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Abstract
The mechanical properties of dual Phase steels (DP steels) are strictly related to the
spatial distribution and the geometry of the two phases composing the steel, ferrite
and martensite. Due to the high costs to obtain images of sections of steel samples,
one important industrial problem is the reduction of the number of 2D sections
needed to build and simulate a geometric model which may reproduce in a realistic
way the 3D geometry of the material. In this context, the availability of suitable
techniques of parameter estimation or identification is fundamental to solve the
problem.
In this work we present a germ-grain model which approximates the main

geometric characteristics of the martensite, taking into account the inhomogeneities
of the material. The parameters of the model are estimated on the basis of the
morphological characteristics of the images of about 150 tomographic sections of a
real sample, quantified by the Minkowski functionals. Here we replace the
Mahalanobis distance, introduced in previous literature, with theN -distance, which
provides computational advantages. In order to test if the estimated model is
reproducing the distribution of the Minkowski functionals of the real material, both
confidence bands from the simulated model are computed and compared with the
real data and techniques for the detection of functional outliers are applied to
quantify the accuracy of fit of the estimated model.

Keywords: dual phase steel; germ grain model; Minkowski functionals;
mathematical morphology

1 Introduction
Dual Phase steels (DP steels) have shown high potential for many applications due to their
remarkable combination of high strength and good formability.

Here we consider a sample of steel formed by martensite and ferrite. The relative posi-
tion and geometric structure of the two phases are responsible for the mechanical prop-
erties of the material, thus it is particularly important to provide statistical models which
may reproduce the main geometric characteristics of the two phases. Our results are based
on images of about  tomographic sections taken from a lab sample of steel.

The formation of the two phases of the material starts after a cooling phase of the melted
alloy of iron and carbon, during which austenite is formed, followed by a rolling phase,
transforming slabs of steel into thin metal foils.

A further cooling phase follows the rolling; during this phase the formation of ferrite
starts. Crystals of ferrite nucleate mainly from the interfaces of the rolled (and thus de-
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formed) austenite, and grow up to impinge on other crystals of ferrite, driven by the evolv-
ing field of carbon concentration. After a fixed time interval the formation of ferrite is
stopped by a sudden quenching, during which the material that is still not transformed
into ferrite, becomes martensite. The final result is a dual phase steel formed by ferrite
and martensite, having a stochastic geometric structure.

In order to define a dynamical model able to reproduce the complete geometric structure
of the material, a stochastic birth and growth process coupled with the evolution of the
carbon field, the temperature evolution and the mechanical stresses due to rolling should
be used (see [] for similar models applied to polymer crystallization). A first model which
goes in this direction, though facing the problem at only a macroscopic scale, neglecting
the microscopic geometry, has been studied in [].

The problem of building a random geometric model, at the microscopic level, for DP
steels has already been faced in [, ]. In these papers the results were based on measure-
ments taken on a D reconstruction of the material, obtained by means of a large number
of D tomographic sections of a real sample. Since taking sections is expensive, here we
aim to build a D model using methods for parameters identification applicable also in
case of a lower number of available sections, in order to reduce the industrial experimen-
tal costs.

Furthermore in [, ] the material has been considered homogeneous, even though
anisotropies in the real sample are present in one direction. In order to take such
anisotropies into account, we here propose a different germ-grain model, with an higher
number of unknown parameters, and based on more detailed measurements. In such situ-
ation the common Mahalanobis distance, used in the previous papers, is computationally
expensive to be used for the parameters estimation, since the sample covariance matrix
becomes singular in presence of small samples. Thus we here introduce a new metric, the
N -distance, which is convenient in geometric problems, as mentioned in [].

As from a confidentiality agreement with Nippon Steel & Sumitomo Metal, who pro-
vided the real data, the images of the real sample will not be shown.

2 Structure of the austenite phase
We first considered the geometric structure of the interfaces of austenite after rolling,
since nucleation of ferrite happens mainly on such interfaces, so that the location of the
final ferrite and martensite crystals depends on the location of such interfaces.

The shape of the crystals of austenite before rolling is quite close to a D Voronoi tessel-
lation, but after the deformation due to rolling, the interfaces between different crystals
can be approximated by parallel planes, with random levels, as discussed in [, ] and
supported by previous studies [].

Thus we have modelled the interfaces of austenite as parallel horizontal planes, i.e. par-
allel to direction XZ, as shown in Figure . Their levels, along the Y axis, have been in-
cluded in the parameters of the model, which need to be estimated. See also Figure  for
the names of the three main directions that we will adopt throughout the paper.

In Figure  a simulated sample of the two phases which resembles the real one is re-
ported. The black region, occupied by martensite, can be represented as the free space
between different crystals of ferrite at the moment of quenching. Since the crystals of fer-
rite nucleate on the parallel planes representing the interfaces of austenite, martensite will
have a tendency to be concentrated in between two adjacent parallel planes.
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Figure 1 Simulated parallel planes, from which
the nucleation of ferrite starts.

Figure 2 The rolling direction and the direction
of sectioning in the considered real sample.

Figure 3 A simulated sample of the two phases:
the region occupied by martensite is depicted in
black, while ferrite is in white.
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3 Morphological analysis of the martensite
In order to set up a geometrical model which may realistically represent the material, we
first described quantitatively the geometrical structure of the martensite via a morphologi-
cal analysis of the real sample. The morphology of a random set may be characterized [, ]
by the densities of the relevant Minkowski functionals (the interested reader might see []
for the definition and [–] for properties and examples of applications). Since the about
 sections of our real sample have been taken at a distance equal to the side of a pixel, the
real sample can be regarded either as a collection of (correlated) D sections, each repre-
sented by an image composed by D pixels, or as a D sample of the material, represented
by a parallelepiped composed by D voxels, obtained by piling the sections one over the
other. Thus we can either consider the three-dimensional densities of Minkowski func-
tionals, that is densities of Hausdorff measures per unit volume at different dimensions
(volume density or volume fraction VV , volumetric surface density SV , volumetric density
of average breadth BV and volumetric density of Euler-Poincaré characteristics EV ) on the
whole D sample, or we may consider the two-dimensional Minkowski functionals, that is
densities of Hausdorff measures per unit area (volume fraction VA, areal surface density
SA, and areal density of Euler-Poincaré characteristics EA), when we consider every single
D section.

In general all these functionals are constant in space only if the random set under study
is isotropic and stationary, i.e. its distribution is invariant under rigid motions.

The functionals have been computed according to the estimators described in [], using
the Matlab codes which can be downloaded from [], both in their D or D versions.

The advantage of performing a volumetric study of the real sample is that in this way
we may understand if the material presents some anisotropy or non stationarity in spe-
cific directions, and take these features into account in the construction of the model. By
the way, since the industrial aim is to reduce the number of sections needed to set up a
reasonable model, in the parameter estimation phase we need to use the D Minkowski
functionals. Indeed they can be computed also in the case of a smaller number of avail-
able sections, even not equally spaced, and taken at distances bigger than those of our real
sample.

3.1 Study of 3D Minkowski functionals
In order to study the stationarity and the isotropy of the real sample in the three main
directions, we first performed a morphological closing of the martensite, in order to elim-
inate some porosity which is not relevant for our morphological study (see [] for a dis-
cussion). We then computed the densities of the Minkowski functionals of the martensite,
by sectioning the sample into slices of  voxels of width in the directions of the three main
axes, as labelled in Figures , . The results are reported in Figure .

The functionals show a very low variability along the directions Z and X, while they
show a sort of periodicity along the direction Y . This fact is confirmed by a visual inspec-
tion of the real sample, which shows a ‘striped’ structure along the direction Y , which is
reasonable since the direction of rolling is parallel to the XZ plane.

We will use the Minkowski functionals of the closed real image as a reference in the
procedure of parameter identification of the geometrical model reproducing the material,
described in the following sections.
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Figure 4 The densities of the Minkowski functionals computed along the three main directions on
the real sample after a 3D closure with a sphere of radius 5 voxels. The directions have been named as in
Figures 2, 3.

3.2 Study of the covariance and autocorrelation functions
The covariance function of a random closed set is related to the second order properties
of the set and gives information on the stationarity and isotropy of the object under study
[, ].

Other techniques to investigate the presence of anisotropies in a material are present in
literature (see e.g. []), that we don’t apply here, since we are investigating only the pres-
ence of main sources of anisotropy, to build a first (and maybe rough) geometric model,
but with a few unknown parameters. Anyway such techniques could be used in the future
to refine the model.

Definition The covariance function C(x, x + h) of a random closed set A ⊂R
d is

C(x, x + h) = P[x ∈ A, x + h ∈ A], x, h ∈R
d.

For a stationary random set, C(x, x + h) = C(h). If in addition A is ergodic [], C(h) can be
estimated from the volume fraction of A ∩ A–h, i.e.

C(h) = VV (A ∩ A–h),

where A–h = {x – h|x ∈ A}. For a stationary and ergodic random set, limh→∞ C(h) = (VV ),
which means that the covariance function has a sill coinciding with the square of the vol-
ume fraction.

In Figure  the estimate of the covariance function of the martensite, computed in the
three main directions, is reported.

The plot shows that in direction Y there is a tendency to clustering, since the covariance
function in direction Y is lower than those in the other directions and, at scales bigger than
h = , C(h) is also below the prescribed sill value. This confirms the striped structure of
the martensite that had been already noticed by a visual inspection of the sample. On the
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Figure 5 The covariance function computed along the three main directions of the closed real
sample. The theoretical value of the sill is also reported.

other side, the shape of the covariance function in the directions X and Z confirms that
the material is stationary in such directions.

In order to confirm the results obtained by the analysis of the covariance function, we
also computed the autocorrelation function of the Minkowski functionals in the three
main directions. Let us reinterpret the Minkowski functionals as time series {Xt}, where
t is varying along the slices of the sample in the different directions. The autocorrelation
function of {Xt} is defined as []

ρ(h) = Corr(Xt+h, Xt),

where h is called lag and in our case is varying in N. The empirical counterpart of the au-
tocorrelation function gives information on the presence of periodicities in the stochastic
process {Xt}. In particular, if the estimated ρ(h) falls out at some lag h̄ from a confidence
band built under the hypothesis that {Xt} is a white noise, then Xt and Xt+h̄ are significantly
correlated and there is a periodicity in the process {Xt}, with period or half-period equal
to h̄.

The results of the estimate of the autocorrelation function of the Minkowski functionals
along the three main directions are reported in Figure .

Again we observe the presence of a significant (negative) autocorrelation only in direc-
tion Y , at lag , of the first three Minkowski functionals, revealing thus a periodicity of the
material only in direction Y , with half period equal to  lags, that is  voxels.

Since the four Minkowski functionals are not independent, we also applied a Bonferroni
correction to the confidence bands in direction Y , as reported in Figure , but the results
are unchanged.

The results obtained with both the covariance and the autocorrelation functions are
consistent with the experimental conditions, which are schematically depicted in Figure :
the anisotropies in the material are due to the rolling phase and thus in order to avoid
to loose relevant information on its structure, the sections must be taken in a direction
parallel to the Y axis; for example, as in our case, in direction orthogonal to Z.
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Figure 6 The empirical autocorrelation functions of the Minkowski functionals along the three main
directions, and 95% confidence bands computed under the assumption of white noise, i.e. of no
correlation.
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Figure 7 The empirical autocorrelation function of the Minkowski functionals in direction Y and
confidence bands computed with the Bonferroni correction, i.e. dividing by 4 the significance α used
in Figure 6.

Figure 8 The Minkowski functionals computed along the directions X and Y on each of the about 150
sections taken orthogonally to direction Z. Each curve corresponds to a different section. The black curve
is the mean over all sections.

3.3 Study of 2D Minkowski functionals
Since in the parameter estimation procedure we will use the estimates of the D Minkow-
ski functionals on the sections of the material, we report here a preliminary study of these
functionals.

The sections are orthogonal to direction Z, thus on each section we can study only the
behaviour of the functionals in the directions X and Y . We divided each section of the real
sample, after the closure operation, into stripes of  pixels of width each, both orthog-
onally to direction Y and to direction X. In each stripe we computed the D Minkowski
functionals and we plotted them for all the sections, in Figure .

Also in this case, as expected, the mean of the Minkowski functionals over the sections
is oscillating more in direction Y than in direction X. Furthermore we note an increased
local variability of the functionals in direction Y with respect to direction X.
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4 A germ-grain model
In order to set up a statistical model able to reproduce the mean geometric structure of the
real sample of steel, we propose a germ-grain model with spherical grains, depending on
a small set of unknown parameters. The model will reproduce the structure of the ferrite
phase, neglecting the interfaces between different crystals, so that the martensite will be
represented by the empty space between different grains of the model.

A germ-grain model is a random closed set Ξ ⊆R
d defined as

Ξ =
⋃

i∈N
Θi ⊕ xi,

where {xi} are points in R
d forming a locally finite point process, called germs; Θi are

independent identically distributed (i.i.d.) uniformly bounded random closed sets (usually
containing the origin) called grains, and ⊕ denotes the Minkowski sum between sets, thus
Θi ⊕ xi = {y + xi|y ∈ Θi} (for more details see [, ]).

We modelled the point process of germs as a clustered point process of Neyman-Scott
type, taking into account that ferrite nucleates in the surrounding of parallel planes, and
also observing that martensite in the real sample exhibits a ‘striped’ structure.

The Neyman-Scott point process ([], Section .) is obtained by generating a spatial
Poisson point process of parents having intensity λp(x) and then surrounding the par-
ents by a random number of daughter points, scattered independently and identically dis-
tributed around the parents. The parents are then removed and the Neyman-Scott process
is formed just by the daughter points.

Hence the germs are generated according to the following algorithm.

Algorithm 
Input:

nplanes = number of parallel planes;
[z, . . . , znplanes ] = levels of the parallel planes;
σvert = standard deviation of the daughters’ distribution in the vertical direction;
σhor = standard deviation of the daughters’ distribution in the horizontal direction;
λ = mean number of germs to be generated.

Step : locate parallel planes, from which ferrite nucleates, into positions z, . . . , zplanes;
Step : generate the number Ng ∼ Poisson(λ) of germs to be located in the D space;
Step : fix the number of parent germs to . · Ng ;
Step : distribute the parent germs uniformly on the parallel planes;
Step : distribute the Ng daughter germs around the parents according to a -variate
normal distribution having diagonal covariance matrix given by

Σ = diag
(
σ 

hor,σ

hor,σ


vert

)
.

We used the results of preliminary analyses of the model in order to reduce the number
of parameters to be estimated: the proportion of parents, fixed to the % of the daughter
germs, has been obtained by applying the optimisation technique described in [] and by
including the proportion of parents between the parameters to be estimated.

The number of parallel planes from which the germ process originates has been fixed
to , since again this was the optimal estimate for this quantity in []. The seven levels of
the planes [z, . . . , z] are among the parameters to be estimated.
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The grains have been modeled as independent spheres of random radius R = L ·ρ , where
L =  is a constant representing the maximum possible radius of the spheres (it has again
been fixed to  because this was the optimal value for this parameter obtained in []) and
ρ is a random variable distributed as a Beta(, b) distribution, where b is a parameter to
be estimated. In previous works [, ] the random radii of the spheres had a distribution
obtained by a mixture of two Beta’s, one favouring small radii and the other favouring
big radii, but results of parameters estimation proved that the two estimated distributions
were not much different. Thus, in this work we used only a single distribution in order to
reduce the number of parameters to be estimated.

In order to avoid edge effects, the simulation of the model has been performed in a
window of observation enlarged by L on each side, and, then, only the central portion of
the window with dimensions equal to the real sample has been considered.

Thus the germ grain model is based on the following  parameters:

(
[z, . . . , z],σhor,σvert, b,λ

) ∈ N
 ×R+ ×R+ × [, +∞) × (, +∞). ()

Note that [z, . . . , z] are integers since they are expressed in number of voxels.

5 Parameters estimates
For each set of the parameters p = ([z, . . . , z],σhor,σvert, b,λ) we performed  simulations
of the germ grain model, each producing a D binary sample with the same dimensions
as the real one. Each simulated sample was then cut orthogonally to the Z direction, ob-
taining the same number of sections available from the real sample. On each section we
estimated the volume, surface, and Euler characteristic areal densities, i.e. the densities
of D Minkowski functionals. The parameters can be estimated by minimising a suitable
distance between the values of the densities estimated on the sections of the (closed) real
sample and the densities estimated on the sections of the simulated germ-grain model.

In [, ] the Mahalanobis distance has been used, but since here we want to take into
account the inhomogeneities of the material in direction Y , we need to measure the
Minkowski functionals more in detail in this direction. As will be clear in the following,
this implies that our data will be random vectors of rather high dimension (at least ),
and the estimate of the corresponding covariance matrix, to be used in the Mahalanobis
distance, would need a very high number of simulated experiments, increasing thus too
much the computational costs. We then looked for other metrics which are more compu-
tationally efficient also in presence of high dimensional data.

5.1 The N -distance
A suitable distance to compare geometric descriptors of different random closed sets has
been proven to be the N -distance (see [, ]).

Definition  Let (X ,U ) be a measurable space and let μ and ν be two probability mea-
sures defined on it. Let L be a strongly negative definite kernel on X  satisfying

L(x, y) = L(y, x) and L(x, x) =  for all x, y ∈X .
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Then

(
N (μ,ν)

) 
 :=

(

∫

X

∫

X
L(x, y) dμ(x) dν(y)

–
∫

X

∫

X
L(x, y) dμ(x) dμ(y) –

∫

X

∫

X
L(x, y) dν(x) dν(y)

) 


is a distance called N -distance between the measures μ and ν .

Definition  Let X, Y be two independent random variables with associated probability
measures μ,ν respectively. Denote by X ′, Y ′ two independent copies of X, Y respectively,
i.e. X and X ′ are identically distributed, Y and Y ′ are identically distributed, and all X, X ′,
Y , Y ′ are mutually independent. Then we can write

N (X, Y ) := N (μ,ν) = EL(X, Y ) – EL
(
X, X ′) – EL

(
Y , Y ′),

and (N (X, Y ))/ is called N -distance between the random variables X and Y .

For the discussion on the properties of the N -distance the interested reader may see [,
], while in [] an example of application can be found.

We describe here shortly how the N -distance will be applied in the context of our ap-
plication.

Assume that m geometrical quantities X = [X, . . . , Xm]′ are measured for each available
section of the simulated material. If k sections are available, the measurements will be col-
lected in a data matrix X having dimension m×k. Note that in our case, if the sections are
not sufficiently far apart, the measures of the geometrical quantities can not be considered
independent, and thus the columns of X do not form an i.i.d. sample of size k of a mul-
tivariate random variable X ∈ R

m. The independence of the columns of the data matrix
unfortunately is essential to the theoretical proof of many properties of the N -distance.
We will disregard this problem for a moment.

The same m geometrical quantities are also measured on the same number k of sections
of the real sample material, forming thus a data matrix Y , again having dimensions m × k.

The empirical counterpart of the N -distance (see expression () in [], or []) is given
by

(
N(X ,Y)

) 
 =


k

[ k∑

i=

k∑

j=

(
L(Xi, Y j) – L(Xi, Xj) – L(Y i, Y j)

)
] 



,

where Xl , Y l are the lth column of X and Y , respectively, and L(S, T) = ‖S – T‖ is the
Euclidean distance between vectors S, T , which can be proven [, ] to be a strongly
negative definite kernel. Note that with this choice the N -distance is a sort of mean of the
Euclidean distance between the two samples, with two penalty terms due to the intrinsic
variability of both samples.

In our application, we considered two approaches in the construction of the data matri-
ces X , Y : the first one gives more emphasis to direction Y , which is the one with bigger
variability, the second one gives equal emphasis both to directions Y and X.

Since inhomogeneities in direction Y are present in the real sample, as was confirmed
by the morphological analyses reported in Section , in both approaches we decided to
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Figure 9 The division into stripes in direction Y of a section
of the simulated material. In each stripe the three 2D
Minkowski functionals are computed. We used 24 stripes, each
formed by 10× 200 pixels.

divide each considered D section of the sample into stripes in direction Y , as reported
in Figure , so that in each stripe the material can be considered homogeneous and the
Minkowski functionals can be locally approximated by constants. In the second approach
for the data matrices construction we applied the same division into stripes also to direc-
tion X, to check if, by taking into account local variations in both directions, the parameter
identification results more accurate, in spite of the variance inflation.

Each section both of the real and the simulated material is represented by an image
having dimension  ×  pixels in directions X × Y .

Case . Construction of Y : in order to ‘increase the independence’ of the elements of
our sample, along Z direction we considered only one section out of two. As already men-
tioned, this choice does not guarantee that the theoretical properties of the N -distance
hold, but enforces the possibility that they are anyway satisfied. The study of the auto-
correlation functions of the Minkowski functionals in direction Z, reported in Figure ,
suggests that a good choice to obtain (almost) uncorrelated sections would be to consider
one section out of , since the autocorrelations of the first three functionals are almost
null at lag  (note that each lag corresponds to  sections), but in this way we would
reduce too much our sample.

For each considered section l of the real sample we built the vectors Y l (i.e. the columns
of Y) containing (see Figure )

- the area densities of martensite computed in each -dimensional stripe of  pixels
along direction Y ,

[
V real

 , . . . , V real


]
|section l;

- the perimeter densities of martensite computed in each -dimensional stripe of 
pixels along direction Y ,

[
Sreal

 , . . . , Sreal


]
|section l;

- the density of Euler-Poincaré characteristics of martensite computed in each
-dimensional stripe of  pixels along direction Y ,

[
Ereal

 , . . . , Ereal


]
|section l.

Thus Y l = [V real
 , . . . , V real

 , Sreal
 , . . . , Sreal

 , Ereal
 , . . . , Ereal

 ]′|section l ∈R
.
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Construction of X : let us fix the vector p of unknown parameters of our germ-grain
model. We then performed  simulations of the germ-grain model with parameters p and
for each simulated sample we considered one section out of two, like in the real material.
On each considered section l and for each simulation r = , . . . ,  we computed

- the area densities of martensite computed in each -dimensional stripe of  pixels
along direction Y ,

[
V sim

 (p, r), . . . , V sim
 (p, r)

]
|section l;

- the perimeter densities of martensite computed in each -dimensional stripe of 
pixels along direction Y ,

[
Ssim

 (p, r), . . . , Ssim
 (p, r)

]
|section l;

- the density of Euler-Poincaré characteristics of martensite computed in each
-dimensional stripe of  pixels along direction Y ,

[
Esim

 (p, r), . . . , Esim
 (p, r)

]
|section l.

Thus

Xl(p, r) =
[
V sim

 (p, r), . . . , V sim
 (p, r), Ssim

 , . . . , Ssim
 (p, r),

Esim
 (p, r), . . . , Esim

 (p, r)
]′
|section l ∈R

.

The columns of X = X (p) (in our case the data matrix of the simulated sample will
depend on the choice of the parameters of the model) have been obtained by averaging
Xl(p, r) over the simulations, thus

X (p) =
[
X̄l(p)

]n. of sections
l= ,

where X̄l(p) = 


∑
r= Xl(p, r).

The parameters of the model are then estimated by minimising the empirical N -
distance between X (p) and Y :

p̂ = arg min
p

N
(
X (p),Y

)
.

Case . Construction of Y : in order to ‘increase the independence’ of the elements of our
sample, along Z direction we again considered only one section out of two, like in Case .
For each considered section l of the real sample we built the vectors Y l (i.e. the columns
of Y) containing (see Figure )

- the area densities of martensite computed in each -dimensional stripe of  pixels
along direction Y ,

[
V Y ,real

 , . . . , V Y ,real


]
|section l;
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Figure 10 The division into stripes in direction Y and direction X of a section of the simulated
material. In each stripe in the two directions the three 2D Minkowski functionals are computed. We used 24
‘horizontal’ stripes in direction Y , each formed by 10× 200 pixels, and 20 ‘vertical’ stripes in direction X , each
formed by 240× 10 pixels.

- the perimeter densities of martensite computed in each -dimensional stripe of 
pixels along direction Y ,

[
SY ,real

 , . . . , SY ,real


]
|section l;

- the density of Euler-Poincaré characteristics of martensite computed in each
-dimensional stripe of  pixels along direction Y ,

[
EY ,real

 , . . . , EY ,real


]
|section l;

- the area densities of martensite computed in each -dimensional stripe of  pixels
along direction X ,

[
V X,real

 , . . . , V X,real


]
|section l;

- the perimeter densities of martensite computed in each -dimensional stripe of 
pixels along direction X ,

[
SX,real

 , . . . , SX,real


]
|section l;

- the density of Euler-Poincaré characteristics of martensite computed in each
-dimensional stripe of  pixels along direction X ,

[
EX,real

 , . . . , EX,real


]
|section l.

Thus

Y l =
[
V Y ,real

 , . . . , V Y ,real
 , SY ,real

 , . . . , SY ,real
 , EY ,real

 , . . . , EY ,real
 ,

V X,real
 , . . . , V X,real

 , SX,real
 , . . . , SX,real

 , EX,real
 , . . . , EX,real

 ,
]′
|section l ∈R

.
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Construction of X : as in Case , let us fix the vector p of unknown parameters of our
germ-grain model. We then performed  simulations of the germ-grain model with pa-
rameters p and for each simulated sample we considered one section out of two, like in
the real material. On each considered section l and for each simulation r = , . . . ,  we
computed

- the area densities of martensite computed in each -dimensional stripe of  pixels
along direction Y ,

[
V Y ,sim

 (p, r), . . . , V Y ,sim
 (p, r)

]
|section l;

- the perimeter densities of martensite computed in each -dimensional stripe of 
pixels along direction Y ,

[
SY ,sim

 (p, r), . . . , SY ,sim
 (p, r)

]
|section l;

- the density of Euler-Poincaré characteristics of martensite computed in each
-dimensional stripe of  pixels along direction Y ,

[
EY ,sim

 (p, r), . . . , EY ,sim
 (p, r)

]
|section l;

- the area densities of martensite computed in each -dimensional stripe of  pixels
along direction X ,

[
V X,sim

 (p, r), . . . , V X,sim
 (p, r)

]
|section l;

- the perimeter densities of martensite computed in each -dimensional stripe of 
pixels along direction X ,

[
SX,sim

 (p, r), . . . , SX,sim
 (p, r)

]
|section l;

- the density of Euler-Poincaré characteristics of martensite computed in each
-dimensional stripe of  pixels along direction X ,

[
EX,sim

 (p, r), . . . , EX,sim
 (p, r)

]
|section l.

Thus

Xl(p, r) =
[
V Y ,sim

 (p, r), . . . , V Y ,sim
 (p, r), SY ,sim

 , . . . , SY ,sim
 (p, r),

EY ,sim
 (p, r), . . . , EY ,sim

 (p, r),

V X,sim
 (p, r), . . . , V X,sim

 (p, r), SX,sim
 , . . . , SX,sim

 (p, r),

EX,sim
 (p, r), . . . , EX,sim

 (p, r)
]′
|section l ∈R

.

Also in this case the columns of X = X (p) have been obtained by averaging Xl(p, r) over
the simulations, thus

X (p) =
[
X̄l(p)

]n. of sections
l= ,

where X̄l(p) = 


∑
r= Xl(p, r).
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The parameters of the model are then again estimated by minimising the empirical N -
distance between X (p) and Y :

p̂ = arg min
p

N
(
X (p),Y

)
. ()

Note that, as anticipated, in this second case we have given the same importance to the
directions Y and X, but the dimension of the space on which we perform the minimisation
is almost doubled.

6 Numerical results
Since parameters [z, . . . , z] are integers while the other parameters are real numbers, we
needed to apply an optimisation algorithm to a function which is not expressed in algebraic
form and depending upon mixed integer and real parameters, so that we decided to apply
a genetic algorithm for the minimisation procedure stated in ().

All the simulations and the optimisation procedure have been performed using Matlab
Ra. In order to speed up the execution of the genetic algorithm, the Parallel Comput-
ing Toolbox has been used to parallelise the algorithm on a parallel machine using up to
 simultaneous workers. Anyway the computational time of the optimisation procedure
is about  hours.

The results of parameters estimate building the data matrices as described in Case 
are reported in Table , while the parameters estimated with the procedure described in
Case  are reported in Table . Note that in both cases the levels of the parallel planes may
be bigger than the number of sections in the Z direction because the window of simulation
has been enlarged to avoid edge effects.

The numerical values of the estimated parameters seem to be quite similar, but tech-
niques to validate and compare quantitatively the two models will be applied in the next
section.

In Figure  the results of simulations of the martensite-ferrite sample performed with
the parameters estimated both in Case  and Case  are reported. Both figures, when ro-
tated, show the ‘horizontal stripes’ structure which is present in real sample.

Table 1 Optimal values of the parameters obtained with the procedure described in Case 1

Parameter Optimal
value

z1 15
z2 56
z3 100
z4 132
z5 180
z6 193
z7 244
b 4.38
σvert 9.55
σhor 12.08
λ 14,687

The corresponding computed N -distance is 0.33. The simulation has been performed in a parallelepiped with dimensions
enlarged of the maximum diameter of a sphere of the germ-grain model, with respect to the real sample, in order to avoid
edge effects.
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Table 2 Optimal values of the parameters obtained with the procedure described in Case 2

Parameter Optimal
value

z1 12
z2 53
z3 91
z4 132
z5 178
z6 201
z7 246
b 4.74
σvert 9.37
σhor 13.14
λ 14,379

The corresponding computed N -distance is 0.38. The simulation has been performed in a parallelepiped with dimensions
enlarged of the maximum diameter of a sphere of the germ-grain model, with respect to the real sample, in order to avoid
edge effects.

Figure 11 Simulations of the optimal models. Left: the result of a simulation with optimal parameters
obtained from Case 1. Right: the result of a simulation with optimal parameters obtained from Case 2. If the
figures are rotated around the Y axis, the horizontal bandwidth structure of the martensite is visible in both
cases (see the corresponding animations in Additional files 1 and 2).

7 Models comparison and validation
7.1 Validation based on confidence bands
In order to validate the models obtained with the two approaches described in the previ-
ous sections we simulated both models  times each, and on each simulated sample we
computed the D Minkowski functionals on the same number of sections orthogonal to
Z direction considered in the optimisation procedures. We then averaged the Minkowski
functionals along the Z direction, obtaining thus a set of  curves for each functional
in directions X and Y . We computed % confidence bands for the functionals by cutting
the top % and bottom % of the data. We also computed the mean of the functionals. The
Minkowski functionals computed on the real sample, again averaged with respect to the
sections, have then been plotted and compared with the confidence bands. The results are
reported in Figures  and .



Micheletti et al. Journal of Mathematics in Industry  (2016) 6:12 Page 18 of 24

Figure 12 Confidence bands obtained using the optimal parameter estimated in Case 1. The mean
and the maximum relative deviation of the mean of the simulated Minkowski functionals and the ones
computed on the real sample is also reported.

The results reveal that both models may capture some insights of the overall variabil-
ity of the true sample, in terms of the location and amplitude of the oscillations of the
functionals in direction Y . By comparing the relative deviations between the mean of the
functionals computed on the simulations and the mean of the functionals computed on
the real sample, we observe that the strategy stated in Case  produces a very small gain
in precision of the agreement along direction X, but also a big loss along direction Y . This
fact suggests that the strategy stated in Case  should be preferred.

In order to test empirically the properties of our estimation method we simulated the
model with the optimal parameters obtained in Case , we used the simulation as a refer-
ence test sample, and we applied our minimization procedure to estimate one parameter
at a time, fixing all the others to the optimal values. As an example, the results for the esti-
mate of σvert and σhor and the comparison with their true values are reported in Figure .

We observe that the scatter in the estimates is reducing while the optimization proce-
dure progresses, but our estimators are biased. The bias may be related to the small num-
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Figure 13 Confidence bands obtained using the optimal parameter estimated in Case 2. The mean
and the maximum relative deviation of the mean of the simulated Minkowski functionals and the ones
computed on the real sample is also reported.

ber of simulations that we perform at each iteration of the genetic algorithm, or to the
correlation present between different sections of the sample, which does not guarantee
the optimality properties of the N -distance. It must be further investigated how to reduce
such bias.

Note that the confidence bands shown in Figures  and  are built using pointwise con-
fidence intervals at each spatial lag; they thus provide information only on the ‘marginal’
distribution of the Minkowski functionals at each lag. We then introduced the func-
tional boxplots which provide bands which take into account the ‘joint’ distribution of
the Minkowski functionals at different lags, by regarding them as continuous functions.

7.2 Validation based on functional boxplots
Functional boxplots have been introduced in Functional Statistics as an instrument to
detect and identify the presence of possible outliers in a dataset where each datum is rep-
resented by a function. Functional boxplots are based on the definition of band depth
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Figure 14 Optimal values of σvert and σhor obtained while the optimization procedure is progressing,
using as reference sample a simulated model with the optimal parameters obtained in Case 1. The red
horizontal lines correspond to the true values of σvert and σhor used in the reference sample. The plots must
be read from right to left, for decreasing values of theN -distance.

(BD) measures, or modified band depth (MBD) measure introduced in [], where each
function in the sample is ordered and ranked from the center outward and, thus, it is pos-
sible to define functional quantiles and the centrality or outlyingness of an observation.
The construction of functional boxplots, as well as the associated outlier detection rule
are described in []. In the same paper, a simulation study comparing the performance
of functional boxplots with other techniques present in literature for functional outliers
detection is also reported, showing that functional boxplots provide a very reliable instru-
ment to detect outliers in a functional dataset.

An example of functional boxplot is reported in Figure , computed on a toy simulated
example taken from []. The purple band represents the % of the data and the borders
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Figure 15 Functional boxplot computed on a simulated toy example, corresponding to Model 2
in [19]. Left: functional dataset; right: functional boxplot. The outliers are depicted in red. Simulations and
functionals boxplots have been produced using R 3.2.0, with the package FDA.

of the band are an envelope of the functions which are ranked in the first .-quantile.
The black function is the deepest curve in the sample, i.e. the functional median. The
blue fences of the boxplot are obtained, as in usual univariate boxplots, by inflating the
envelope of the % central region by . times the range of the % central region. Any
curves outside the fences are flagged as potential outliers and are represented by dashed
red lines.

In order to validate the results of our model, we perfomed  simulations of the opti-
mal model obtained in Case , which from the previous analysis proved to be preferable
to the model obtained in Case , we computed the Minkowski functionals on each sim-
ulation along directions X and Y , averaging the functionals over the considered sections
in direction Z, and we added the functionals computed with the same procedure on the
real sample. Thus for each functional and for each direction we have a sample of  func-
tions, of which  are simulated and one is real. For each sample we computed the corre-
sponding functional boxplot. The results are reported in Figure . Since the functionals
corresponding to the real sample are never detected as outliers, this means that the distri-
bution of the model (in terms of distribution of the Minkowski functionals) fits with the
real data, in spite of the bias in the estimation procedure. This confirms that the optimal
model obtained in Case  is able to capture the overall variability of the real sample, and
can then be used as an approximation of the real material.

Note also that the almost total absence of outliers in the functionals reveals that the
distribution of the Minkowski functionals has a tendency to be concentrated around the
(functional) median, without showing long or heavy tails. This is a remarkable property
in univariate statistics, since statistics having distributions without heavy tails give usually
origin to robust parameter estimators.

8 Conclusions
In this paper we faced the problem of building a realistic stochastic geometric model
for ferrite-martensite dual phase steel, based on the availability of about  sections of
one sample of the material. After a morphological analysis of the given real sample, we
proposed a germ-grain model with germs scattered around some nucleation planes, and
spherical random grains, depending on a set of  unknown parameters. Since the distribu-
tion of the random variables involved in the model are very difficult to be theoretically re-
trieved, classical statistical methods for parameters estimation, like maximum likelihood,
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Figure 16 Functional boxplots obtained from the Minkowski functionals computed over 100
simulation of the optimal model obtained in Case 1, plus the Minkowski functionals computed on the
real sample, along directions X and Y . The functionals have been averaged along direction Z . The
functionals obtained from the real data are plotted with a thin dashed-dotted line. The functional datasets are
stored in data matrices where the real sample is always contained in the first column of the matrix. The only
case in which some outliers are detected is for the volume density in direction Y , but they correspond to two
curves obtained from the simulations, not to the functionals computed on the real sample.

could not be applied to this case. Thus we based our parameter estimation technique on
the minimization of a suitable distance (the N -distance) between the Minkowski func-
tionals of the real data and the mean of the simulated data. This choice was motivated
by the fact that the Minkowski functionals characterize the morphology of a random set.
Two different ways to estimate the Minkowski functionals have been tested and the best
method (that is the one described in Case , in Section ) has been selected, on the basis
of a comparison between the results of the simulations of the model and the real data.
The model validation has been performed by building confidence bands and functional
boxplots for the Minkowski functionals.

Unfortunately a simulated test revealed that the parameter estimators are biased, but
since the functionals computed on the real sample are always included in the confidence
bands, and are not identified as outliers in the functional boxplots, we conclude that the
proposed model is coherent with the overall variability of the real data, and can thus be
used to reproduce the geometric characteristics of the real sample. Methods to correct the
bias should anyway be studied to improve the results.

The advantage of our method is that the parameters of the model can be estimated start-
ing from any number of available sections of the real material, thus they can be identified
also when the industrial sampling costs need to be reduced. Obviously the reduction in
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the number of sections would lead to an increase of the variability of the estimated pa-
rameters. Such increase could be quantified for example by computing the mean increase
in the N -distance between the Minkowski functionals of the real data and of the simu-
lated optimal model, or by comparing the amplitude of the confidence bands reported in
Figure  with the analogous ones obtained via the optimal model estimated reducing the
number of sections, or via other evaluations of the fitting between the real data and the
simulated optimal model.

Such comparisons would give indications to the industry on the minimum number of
sections needed to avoid a dramatic increase in the uncertainty in the estimation proce-
dure.

Additional material

Additional file 1: Simulation of the optimal model obtained in Case 1. The figure is rotated around the Y axis,
the horizontal bandwidth structure of the martensite is visible. (mov)
Additional file 2: Simulation of the optimal model obtained in Case 2. The figure is rotated around the Y axis,
the horizontal bandwidth structure of the martensite is visible. (mov)
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