer region, the first indicating the portion of the retina embedding blood vessels (function ¢ > 1)
and the second one the avascular portion. The inset shows a zoom for short times.
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release in posterior eye gel implants [17] (black curve in Figure 3 of the present paper). The
vitreous is assumed to be thick enough so that there is no normal diffusive and convective
flux of drug across its external boundary when considering episcleral drug delivery. The
drug concentration problem is supplied by the initial conditions Cj(t = 0,x) = Cjo(x) = 0,
j=S,C, R,V (exogenous drug).

3 Numerical simulations

The fluid filtration equations are solved numerically by means of the function bvp4c of
MATLAB®. The drug concentration equations are solved using for time integration an ex-
plicit Runge-Kutta scheme with adaptive time step implemented by the function ode23t
of MATLAB®. Spatial discretization is performed by an in-house developed code imple-
menting 1D linear finite elements with stabilization techniques for possibly advection-
dominated problems. The parameters used in the simulations are reported in Table 2.
Notice that the external source terms Sc and Sg, may be non-zero due to (a minimal) sys-
temic drug absorption into circulation and successive release into the tissues. Being unable

to quantify such sources, it is reasonable in first approximation to set S¢ = Sg = 0.

3.1 Convective field

Solving the Darcy equations yields a constant filtration velocity of about 10~ (cm/s). This
value is in accordance with the results of [8, 20]. The corresponding Péclet number based
on the layer thickness is definitely less than 1 when considering small weight molecules
(diffusivity of the order of 1077 to 107 (cm?/s)) and of the order 1 when considering large

Table 2 Value of the model parameters used in the numerical simulations (if not specified

otherwise)

Parameter Value Unit Description Ref.
ts 600 “m Sclera thickness [13]
tc 300 um Choroid thickness [13]
tr 246 “m Retina thickness [13]
ty 15000 um Vitreous thickness [20]
(K/u)s 84107 cm?/s Hydraulic conductivity in sclera 18]
(K/uw)e 235-107"  cm?/s Hydraulic conductivity in choroid [8]
(K/p)r 15-107" cm?/s Hydraulic conductivity in retina 18]
(K/w)y 1571 cm?/s Hydraulic conductivity in vitreous [8]
Rsc 1077 cm/s/mmHg Hydraulic permeability at I'sc [7,32]
Rcr 107 cm/s/mmHg Hydraulic permeability at I'cg [7,32]
Ray 1077 cm/s/mmHg  Hydraulic permeability at T'gy [32]
Ds 4.107 cm?/s Drug diffusivity coefficient in sclera [13]
D¢ 16-1077 cm?/s Drug diffusivity coefficient in choroid [13]
Dg 1.17-1077 cm?/s Drug diffusivity coefficient in retina [13]
Dy 6107 cm?/s Drug diffusivity coefficient in vitreous 6]

ks 3.10* 1/s Drug clearance/Decay coefficient in sclera [13]
ke 3.10% 1/s Drug clearance/Decay coefficient in choroid [13]
ket 3.10% 1/s Drug clearance/Decay coefficient in retinal tissue [13]
Kro 3.10 1/s Drug clearance/Decay coefficient in retinal blood [13]
ky 8.107° 1/s Drug clearance/Decay coefficient in vitreous nn
Lsc 107 cm/s Permeability coefficient at I'sc [21]
Lcr 107° cm/s Permeability coefficient at I'cg [11,16]
Lgy 107 cm/s Permeability coefficient at I'zy [11,16,21]
Pcs 1 adim Partition coefficient at sclera/Choroid interface 21
Pcr 1/1.33 adim Partition coefficient at choroid/Retina interface [13]
Pry 1/10 adim Partition coefficient at retina/Vitreous interface 21]
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weight molecules (diffusivity of the order of 1078 (cm?/s)). When considering in the retina
the active pumping velocity, which is of the order of 8- 107 (cm/s) [8], the filtration velocity
turns out to be negligible. The Péclet number of the retina computed with the pumping
velocity rises to a value of the order of 20 for small molecules and 200 for large molecules,
so that convection is dominating.

3.2 Validation of drug concentration levels

To validate the model, we check that we reproduce comparable results in drug peak con-
centration and time-to-peak as in existing literature models. In Figure 3, we show drug
peak concentration as a function of time in the different layers considered in the model.
The curves relative to the retina are specified into tissue and blood phases and further di-
vided into inner and outer region, the first indicating the portion of the retina embedding
blood vessels (function ¢ > 1) and the second one the avascular portion In Figures 4 and 5,
we report results from simulations in different literature models for molecules compara-
ble to fluoroscein and for similar drug inlet boundary conditions with episcleral plug or
injection. The peak concentration value found in our simulations is comparable to the one
of the models of [17] and [13] (scaled inlet concentration) in the retina and to the ones of

the models of [8] and [13] (scaled inlet concentration) in the choroid. Time-to peak values

Figure 4 Drug peak concentration values for the i ]
present model and literature models (data 10! (2 el
represented are where available and upon !
conversion of units of measure). Comparable
values of parameters and inlet conditions are used.
Values denoted by the symbol "+’ have been
obtained by multiplying the values by 100 to scale
drug concentration at the boundary (assuming a
linear behavior as suggested by the results of [21]).
Values from [8] have been interpreted as percentage
of the enforced boundary concentration, in lack of
indications. Notice that log scale is used for the y
axis.
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Figure 5 Drug time-to-peak values for the 107
present model and literature models (data are b =S retea
represented where available and upon [
conversion of units of measure). Comparable
values of parameters and inlet conditions are used.
Notice that log scale is used for the y axis.

Peak time [h]
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Ninawe et al
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Mac Gabhann et al (exp)
Kavousanakis et al
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of our model, of the order of 1-2 (h), comparable to the results of [21]. Such a scattering
of the results may be ascribed to (i) different dimensionality of the models; (ii) different
values of the parameters (see the below sensitivity study); (iii) different biophysical mecha-
nisms included (active pumping, filtration velocity, membrane permeabilities, membrane
partition coefficient). The following sensitivity analysis is aimed at clarifying the role of

the different parameters and mechanisms.

3.3 Sensitivity study

We use now the model to study the sensitivity of the drug peak concentration and drug
time-to-peak with respect to: (i) diffusion coefficients; (ii) clearance rates; (iii) membrane
permeabilities; (iv) convective velocity. Values of the parameters reported in Table 2 are
considered as the baseline condition. The filtration velocity is artificially varied as a syn-
thetic index of the variation of hydraulic permeability and pressure drop and the bound-
aries. We vary each parameter individually and we plot for the retina and choroid the
resulting peak concentration (Figure 6) and time-to-peak (Figure 7) as a function of the
parameter value. The different colored lines represent peak concentration or time-to-peak
when the parameter in object is changed in a certain layer (refer to the legend in each
panel). Vertical dotted lines in each panel show the parameter baseline value.

In Figure 8, we show the drug peak concentration as a function of time with active or
inactive selected components of the convective field in baseline conditions. In Figure 9 we
show the sensitivity of the drug peak concentration and time-to-peak values in tissue and
blood phases of the retina. with respect to the different components of the convective field
(filtration velocity and active pumping). The choroid (data not reported) results to be very

weakly sensitive to the variations in the convective field values.

4 Discussion and conclusions
Drug delivery to the PSE is still an open issue in ocular diseases therapy. Many drugs have
a narrow concentration window within which they are effective and non-toxic. Currently,
about 90% of the treatments of ophthalmic diseases are performed by medications ad-
ministered topically. However, drugs enter the eye through this pathway at a very limited
extent: wash off by various mechanisms (lacrimation, blinking, tear turnover) and low
permeability of the corneal epithelial membrane causes less than 5% of the administered
drug to effectively reach the posterior targets [22]. Among the other possible drug deliv-
ery routes, systemic administration has a poor dose/response profile in the eye. Intrav-
itreous delivery, whilst efficient, can carry significant local complications such as retinal
detachment, endophthalmitis, vitreous hemorrhage and cataract formation [23]. Under
these premises, sustained drug delivery to the PSE via the alternative transscleral route is
gaining increasing importance, due to the easily accessible area, the hypocellularity and
permeability of the sclera to relatively large molecules, and, importantly, to the degree of
acceptance of patients [24, 25]. Pharmacokinetics of drugs in the PSE following transscle-
ral delivery is an emerging issue [4]. The reported data are very sparse and, for the most
part, refer only to the vitreous, which is easily accessible in experiments, to draw compar-
isons.

Transscleral drug delivery has been analyzed in this paper using a 1D continuum model
including diffusive, convective and reactive mechanisms and comprehending the sclera,
choroid, retina and vitreous domains. The presence of internal membranes has been kept
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Figure 6 Drug peak concentration in the choroid (left column) and retina (right column) as a function
of diffusion coefficient (top row), clearance rate (middle row) and membrane permeability (bottom
row) in the various layers (specified in the legends). The dotted vertical lines indicate baseline values of
the parameters. Arrows indicate the value of concentration in baseline conditions.

into account by appropriate interface boundary conditions and/or a fictitious advective

field for RPE active pumping. Drug concentration levels in the retina have been modeled

distinguishing the tissue phase from the blood phase.

In [13], the partial failure in reproducing with the mathematical model the experimen-

tal results is ascribed to the discrepancy of the values of the parameters estimated from

basic physical considerations vs values of the parameters obtained by fitting the model to

experimental data. This fact suggested to explore ranges of parameter values to identify
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Figure 7 Drug time-to-peak in the choroid (left column) and retina (right column) as a function of
diffusion coefficient (top row), clearance rate (middle row) and membrane permeability (bottom row)
in the various layers (specified in the legends). The dotted vertical lines indicate baseline values of the
parameters. Arrows indicate the value of time-to-peak in baseline conditions.

characteristic model sensitivities. The authors found a relatively low sensitivity of peak

concentration and time-to-peak in the retina to the diffusion and clearance coefficients

and a higher sensitivity to drug resistance (inverse of the drug permeability) of the epis-

cleral layers with respect to peak concentration and to RPE resistance. However, while it

is clearly recognized that a major fraction of the drug is lost from episcleral lymphatics

and blood vessels [11], one can think to eliminate the exceedingly large influence of such a
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selected components of the convective field in baseline conditions.
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mechanism and just focus on the area from sclera to vitreous. Varying the parameters in
the same range as in [13] yields in this work sensitivities which reflect comparable, if not
more important, roles of diffusion and clearance rates.

As for the convective field, it is apparent that the filtration velocity is too low to induce
significant changes (see Figure 8). Different is the case of the active pumping velocity. Ac-
cordingly to what found in [8] and [21] (notice that in these references, the authors repre-
sent this same mechanism in a different way), active pumping plays a very relevant role, if
one looks specifically at the retina and possibly at the vitreous. It is interesting to observe
the shape of the curves with respect to drug permeability. Both for peak concentration and
time-to-peak, the curves results relatively flat even varying the parameter of 1 or 2 decades
inlogscale. This is probably due to permeability not being a limiting phenomenon in these
regions. The iBRB drug permeability does not seem to have a major role except for a region
of diameter spanning about 1 decade at the left and at the right of the baseline value, where
the slope of the curve is comparable to the other ones. The mild influence of iBRB might
due to having neglected the complexity of active/carried-mediated transport mechanisms
across these interfaces and having considered a single partition coefficient across the vessel
walls in both (inward and outward) directions. Representing active pumping as a fictitious
velocity and not as a membrane effect, hinders the role of RPE (see [21] for this choice).

An important result of the present analysis is the way in which a 30% increase of the
drug peak concentration in choroid and retina can be obtained from the baseline val-
ues, for example to meet a therapeutic threshold. Assuming continuous dependence of
the solution on data - a property which can be inferred via a mathematical analysis not
much different to the one performed in the Appendix - it is found that such an increase
can be obtained acting on (i) scleral biophysical parameters and then on choroidal and
retinal ones; (ii) active pumping. As for (i), in the neighborhood of baseline conditions,
diffusion and clearance appear to play a comparable role, because comparable variations
in the scleral diffusion (increase) or scleral clearance (decrease) are required to increase
drug peak concentration (notice the slope of the curves in Figure 6). The sclera is per-
meable to hydrophilic compounds, even macromolecules, but the permeability in the
RPE/choroid/Bruch’s membrane is 1-2 orders of magnitude lower than in the sclera [16].
Moreover, the trend line of decreasing choroid-Bruch’s membrane permeability with in-
creasing solute lipophilicity and/or molecular radius appears to be steeper than the sclera.
However, the simulations suggest that the slope of the sensitivity curves is always higher
for the scleral parameters that for the choroidal ones. Moreover, sensitivity in a certain
layer is higher to properties of layers located at its left side than at its right side. This is a
natural consequence of the positioning of the source. In particular, referring to the theo-
retical analysis carried out for the retinal domain, this implies that the drug concentration
in the choroid is always responsible for the upper bound. As for (ii), pro-drugs have been
envisaged as carriers able to favorably enhance drug delivery. This a very advanced issue
in pharmacokinetics, we refer to [26] for a general review.

The present model does not allow to provide data regarding the 3D spatial distribution
of the drug on the eye globe. While this aspect is very important and has been recently
considered in a few mathematical models [8, 17, 21], it remains very difficult to compare
results from such models with experiments. Unknown boundary conditions in the 3D
models, on the one hand, and tissue homogenization after explant with loss of spatial de-
pendence, on the other, are just examples of such problems.
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Appendix: Bounds for drug concentration in the retina

The retina is an important target for therapies to contrast several disorders, including di-
abetic retinopathy, age-related macular degeneration, and retinitis pigmentosa [27]. The
retina has a unique position with regard to pharmacokinetics, being separated from cir-
culating blood by the BRBs, makes it a very difficult target. In this section, we theoretically
establish the bounds for drug concentration predicted by the model in the retinal domain
Qpg, assuming for simplicity no convective field. To do this, we assume the drug concen-
tration at the interface with the adjacent choroid (Cc = Cc(t)) and vitreous (Cy = Cy(£))
to be known functions, so that the boundary conditions for the domain Q2 become:

0C, _

—Dpy a;t -nge = Ler(PerCre — Cc)  on g, (5)
oC, _

—Dp, 8: -npe = Lrv(PrvCpre — Cy)  onTry. (6)

In the sequel, L2(Q2z) will denote the space of measurable functions whose square is
Lebesgue integrable in Q. The space L*(Qg) is equipped with the norm || - | 22(cp)-
We denote with (-, -) its scalar product both for scalar and vector functions. We intro-
duce the Sobolev space H'(Qz), which denotes functions that belong to L%(Q2) along
with their first order distributional derivative in space. For v € H*(Qg), we denote by
0,v such a derivative. The space H*(2) is equipped with the norm || - | 111(2q)- We also
need to introduce the spaces L2(0, T; V) = {v: (0, T) — V|v(¢) is measurable, ||V||i2(07T;V) =
foT lv(£)[13, dt < +oo}, with V = HY(Qg) or L2(Q2), and L>(0, T;L*(R)) = {v: (0, T) —
L%(Qg)|v(¢) is measurable, ||v(¢)||? is essentially bounded in (0, T')}, endowed with the

2

norm ||v|[ oo, 7:22(25)) := inf{M >L0(:Qﬁ)v(t)||i2(gk) <Ma.e.in (0,T)}. Forve L*(0,T; V), we
denote by ;v its derivative with respect to time, such that 3,v € L2(0, T; V'(Q)), V' being
the dual space of V, and Vu € L2(0, T; V), (9,v(t), u(t)) = fQR d;vudx represents a duality
pairing. We here assume for simplicity that Dg, kgs, krp, Lcr, Lrv are positive constants
and that B € L*(Qg) and Cgy, Creo € L2(Qg). We let ¢ € CO(Qg) with ¢, = mingeq, ¢(x)
and ¢y = maxyeq, P(x).

The weak counterpart of the multiphase system (4) reads:

- in the tissue phase, find Cg; = Cg.(t,x) € L2(0, T; H'(Q2z)) with

9,Cr; € L?(0, T; H(Q2R)), such that:

(1= )3 Cre> v) + Dr((1 = )3:Cre, 0xv) + (kr(1 — ¢)Chs, v)
+ (B(Cre — Crp), v) + Lcr((L = ¢)(Cre = PcrCe), V) Ireg
+ Ly (1 = ¢)(Pry Cre - 6v)V)|rRV =0 VveH'(Q); (7)

- in the blood phase, find Crj, = Cy(t, %) € L*(0, T; L*(Qz)) with
3:Crp € L*(0, T; L*(QR)), such that:

(3 Cros ) + (kzpp Cros W) + (B(Cro = Cre)s w) = (Sgisw) - Yw € L*(Q). (8)
We prove that the drug concentration in the multiphase model is non-negative and

bounded above by a maximal value Cy depending on the initial conditions, boundary
data and external sources. In doing this, we neglect the convective field.



Causin and Malgaroli Journal of Mathematics in Industry (2016) 6:9 Page 15 0of 19

Theorem 1 Let Cy := max{max;c(o,r) {PCRCC, PRv’ k o },maxxEQR{CR;, 0,Cre0}}. Then, the
solution Cg = Cr(t,x) = [Cre(t, %), Cro(,%)] of problem (7)-(8) satisfies 0 < Cr(t,x) < Cn
a.e.inQp x (0,T).

Proof of Theorem 1 We face the multiphase problem in the retina in a decoupled manner
by introducing the following Gauss-Seidel iterative procedure:

Given 0 < C9, < Cy a.e. in Q¢ x (0,T), Yk = 1,2,..., find C§ = [CK,, Ck,] € L*(0, T;
HY(Qg)) x L2(0, T; L*(Q)) such that it yields:

- in the tissue phase

(1= @)3:Ci v) + Dr((1 = $)3:Ch, 0:) + (kr(1 = $)Chrv)
+ (B(Cke = Cip')»v) + Ler((1 = $)(C = PerCe), V) Irer
+ Ly ((1= ) (PrvCry = Cv)V)Irg, =0 Vv e H'(Qg); ©)

- in the blood phase

(69:Chy )+ (ko Clyw) + (B(Cly — Ch)w) = Suw) Ywe 2@, (10)

We verify by a recursive argument that the sequence Ck satisfies 0 < Ck < Cy.. The key
point is given by the following lemma, for k =1,2,....

Lemma 1l Given 0 < Cﬁljl <Cyin Qp x(0,T), then 0 < Cllgt <Cynin Qp x (0,T). Con-
versely, given 0 < Cﬁt <CyinQpx(0,T), then 0 < C}‘eh <CyinQpx(0,T).

Proofof Lemmal Let £ be a constant. For any u € V, we introduce the non-negative func-
tions [y — £]" = max{u — £,0}, [u — £]” = max{€ — u, 0}, such that [u — £]",[u - €] € V. We
refer to [28] for the properties of such functions.

We start proving that C§ > 0 under the hypothesis that Cllgzl > 0. We set £ = 0 and
choose v = —[Cg]™ as a test function in (9), yielding

1 d - -
5(1 - d’M)E ” [Cfet] ”iZ(QR) + Dr(1 - ¢um) ” 8x[C11§t] ||]2,2(QR)
+ (ke = gur) + B@) | [Ch] |20
+ ERVPRV((l - ¢)([C113t]_)2) + ﬁCR((l - ¢)([C§t]_)2)\

ITgy Tcr

<-B@w) | CRCk] dx—LcxPcrCe((1-¢)[Ck,] )‘

Qr Tcr

- LavCy(A-9)[Cr] ), - (1)

Trv

The right-hand of side of (11) is non-positive for a.e. ¢ € (0, T). Integrating in time over
(0,£) and using the fact that [Cy, ,]~ = 0, we obtain

- ! - Blom) \ [* -
AN T+ 200 [ 1oL Tinag + 2+ 222 ) [ICAT ey

+ 2Ly Prv / ([Cr] )‘r +2Lcr / ([cs]): <o. (12)

Ircr
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We evaluate the integrals at the left-hand side of (12) for ¢t = T and integrate once again,
this time on [0, 7], obtaining:

. ﬂ(d’m) -2
mln{l + 2T(kR + 1= M),ZDRT} || [Cgt] ||L2(0’T;H1(QR))
T T
k 1~ 2 k 1- 2
+ 2T£Rv7313\//0 ([CRt]erv) + 2T£CR/(; ([CRt]‘FCR) <0. (13)

From (13) we deduce that [Cﬁt(t)]’ = 0 and thus Cﬁt > 0a.e.in Qz x (0, T'). Now, we choose
v =—[Crp]~ as a test function in (10), yielding

1 d - _
E‘ﬁm% H [Clleb] ”iZ(QR) + (/3(4”") + ¢mka) ” [Clléb] ”i%QR)
< —B(¢m) / (Cre)[Cro) dx— / Sro(t, ¢m) [ Crp]” . (14)
Qr Qr

Thanks to the previous result and to the hypotheses on the external source, the right-hand
of side of (14) is non-positive for a.e. ¢ € (0, T). Integrating in time over (0, £) and using the
fact that [C,’gtvo]’ =0, we obtain:

- B(&m) ‘ -
IO Tisag + 2( 20 ko) [ 1Ch] Ty

m

_ ,3(¢m) ! k k 1— _ ¢ SRb(t’(lbm) k 1—
<-2b X /0 /Q (Ch)lCh] a2 /0 /Q REIRC) d (15)

We evaluate the integrals at the left-hand side for ¢ = T and integrate once again, this time
on [0, T], obtaining:

(1e27 (P9 k) JICHT P =0 16)

From (16) we deduce that [C’I;b(t)]‘ =0 and thus Cllgb >0a.e.in Qp x (0, 7).
Now we prove that Ck < Cy under the hypothesis C]I;;l < Cy. We set £ = Cy and we
choose v = [Cét — Cn]* as a test function in (9), yielding

min{l + ZT(kR + f () ),ZDRT} I[ck: - Cn]’ ||j2(O‘T;Hl(QR»
M

T
+CNkRT/ / [Ck, — Cn] dxdt
0 Qr

T
+ B(n) T/ / [Ck— Cn] (Cn - C&) dxedt
1-om Jo Jog

T T
+ LrvPryT f ([Che - CNT)lerv dt + LcrT / ([Ck—cn]')’
0 0

Irce

[Py

T
+ Lrv(PrvCy — CV)T/ [Ck. —Cn] . dt
0

T
+ LT / (Cx = PcrCo)[CR, - CN]‘*FCR dt <0. 17)
0
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Proceeding in a similar way as above, we deduce that || [Cllgt - Cy]* ”iZ(o LHQR) 0, which
directly implies that Cﬁt < Cy a.e.in Qg x (0, T'). Now, we choose v = [Cllgb —Cy]* asatest

function in (10), yielding
1d
2dt

<=0 [ (Ov-Ch)[Chu— ]

b ” [Cllgh - CN]+ “iZ(QR) + (¢mka + :3(¢m)) “ [Cllgb - CNT ”22(913)

. /Q (6 (ke Cxe — 1)) [CLy - Cn ] d. (18)

Upon observing that all the terms at the right and side are non-positive, we integrate in
time over (0, T') using the fact that [Cgb,o —Cn]* = 0 and we integrate once again on [0, T,
obtaining

(@m + 2T (B(@m) + dmkzs)) | [Céb - CN]+ ”iZ(O,T;LZ(QR)) =0.

We deduce that || [Cllgb - Cyl* ”iz(O,T;LZ(QR)) = 0, that directly implies that Cllgb < Cy a.e.in

Qr x(0,7). O
To conclude the theorem, we prove the following lemma.

Lemma 2 The sequence Ck converges to the solution of system (7)-(8), precisely

klinolo”CRf - Cllgt”LZ(O,T;Hl(QR)) =0,
len;O ” Cro - Cllgb HLZ(O,T;LZ(QR)) =0,

kling”CR - Cr HLOO((),T;[Lz(QR)]Z) =0.
Proof of Lemma 2 We introduce the splitting errors ek, := Cr, — CX, elfeb = Cpp — Cﬁ’b‘ We
observe that e}, € H'(Qz) and ek, € L>(Qz). We subtract the corresponding equations of
(7)-(8) from equations (9)-(10), and we choose as tests functions eﬁt and eﬁb in the first
and second system, respectively. Then we integrate each equation over (0, 7) and sum up
the two inequalities, term by term. Noticing that e}, = elk?b =0 at time ¢ = 0 for all k and

considering the summation over k from O to a given index M, we have at time T,

M

T
Z <(1 - ¢m) Heﬁt ||i2(QR) + Gm ”e§b ”iz(nk) +2(1 = ¢um)Dr /(; ” Oy ”22(913) dt
k=1

T T
#2000k [ ekl 4+ 20k [ e ot
0 0

2
Irp

T
dt +2(1 - ¢a)Ler / (&)’ dt)
v 0

Ircr

T
+2(1- ¢M)£RVPRV/ (efet)
0
T
+,3(¢m)/0 (”%”)iz(ﬂm dt

T 2
<86 [ (1halay e 19)
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Taking the limit for M — +o00 and noting that the sum is bounded above, we have that

0, lim ||e

K - -
o 1€ | 20151y =0 7= Rb.RE 0

klggo”elk |20 =

From the boundedness of Cﬁ, in Qg x (0, T) for all k > 0, it is then straightforward to
prove that 0 < Cg < Cy a.e. in Qp x (0, T) [14]. O
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