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1 Introduction

Aerodynamic web forming addresses a broad spectrum of applications for the produced
nonwoven materials. Airlay fabrics range from insulation and filter materials over automo-
tive and mattress felts to medical and hygiene products depending on the type of entering
fiber material (e.g., natural (cotton, flax, hemp, etc.), man-made fibers or even reclaimed
textile waste). The fibers may have a length up to 120 mm and a weight between 1 and
200 dtex (1 dtex = 1077 kg/m). In the airlay process the fibers leave from a rotating drum
into a turbulent air flow. Suctioning onto a perforated moving conveyor belt leads to the
forming of a random three-dimensional web structure, see Figure 1 and [1]. The produc-
tion of the final fabrics takes place in further post-processing steps. Simulation-based pro-
cess design and management are a basis for the prediction and improvement of product
properties and an objective in industry. This requires the mathematical modeling of the
process which is topic of the paper.

The aerodynamic web forming is a multi-scale two-phase problem whose monolithic
handling and direct simulation based on a model of first principles are not possible due
to its high complexity. So far, no simulation results exist in literature. In this paper, we
establish a consistent, accurate and efficiently evaluable chain of mathematical models
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Figure 1 Industrial production of airlay fabrics. Ffrom left to right: Airlay machine (Airlay-K12 by machine
manufacturer AUTEFA Solutions), aerodynamic web forming, nonwoven material.

towards the simulation of the airlay process and furthermore the investigation of the ma-
terial behavior. The models cover the dilute fiber suspension with elastic slender bodies
in the turbulent flow, stochastic surrogates for the fiber lay-down and web formation as
well as Cosserat networks with effective material laws for tensile strength tests. They are
coupled by means of parameter identification. We illustrate the applicability of the model
chain for an industrial set-up, regarding computer tomography data and tensile strength
experiments of the airlay nonwoven materials.

The promising use of model hierarchies and model chains for the virtual production of
filaments and nonwovens in the technical textile industry is topic in [2]. A model hierar-
chy for nonwoven manufacturing in the spunbond process was presented in [3], we adapt
and transfer the ideas for the handling of the endless fibers in the respective entanglement
and deposition regimes to the staple fibers in the airlay process at hand. The simulation of
elastic fibers in the turbulent flow is performed on the works [4, 5], using an inextensible
Kirchhoff beam model that is capable of large, geometrically nonlinear deformations and
driven by a stochastic aerodynamic drag force. Presupposing a statistic turbulence model
for the flow field, the turbulence impact on the fiber dynamics is described by a Gaus-
sian white noise with a flow-dependent amplitude that carries the information of kinetic
turbulent energy, dissipation rate, and correlation structure. Due to the huge amount of
physical details such simulations are computationally extremely costly and practically lim-
ited to some hundreds of fibers. This motivates the introduction of a stochastic surrogate
for the virtual web generation: a lay-down model describes the fiber position on the con-
veyor belt. Containing parameters that characterize the process, it is calibrated by means
of a representative sample of dynamical fiber-flow simulations and allows for the fast and
efficient computation of a web with millions of fibers. We refer to [6, 7] for lay-down mod-
els of endless fibers (2D/3D, isotropic/anisotropic, smooth/standard), to [8—10] for their
analysis regarding ergodicity and existence results and to [11] for a comparison with com-
puter tomography data for spunbond materials. Using the random topology generated
by the lay-down model we design the elastic microstructure via Cosserat networks based
on beams and trusses. Homogenization techniques allow for modeling effective material
laws and investigating the tensile strength in dependence on characterizing net param-
eters. Stochastic fiber networks and non-periodic homogenization are a recent topic of
research and were addressed in, e.g., [12-15]. For an homogenization approach on non-
woven materials see [16], this article also provides a remarkable survey over nonwoven
microstructure models and studies in literature. Model- and simulation-based investiga-
tions of the tensile behavior and mechanical analysis of nonwoven materials can be found
in, e.g., [16-18] and [19].
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Table 1 Structure of the paper based on model chain

process simulation | | microstructure generation | ’ material investigation
fiber suspension flow ~ _,  stochastic fiber lay-down model _,  virtual tensile strength test
dynamics and deposition elastic Cosserat network effective material laws
Section 2 Section 3 Section 4

Structure of the paper. The structure of the paper reflects the three relevant modeling
steps concerning the fiber-loaded turbulent flow simulation (Section 2), the microstruc-
ture generation (Section 3) and the effective material description and investigation (Sec-
tion 4), cf. Table 1. All models - apart from the surrogate fiber lay-down model - are orig-
inated in the framework of fluid dynamics and solid mechanics, describing well-known
conservation properties in form of (partial, ordinary, stochastic) differential equations.
In spite of the similar background each model by itself is extensive and rich in variables
and parameters. To handle the accompanying complexity in notation and to facilitate the
readability of the paper, each section is organized in the same way: we present the single
model, whereat numerical or algorithmic details are given in separate paragraphs. Em-
bedding it into the model chain we explain its coupling with the other models and - as an
example - we apply it to the industrial airlay process scenario that is specified in Section 1.1
as reference case. Ending with integrated simulation results from process to material we
conclude with a discussion on the sensitivity of the parameters and an outlook to future

optimization issues in Section 5.

1.1 Industrial airlay process, reference scenario

A typical airlay process with the rotating card cylinder, the aerodyamic web forming zone
and the conveyor belt is sketched in Figure 2. For the process description we introduce a
fixed Cartesian coordinate system {ey, ey, e,} in R? with respect to the machinery, whose
origin is centered on the conveyor belt below the fibers’ dropping. We refer to the ma-
chine direction (MD) ey and its cross direction (CD) ey, where the conveyor belt lies in
the MD-CD plane (z = 0). The associated MD and CD cut planes are given by y = const
and x = const, respectively. Apart from boundary effects the process properties are homo-
geneous in CD. In this paper we consider the industrial airlay plant K12 by the machine
manufacturer AUTEFA Solutions (Figure 1) with which the following reference scenario
has been studied. As entering fiber material a mixture of 70% solid PES fibers and 30%
bicomponent fibers whose core is made from PES and whose surface is made from PET at
aratio of 1:1 is considered. The mixing ratios refer to the mass. The fibers are homoge-
neous with circular cross-sections, their properties are summarized in Table 2. The airlay
machine is run with a mass rate m of 0.04.81 kg/s, the card cylinder rotates with an angular
speed vc 0of 199 s7
0.0333 m/s. The produced nonwoven has a base weight W of 0.6 kg/m? and a height H of
0.06 m. In post-processing the nonwoven material is reinforced by thermobonding where

, and the conveyor belt with a width b of 2.4 m moves with a speed v of

the bicomponent fibers have an adhesive effect. The tensile strength experiments are per-
formed on the thermobonded nonwoven regarding DIN-norm (GME 60349). Note that
all quantities are given in SI-units in this paper.

Notation 1 Throughout this paper we typeset vector- and tensor-valued quantities in
small and large boldfaced letters, respectively. Scalars are normal-typed, we especially in-
dicate the scalar parameters specified for the industrial reference scenario (Section 1.1) by
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Figure 2 Airlay process. Left: Sketch of the process. Right: Illustration of the aerodynamic web forming zone
with fiber-loaded flow in the considered K12-plant geometry (MD cut plane). Machine parts, i.e, rotating card
cylinder, conveyor belt as well as baffle pipe and pressing roll, are displayed in grey, simulated single fibers are
visualized in front of the air flow that is colored by the mean velocity magnitude, cf. Section 2.2.

Table 2 Fiber properties in reference scenario

Property Symbol Unit Bico fiber (PES/PET) Solid fiber (PES)
Line density, titer (pA) kg/m 44.1077 67-1077
Density 0 kg/m? 1325.10%3 138-10%3
Diameter D m 21-107° 25.107°

Length (straight | crimped) L|¢ m 60511072 601]5.1-1072
Crimp number C bow/m 7-10%2 5.10%2

Elasticity modulus E N/m? 3.10%° 3.10%°

Shear modulus G N/m? 1.035-10%° 1.035-10"°
Bending stiffness (EI) Nm? 26-107" 56-107"
Tensile strength S N/(kg/m) 33-10% 30-10%°

a Roman font. Sets are denoted by caligraphic letters. We use a tensor calculus with the
dot operator - and the tensor product ®.

2 Process simulation

The core of the aerodynamic web forming is the dilute suspension behavior of flexible
fibers in the turbulent flow. The random microstructure is essentially determined by the
fibers’ deposition, i.e., the distribution of the fibers on the conveyor belt as well as their
characteristic geometrical lay-down properties. The fiber-loaded turbulent flow is a multi-
scale two-phase problem in a complex geometry. Direct numerical simulation based on
the model of first principles as well as approaches like immersed boundary or fictitious
boundary/domain are well investigated for fluid-structure problems, but their applica-
bility is practically limited to laminar flows and a small number of suspended solids due
to the required high computational demands (from the broad existing literature see, e.g.,
[20-26]). For flows with a high particle load kinetic modeling approaches have been es-
tablished, leading to coupled Navier-Stokes Fokker-Planck systems (see the monographs
[27, 28] and reference therein). However, these approaches do not cover flexible fibers
with infinitely many degrees of freedom. In this work we follow [2, 5] and model a fiber
asymptotically as elastic Kirchhoff beam that is capable of large, geometrically nonlinear
deformations and driven by a stochastic aerodynamic drag force due to the surrounding
turbulent flow field. The flow is specified by a statistic k-¢ turbulence model. Because of
the low load concentration in the airlay process we neglect fiber-fiber interactions as well
as the fibers’ impact on the turbulent flow.
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2.1 Elastic fiber dynamics in turbulent flows

Let Q C R3 be the flow domain with boundary 9Q, @ = QU 3. According to the Cosserat
theory [29] a slender fiber can be asymptotically represented by a time-dependent curve
(e.g., its center-line) r : Z x R —  with material parameter s € Z = [0, ¢] and time ¢ € R}.
Its dynamics due to inertia and bending, driven by turbulence can be described for fiber
curve, velocity and tangential traction (r, v, N) by the following constrained partial differ-
ential equations with multiplicative Gaussian space-time noise [3, 5]

or=v, |0sx]| =1, (2.1a)

(pA)d,v = 0 (Nasr - 85((EI)855r)) +£(r,v, osr;u) + A(r,v, o1, k, €) - 0w, (2.1b)

supplemented with appropriate initial and boundary conditions, where (pA) and (EI)
denote the fiber line density (titer) and bending stiffness. The unknown traction N :
Z x R§ — R is the Lagrange multiplier to the pointwise inextensibility constraint in the
Euclidean norm || - || (2.1a). The corresponding deterministic system is known as Kirch-
hoff beam (or Kirchhoff-Love equations), it results from the Cosserat rod model in the
asymptotic limit when the slenderness parameter and the typical Mach number vanish
[30]. Crucial for the dynamic fiber behavior are the aerodynamic drag forces that depend
locally on the angle of attack (fiber tangent) and the relative velocity between fluid flow
and fiber. Applying the stochastic force model by [5], we presuppose an underlying statistic
k-€ turbulence description that provides the mean flow velocity u: Q x Ry — R3. Addi-
tionally, it characterizes the turbulent flow fluctuations by the kinetic turbulent energy k
and the dissipation rate ¢, i.e., k,€ : Q x R; — R. The drag forces are composed of the
mean f in a parametric dependence on the mean flow velocity u evaluated at (r, £) and of a
fluctuating part. The fluctuations are particularly modeled as Gaussian space-time white
noise with the vector-valued Wiener process (w:Z x Ry — R3) and the tensor-valued
amplitude A that carries the correlation structure of the turbulence via a parametric de-
pendence on the flow quantities u, k and €. For details we refer to [5]. Arising contacts
of the fiber with the geometry are realized by means of nonholonomic constraints. Let
I' C 992 denote the domain boundary with walls. We introduce a signed distance function
h(-,t) € C*(R3,R), satisfying = 0 in I" and / > 0 in  for all £ > 0. Then, the momentum
balance (2.1b) becomes

(pA)oyv="---+ A=0Ah>0V(A>0AK=0) (2.1¢)

,

IVh)’
with the associated Lagrange multiplier A. Here, - - - represents the whole of the right-hand
side of (2.1b). For modeling a fiber’s deposition the contact approach can be combined
with a Coulomb friction model (kinetic and dynamic), in which X acts as normal force
according to its physical significance.

Numerical treatment. Fiber-flow computations at industrial scale require a highly effi-
cient numerical performance. We use the commercial CFD software* ANSYS Fluent for
the flow and the licensable research software® FIDYST for the fiber simulations.

The numerics of the constrained stochastic fiber system (2.1a)-(2.1c) is based on a spatial
semi-discretization with finite volumes, in which r and v are assigned to the cell nodes,
but N, and consequently also the inextensibility constraint, are assigned to the edges (stag-
gered grid). Consider a constant cell size As with nodess;, i =1,...,m, the integral averages
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over the control cells [s;_1/3,5:41/2] are characterized with the index ;, yielding

dr; = v; dt, |Asriaall =1,

(pA)dv; = (As’l(q)lﬂ,2 1)+ fi) dt + As7V2A; - dw,
with flux approximation
¢i+1/2 = Ni+1/2Asri+l/2 - As((EI)Assr)Hl/Z-

The function values at s;,1» = s; + As/2 are indicated with the index ;,12. The occur-
ring derivatives are approximated with first order finite difference stencils, for example,
Asrian = (r1 — 1)/ As. So, the discretized fiber becomes a polygon line with a fixed geo-
metrical spacing for the spatial points associated with the nodes. The aerodynamic force
terms are evaluated as f; = (f;_15 + f;,1/2)/2 (analogously for A;), this has the advantage that
the tangents are only needed on the edges; fiber curve and velocity are averaged across
the neighboring nodes. The necessary flow data is interpolated at the associated posi-
tions. The stochastic differential algebraic system with time-dependent Wiener process
w is temporally treated with an implicit Euler-Maruyama method. Although the aerody-
namic forces f; in the core (in the fiber tangent and velocity) are implicitly incorporated,
the flow data that appears in them is queried with the fiber position of the old time level,
such that the resulting large nonlinear equation system can be solved using a Newton
method with analytical Jacobi matrix and Armijo step-size control. The corresponding
linear systems are treated with a band solver. The method is so well optimized with regard
to assembling the Jacobian that the main effort per time step is due to the linear equation
solver itself. For existence and convergence results we refer to [31].

For the nonholonomic contact constraints a Lagrange parameter A; and a Boolean vari-
able §; € {0,1} are assigned algorithmically to each node s;. The last characterizes the fiber
movement type as either non-contacting (free) (8; = 0) or contacting (8; = 1),

Vi a=0, if8=0,
(0A)dV; = - + 8ihi——df and |7 no
VA h;=0, if8 =1

The equations are solved in dependence on §; for each time step " to £"*!. Although the
Lagrange multipliers are distributions, this creates no problems for a finite Euler step. If, at
the end of the time step, the condition 4(r;, "*!) > 0 for free nodes or A; > 0 for contacting
nodes is violated, the Boolean variable is switched to the other value and the entire time
step is repeated for all nodes. This procedure is iterated until all fiber points move consis-
tently. The required smoothness of the distance function / is essential for the performance
of the Newton method. In practice, geometries in CFD simulations are described as trian-
gular meshes implying (-, £) € C°. It is smoothed via a linear combination of the triangle
plane distance functions that are weighted by radial Gaussian kernels normalized to give
a partition of unity. For a new smoothing procedure based on convolutions see [32].

2.2 Aerodynamic web forming zone
The fiber suspension flow in the aerodynamic web forming zone is dilute. Therefore, we
neglect fiber-fiber interactions as well as the fibers’ impact on the air flow. The fibers leave
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the rotating card cylinder continuously over time according to the machine’s mass rate
(Figure 2). Due to their inertia they collide with the baffle pipe before they are suctioned
onto the conveyor belt by the downwards directed turbulent air flow. The turbulent flow
fluctuations cause the fibers to swirl and to form a random web. We are interested in
the fibers’ distribution on the conveyor belt and their characteristic geometrical lay-down
properties as starting point for generating the resulting nonwoven material by means of
a stochastic surrogate lay-down model. Since the airlay process parameters are constant
over time and all characteristic (statistic) properties are homogeneous in CD - apart from
negligible boundary effects due to the plant edges - we can use the invariances when de-
termining the transition probability of the process.

Consider the fixed Cartesian coordinate system {ey, ey, e,} of the machinery, whose ori-
gin is located in the middle of the conveyor belt below the fiber dropping (cf. Section 1.1).
Let p : R> — R be the transition probability that relates the fibers’ dropping distribution
density ¢ along the card cylinder and their deposition distribution density i on the con-
veyor belt over time, i.e.,

V0= [ pntsBe.H .
R

Here, each fiber is represented by a single fiber point. Because of the process invariances

in CD and time we have
Py, 65,8 = plx,y - 3,6 = £0,0) = po(x,5 — J,t - £).

We assume a maximal throwing range and a maximal lay-down time, hence there exist

Ymax > 0 and £mayx > tmin > 0 such that

Po(x,% t) =0 for |_y| > Ymaxs £ ¢ [tmin: tmax]'

In the airlay process the fibers’ dropping is equally distributed along the card cylinder with
release width w and over the production time T, i.e., (¥, £) = 1-w/2,wi2) ¥)1j0,71(£)/(WT) in
terms of characteristic functions. This yields a deposition distribution density that is inde-
pendent of y and ¢ in the so-called region of homogeneity H. The existence of this region,
‘H # 0, is crucial for the production of a homogeneous nonwoven and can be ensured by

adequate process settings. We get

1 tmax Ymax

Yy, t) = —gx), gx) = / / x,y t dy d¢ (2.2a)
wT tmin J’max

inH= {()’; t) ’ VAS (—g *+ Ymax» g —ymax>: te (tmaxy T + tmin)}' (2~2b)

Especially [ g(x)dx = 1 is satisfied. We refer to g as probability density function for the
lay-down MD positions. In the simulation we obtain the transition probability directly

from the computed deposition density when using a Dirac-distributed dropping,

po(x,9,t) =¥ (x,9,1), if o(y,£) = 80(9)80(t).
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Figure 3 Turbulent flow field in the airlay process. From left to right: Mean velocity magnitude |lul],
turbulent length It = k¥?/€ and turbulent time tt = k/e. The plant geometry is colored in grey.

Coming to the actual process simulation: in the proposed one-way coupling we perform
a stationary two-dimensional computation of the unloaded flow (MD cut plane), where the
conveyor belt is realized as porous medium using Darcy’s law. The flow quantities for the
reference scenario are visualized in Figure 3. In addition to the mean velocity magnitude
[lull, we particularly show the turbulent length It = k*2/e and time scales ¢r = k/e to give
an impression of the occurring turbulent flow fluctuations with kinetic energy k and dissi-
pation rate €. To obtain a representative deposition behavior of the two different fiber types
used in the airlay process, we compute the turbulence-driven three-dimensional dynamics
of n; bicomponent and 7, solid fibers, n; = n, >> 1, based on (2.1a)-(2.1c). For the respec-
tive fiber material see Table 2. Each fiber enters the flow domain from the release center at
time ¢ = 0 as straight stress-free body that is oriented tangentially to the machine geome-
try and has the effective speed of the card cylinder. The fiber ends are treated as stress-free
over time, i.e., 0s1(8, £) = s55x(s, £) = 0, N (s, £) = 0 for s € {0, £}, ¢t > 0, until the fiber reaches
the conveyor belt. To account for the deposition of many fibers within a short time period
we realize the laying down by a modification of the boundary conditions instead of using
Coulomb friction: as soon as the fiber comes in contact with the conveyor belt, the fiber
point is fixed and transported with the belt speed. Note that the fiber raw material in the
airlay process has a crimp on microscale which might affect the properties of the resulting
microstructure. We realize the crimp in the surrogate lay-down model in Section 3, but
it is not handled in the present Cosserat description for reasons of complexity. To ensure
a consistent model chain with respect to mass conservation, we treat here the fibers with
their crimped length ¢ and a respectively increased titer. Figure 4 shows the different dy-
namic behavior of the bicomponent and solid fibers. The heavier solid fibers collide earlier
with the baffle pipe which is installed to avoid demixing. The solid fibers are less affected
by the turbulent flow. Their deposition range is smaller, more pronounced and further
away from the card cylinder. In contrast, the dynamics of the lighter bicomponent fibers
is more diffused. The lay-down distributions of the two fiber types on the conveyor belt are
presented in Figure 5. The figure particularly shows the distribution for the MD position
of the fiber point that entered the flow domain at first in time, the distribution function
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Airlay K12 Airlay K12 Airlay K12 Airlay K12

time: 2.0 ms fime: 3.0 ms time: 4.0 ms fime: 5.0 ms

time: 10.0 ms time: 20.0 ms b time: 30.0 ms . time: 40.0 ms

Figure 4 Typical fiber dynamics. Visualization of 100 bicomponent fibers (orange) and 100 solid fibers
(white) that enter simultaneously the aerodynamic web forming zone and move over time. In the
background the air flow is colored with the velocity magnitude, cf. Figure 3.

1.0 35
— bico — bico
o0l| — solid 301 — solid
25}
0.6f 20}
0.4} 15
10}
0.2
s|
%936 022 024 026 028 030 032 020 022 024 026 028 030 032
MD [m] MD [m]
Figure 5 Fiber lay-down distribution. Probability distribution function G (left) and density g (right) of the
lay-down MD position for the two fiber types (cf. (2.2a)), G(x) = ffoo g(x')dx’. The MD position is given in the
fixed coordinate system of the machinery, it indicates the distance to the card cylinder.

is approximated by the superposition of the point measures, gj(x) ~ > ;_; ‘Sx/k ()/n with
Dirac distribution §, lay-down MD positions X}‘ associated to the fiber type j = 1,2 and
n = 1,000, cf. (2.2a). Note that the influence of the chosen referential fiber point on the
probability density function is marginal in comparison to the applied smoothing on the
discrete simulation data. The smoothing is performed with a kernel density estimation
where the kernel’s bandwidth is selected with respect to Scott’s rule [33]. The mass rate of
the machine and the conveyor belt speed have no effect on the fibers’ deposition proba-
bility distribution, but they certainly affect the height of the resulting nonwoven material

as we will discuss in Section 3.
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3 Virtual microstructure generation

The produced nonwoven consists of millions of fibers. We are interested in its material
properties that are determined by the microstructure (Figure 6). Since the described sim-
ulations of single elastic fibers in the turbulent air flow are computationally expensive and
very time-demanding due to the huge amount of physical details, we introduce a surrogate
model for the efficient virtual three-dimensional web generation. We describe the ran-
dom topology of the microstructure by help of a stochastic lay-down model in the spirit
of [11, 34], whose parameters are calibrated using a representative process simulation (cf.
Section 2.2) and computer tomography data. On top of it we model the fiber associated
material properties with an elastic Cosserat network. This network provides the basis for
our virtual material investigations in Section 4. For modeling elastic multi-link structures
we refer to [35], see also [14, 36, 37].

3.1 Random fiber web topology
The nonwoven is the deposition image of the fibers. A striking characteristic in the mi-
crostructure is a ramp-like contour surface, see Figure 6 for a photo of a nonwoven sample.
After the aerodynamic web forming the nonwoven material is thermobonded in a post-
processing step. As result of heating the bicomponent fibers melt and glue the random
individual fibers together to a solid fiber network which is then explored in material test-
ing. Our strategy is to use the contour surface that results from the lay-down probability
densities as basis for stochastic modeling the three-dimensional deposition image with
crimped fibers. We identify the contact points of the fibers in the random web, specify the
adhesive joints and generate the net topology by help of a graph where the adhesive joints
are interpreted as nodes and the fibers as edges. The resulting network is equipped with
constitutive relations in Section 3.2.

We describe the contour line of the fiber material on the conveyor belt in MD by the
graph of R: R — [0, H],

R(x)=H / r(x) o, with r(x) = Bu181 (%) + B282 (%), Byt + Bz =1, (3.1)
—-00
where H > 0 denotes the height of the nonwoven and r is the joined probability density
of the deposited material, supp(r) = [Xmin, ¥max]- In particular, g; and g, are the MD lay-

down density functions of the two different fiber types that are obtained from the process

Figure 6 Nonwoven material sample after thermobonding. Left: Photo (MD cut plane), ramp-like contour
line in microstructure. Right: Computer tomography scan of a sample section, visualization by Fraunhofer
ITWM, Department Image Processing.
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simulation (cf. Figure 5 and (2.2a)). The weights f,,; can be determined either with respect
to the number ratio or the mass ratio of the fiber types. As we have a geometrical surrogate
in mind, we use the number ratio that can be expressed by means of the known mass ratio
B! B, the fiber titers and lengths (Table 2), so

_ Bmj(pA)iL;
Bimi(pA)2Ls + B (pANL:’

B, j76j=12.
Since the nonwoven is homogeneous in CD in  (2.2b), the contour line R implies a con-
tour surface in the microstructure (Figure 6).

Aiming for the three-dimensional nonwoven microstructure to investigate the material
properties, we consider a cubic sample volume V over the nonwoven height H with base
area d” that is associated to the homogeneity region 7. As any fiber that can be partially
contained in V lies in Vg, i.e., V = [-d/2,d/2]? x [0,H] C [-dr/2,dr/2]? x [0,H] = Vi with
dp = d + 2L, L = max;L;, we particularly deal with the reference sample M with the ex-
tended base to avoid boundary effects. The microstructure is formed by the fibers’ falling
onto the conveyor belt according to the contour surface (graph of R) and the process mass

rate m, while the belt moves with speed vg. To account for the belt motion we introduce
XB [0, TR] — R:

R 1
xB(t) =%min — — + VBl TR = _(xmax — ¥min + dR),
2 VB
where T}, is the time needed to produce a nonwoven of the reference size. The total num-

ber of fibers deposited uniformly in this time is given by

g W dap
NP AL b R

for each type j = 1,2 with the mass associated weights ,,,;. The ratio dr/b with belt width
b ensures the correct scaling in CD. Certainly, not all these fibers need to contribute to
the reference sample Vy because of the randomly distributed lay-down MD positions.
In the following the index distinguishing the different fiber types is suppressed when
not explicitly needed. We identify a deposited fiber with the lay-down time ¢ and MD-
CD-coordinates (X,Y) of its end point, i.e., (X,Y,t) with X being g;-distributed, ¥ uni-
formly distributed in [-dgr/2,dr/2] and ¢ € [0, TRr]. If especially X — x5(¢) € [-dr/2,dRr/2]
is satisfied, the deposited fiber contributes to the sample Vk. We model the fiber in the
three-dimensional web as stochastic process in terms of the curve (e.g., its centerline)
YD T 5 Vg,

YD = R(X) - & + (X—ag(t))ex + Yey + R(X)e, (3.2a)
with R(X) = \/ﬁ(l + (\/ 1+ IQ/()()2 — l)ey ® €y + R/(X)(ez Rex—ex D ez)),

R(X) € SO(3), via the stochastic Stratonovich differential system [34]

d&, = 7,ds, (3.2b)
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dr = - 3%1 (I(B) - VV/(§,) ds + ATL(v/B) o dwy) (3.2¢)

with HS(P) = Vs ® Vis + PvZ,s ® Vo

with &, = 0, ¢ uniformly distributed in the unit circle spanned by e, and e, as well as with
I unit tensor. By construction, a fiber end point lies on the contour surface and the main
fiber orientation is aligned to it, since the tangential plane in the end point is spanned by
ex + R'(X)e, and e,. The underlying stochastic process ((§,7):Z — R3 x S?) with unit
sphere S? C R? in (3.2b)-(3.2¢) is known as a three-dimensional anisotropic lay-down
model for fiber position and orientation around the MD-CD plane, [11, 34]. It presents
the path of a deposited fiber as image of an arc-length parameterized curve that is influ-
enced by various (airlay) process parameters. Modeling the fiber orientation (tangent) t,
the drift term with the potential V' describes the typical coiling behavior of the fibers, i.e.,
V(§) =& C.&/2 with C = diag(c?, ayz, o2) regarding the machinery coordinates. In par-
ticular, oy, 0, > 0 denote the standard deviations of the fiber throwing onto the conveyor
belt in MD and CD, and o, > 0 assures a height constraint. Accounting for the fluctua-
tions in the airlay process, the drift is superposed by a white noise with the vector-valued
Wiener process (w : Z — R3) and the scalar amplitude A. The parameter B € [0,1] indi-
cates the anisotropic behavior with the special local orthonormal right-handed director
triad {7, vy, v2} where v; € span(ey, ey), i.e., isotropy for B = 1, asymptotic reduction to
two-dimensional planar lay-down [6, 38] for B=0.

On microscale the fibers are characterized by a crimp with crimp number C € Ny (bows
per unit length, cf. Table 2). The crimp can be incorporated in the surrogate lay-down
model by introducing a curve y that describes the crimp structure and using & instead of
&in (3.2a), e.g.,

£ = /: Q:(s) - % (s)ds’, ¥ (s) = sex + csin(Crrs)ey. (3.3)

The matrix-valued function Qg : Z — SO(3) represents the local &-associated triad
{T,v1,v2} with respect to the fixed coordinate system {ey, ey, e,} of the machinery. The
parameter ¢ > 0 is implicitly given by the fiber length,

¢
- [
0

Superposing bicomponent and solid fibers according to their MD lay-down distribu-

d 4
d—"(s) ds = / J1+(Cr)?cos?(Crs) ds.
S 0

tions, number ratio and calibrated model parameters results in a virtual fiber web. To
obtain the thermobonded nonwoven to V, the adhesive joints in the web are detected by
help of a contact threshold 4 > 0 and the net topology is set up in terms of a graph. Details
to the strategies and algorithms are given in the following subsections.

Parameter estimation and simulation. The parameters of the surrogate model (3.2a)-
(3.2c) are calibrated to the airlay process, following the procedure for endless spunbond
fibers in [3, 11]. Whereas A}, o, 0,; and o,; depend on the specific fiber type (j = 1,2 for
bicomponent and solid, respectively) and are estimated from a representative sample of
dynamical fiber-flow simulations (cf. Section 2.2), the isotropy parameter B characterizes
the total nonwoven produced. The required additional information about the full spatial
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orientation is taken from computer tomography data (cf. Figure 6). The respective image
processing and analysis were performed and provided by the Fraunhofer ITWM, Depart-
ment Image Processing with the software® MAVL

Consider the discretized fiber data of a dynamical process simulation after deposi-
tion on the MD-CD plane, i.e., dk (rk a; Ky with fixed cell size As and orientation an-
gle af/(ey, d;x¥), i = 1,...,m for each fiber k = 1,...,n corresponding to the same type,
d = (d¥). The noise amplitude A is related to the change of orientation in the MD-CD
plane. For endless fibers the throwing range oy, o, is given by the stationary deposition
distribution, cf. ergodicity theorem in [9]. Using the sample of process simulations (Sec-
tion 2.2), we identify the parameters p = (4, 0y, 0,) as

p =f(d),

n m-h
- Ky2

f(d) = (maxheN > Gt
g n(m hhAs’

i=

1 ((f - 1K) - ey)? T ((f 1K) - ey)?
Z n ’ Z n )

k=1 k=1

The finite length of the staple fibers might affect the resultif £ ;% o . In that case we estimate
the parameters by the best approximation

p* = argmin | f(dy.(p)) — £(
pe(Rf)3

where d,;(p) denotes the corresponding fiber data of the surrogate model (3.2b)-(3.2c).
To solve the minimization problem, we apply a relaxated quasi Newton method with unit
Jacobian and initial guess p = f(d) [3].

Let 0 be the angle of the fiber tangent out off the main plane. Its stationary distribution
in the lay-down model (3.2b)-(3.2c) depends on the isotropy parameter B, i.e., pp(f) =

cp(sin9)/B

with normalization constant cg. Using a data sample 8 = (6;,...,0,) provided
from a computer tomography scan of a material section, we determine B by help of a

maximum likelihood estimator

B* = argmaxlogf(B|0) f(B|@) = l_[c,g(sm@k)l/B
k=1

The information about o, should be also concluded from the computer tomography scan
in future. However, so far, the image analysis yields no reasonable results, such that we
approximate here o, = 0.10,,.

Figure 7 shows the fiber deposition image associated to the reference scenario. The
simulation of the stochastic lay-down model (3.2a)-(3.2c) is performed with an explicit
Euler-Maruyama scheme with constant grid size As = 107* [s] and an underlying lay-down
time resolution of At = 1072 [m]. The calibrated model parameters are particularly p; =
(0.289,1.73 -1072,1.83 - 1072) for the bicomponent fibers and p, = (0.238,1.41 -1072,1.99 -

~2) for the solid fibers, B = 0.288. The quantities are given in SI-units (A [m™/2], o [m],
B[1]).
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Figure 7 Virtual deposition image. Virtual deposition image with contour surface according to MD
lay-down distributions (3.1) and calibrated surrogate fiber models (3.2a)-(3.2¢). Left and middle: The numbers
of bicomponent fibers (blue) and solid fibers (red) are scaled down for visualization issues. Axes units in
[1072 m]. Right: Reference sample V.

Detection of adhesive joints. The microstructure of the thermobonded nonwoven is the
random web of the deposited fibers that is glued together by the bicomponent fibers. In
terms of graph theory the random net topology can be represented by a graph G = (N, €)
where the adhesive joints are considered as the nodes and the fiber curves as the edges.
Here, N and £ denote the index sets of nodes and edges, respectively.

For the identification of adhesive joints in the web (Figure 7, right), we restrict on the
fiber points that are associated to the spatial discretization of the individual fibers (in the
lay-down model) as possible contact points. With m points per fiber  and # fibers in
total, comparing all data points with another has the complexity O((mn)?). As we deal
with plenty of fibers, a direct pointwise comparison would be by far computationally too
expensive. The bounding box method that is well-known from computer graphics meets
our demands on efficiency. For details and more sophisticated methods we refer to [39, 40]
and references therein. We embed each fiber in a box aligned to the coordinate axes and
check pairwise if the boxes intersect or not. If the intersection is empty, there are obviously
no contact points. Otherwise, we restrict on the fiber parts in the intersection box and
iterate the procedure. Finally, two cases can occur: either the intersection of the bounding
boxes keeps unchanged or the number of fiber points in the intersection is sufficiently
small. In both cases the naive pairwise computation of distances between the sets of fiber
points F and F belonging to two different fibers is used to detect possible contact points,

(x*,X*) = argmin |x—x].
(x,f()e]-'xj:\

In general, this minimizer is not unique. We take the first minimizer found for practical
reasons. Two fibers are considered to be in contact in the point a, if

||x* - f(*” <a, a=2 (x* +X"), (3.4)

where the contact threshold a > 0 has to be chosen appropriately (see Section 4). In case
that a bicomponent fiber is involved in the contact, we refer to a as adhesive joint and
replace x* in F and X* in F by a. The adhesive joints - together with the fibers’ end points
- act as nodes in the resulting fiber network. Figure 8 shows the fiber net topology that
corresponds to a section of the virtual deposition image Vy in Figure 7(right) before and
after contact detection. Alternatively, the resulting fiber graph could be also refined by
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Figure 8 Fiber net topology. Net topology before (feft) and after (right) contact detection for a section of Vr
(cf. Figure 7, right), a = 10~ [m]. Disconnected fibers are deleted. Bicomponent fibers are colored in blue, solid
fibers in red. The adhesive joints are marked by the green circles, the fibers’ end points by the squares.

treating the set of all fiber discretization points as nodes. Disconnected subgraphs might
be deleted from the network.

3.2 Elastic fiber net

For the subsequent material investigations we equip the fiber network with constitutive
relations. An edge of the graph G = (V, £) is associated with a fiber piece. Due to its slender
geometry angular momentum effects are negligibly small such that we model it as a truss.
A truss network in a stress-free reference configuration is described by the set of fiber node
points {r’ € R?,v € N'} and fiber edges r{, € P1([0,L,,], R?), [|dr/ds|| =1, u € £ which are
related according to r®» € {rgp (0), rgp (L)} forall 1, € E(vp). Here, £(v) denotes the index
set of edges connected to the node v, and IP; the set of linear polynoms. The actual position
r’, r, and inner forces n, of the truss network are determined by the system of differential
algebraic equations

drﬂ dn# 0 tI,L

— =t,, —=alr,-r,), n,=N(g,)—,¢e,=|t.ll -1, 3.5a
ds mn ds O[( I M) I ( u) ||tM” " ” lL” ( )
> n=0 (3.5b)

ne&v)

for interior nodes v € A, supplemented with r’ = £ (Dirichlet conditions) at fixed bound-
ary nodes v € N3,z and n,, = 0 (stress-free conditions) at free moving boundary nodes
v € N, where N = N; U Ny U Np,. The force balance (3.5b) is fulfilled at all nodes with
n), being the inner force of edge u at node v. Alonga fiber edge the truss model only admits
tangential forces. To incorporate the fiber crimp we use an effective elastic material law N
for n, that is nonlinear in the strains ¢, and that we deduce from simulations of a respec-
tive beam model. Moreover, in contrast to a usual truss network model where dn,,/ds = 0
holds, we regard the stiffness of the net due to the fibers’ entanglement by means of the
parameter « > 0. Considering (3.5a)-(3.5b) in the context of energy minimization, the in-
troduction of @ < 1 can be viewed as Tikhonov-type regularization of the corresponding
minimization problem which ensures the uniqueness of the solution. For a study concern-
ing the choice of « see Section 4. For the subsequent numerical tensile strength tests we
discretize (3.5a)-(3.5b) with a node basis of linear shape functions (finite elements) and
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employ a Newton-Raphson method for the resulting system of nonlinear equations. Note
that - alternatively to the position - the displacement field u = r — r¥ is often considered as
unknown in literature, see, e.g., [37, 41].

Effective force modeling based on beam behavior. We deduce the effective force model N
for a truss (3.5a) from energetic investigations of stress-strain relations for a geometrically
exact beam subjected to axial displacements. In the special Cosserat rod theory [29] a
beam is characterized by a curve (e.g., its centerline) r : [0,L] — R3 for the position and
a rotational group A : [0,L] — SO(3) for the orientation of the planar cross-sections. Let
{e1, ez, e3} be a fixed outer orthonormal basis, then we consider a beam in the e;-e; plane.
The quantities associated with a stress-free reference configuration are indicated with the
index ©, in particular (r°(L) — r°(0)) = le;, I <L, A® - e; = dr®/ds = t° (||t°] = 1) and A° -

e3 = e3 are assumed. Hence, r°

is an arc-length parametrized curve of total length L with
crimped length /. We model the beam deformations due to an axial displacement « € R in

€ by

dr dA dn m
d—:t, — =K X A, — =0, —=nxt,
s

n=A-Cp-A" - (t-t%), m=A-Cyn-A" (k-«°),

with (r(O),r(L)) = (ro(O),ro(L) + uel), A(s) - e; = t/|t]|(s), A(s) - e3 = e3,s € {0, L}.

The material laws for inner forces n and torques m are linear in tangent t and curvature
k&, where C, = (GA)Pg/g and C, = (EI)Pygg with P, =ze; @ e; + €3 @ €3 + €3 ® €3,z > 0,
and the respective fiber properties E, G, A and I (cf. Table 2). For numerical details to
beam simulations we refer to [37, 41]. Evaluating ¢ = u/l/, N = n(L) - e; for various u € R,
the resulting stress-strain relation of the beam model is exemplified for two variants of
crimped fibers (sinusoidal and zigzag crimp) in Figure 9. The relation involves an effective
elastic material law N(¢), ¢ € R for the truss model in (3.5a).

Since the stress-strain relation reveals two characteristic regimes we think of an analyt-

ical surrogate that describes linearly fiber straightening for 0 < ¢ < &¢* and fiber stretching

2igzag crimp
——sinusoidal crimp

Z
g 0.5 4
2 /
7
5§ o1r 7 1
8 e
//
005. «
7/
/
7/
o - 7 , . ,
0 005 01 015 02 025 03 035 04

strain (1)

Figure 9 Stress-strain relation of beam model. Stress-strain relation for crimped fibers (sinusoidal and

zigzag crimp) with (L, /) = (L, £) (cf. Table 2, solid), e* = 0.177. Resulting effective force N(g), &€ € R for the truss
(3.5a).
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for & > e* with e* = (L - 1)/I,

N*/g*e, 0<g<eg,

N(e) =
N*+EA/(1+¢&*)(e—¢*), &*<eg,

L
N* = EI/(le”) / (K°(s))* ds. (3.6)
0

In the straightening phase stretching is assumed to be negligibly small such that N* is
the force exclusively required to pull out the underlying crimp. In (3.6) k° represents
the geometrical curvature of the arc-length parametrized crimped initial curve r ie,
(k%)% = ||dr®/ds?||?. The integral J; = fOL(k0 (s))? ds depends obviously on the crimp struc-
ture, although the simulations indicate that the differences are small (cf. Figure 9). Ana-
lyzing the case of a sinusoidal crimp that has been proposed in (3.3), we proceed from the
initial fiber curve °(3) = Se; + csin(Cr5)ey, 5 € [0, ] with crimped length /, crimp num-
ber C € Ny (bows per unit length) and amplitude ¢ > 0. Note that ° is not arc-length
parametrized. Assuming § = ¢cCr to be small and performing an asymptotic expansion in
8 yields Ji = 2(Cn)%le* + O(8*). Hence, N* ~ 2(Cx)*EI holds. Changes in the crimp struc-
ture might affect the real factor occurring in the force term N*. For higher regularity the
surrogate effective force model (3.6) can certainly be smoothed in ¢*. Moreover, the intro-
duction of a barrier function for negative strains might be reasonable to prevent the truss
(3.5a) from degenerating to zero length at ¢ = —1.

4 Investigation of effective nonwoven material behavior

The quality of the produced nonwoven material is assessed by certain properties, among
others, the tensile strength. An experimental tensile strength test on thermobonded non-
woven samples reveals the characteristic stress-strain relation for the material within the
measurement accuracies (cf. Figure 10). Being interested in numerical material investiga-
tions we perform virtual tensile strength tests on basis of the microstructure generated
in Section 3. For this purpose we further reduce the model complexity by applying ho-
mogenization techniques and effective material laws in the spirit of [36, 42]. In the virtual
strength tests we particularly study the influence of the model parameters.

4.1 Virtual tensile strength test
In the one-dimensional experimental tensile strength test a cuboidal material sample over
the full fabric height H is glued with the upper and lower faces onto two parallel plates.

\
\ \‘\\\‘.

Reacting force [N]

- »
Strain in %

Figure 10 Tensile strength test for thermobonded nonwoven material samples. Left: Experimental
set-up (test DIN-norm GME 60349). Right: Measured curves for stress-strain relation under the same
experimental conditions. The green region indicates the reliability zone within the measurement accuracy for
a pre-tensioning force F° and a sample size of base length/width w and fabric height H (F° = 1 [N], w = 0.1
[m], H=0.06 [m]). Photos, measurements and graphical evaluation by IDEAL Automotive.
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The plates are pulled apart in direction of the nonwoven height while the reacting tensile
force F is recorded as function of the strain €. The strain is thereby determined from the
actual sample height H as ¢ = (H — H°)/H° with the referential height H° corresponding
to a pre-tensioning force F°, see Figure 10.

The experimentally investigated sample Vg is in general too huge for direct numerical
simulations, e.g., in the considered industrial scenario the total length of contained fibers
is approximately 10 km. Since the sample is taken from the homogeneity region of the air-
lay process, it is plausible to assume that its stochastic behavior is in average periodic in
the base directions (being associated to MD and CD of the process). Thus, V¢ can be con-
sidered as assembly of # disjoint thin equal sample columns (cf. reference sample Vg, Sec-
tion 3.1), and its tensile behavior can be concluded from exclusively investigating a single
column Vg and linearly superposing the result: the tensile force to Vg equals n-times the
tensile force to Vx for given strain. To further reduce the model complexity for the virtual
strength tests we approximate the column-like reference sample Vi with the microstruc-
ture generated in Section 3 by an inhomogeneous truss model (see Figure 11). Therefore,
we determine an effective material law by means of energetic homogenization using the
Hill-Mandel-principle [36, 42]. In an inhomogeneous truss model the inner (tangential)
force N : [0, H] — R arising from an applied tensile force f obeys

d
d—N(s(s),s) =0, withN(e(H),H)=f.

s
Considering a partition of [0, H] into subintervals I; = [s;_1,s;), i = 1,...,m, with respect to
an increasing sequence of nodes {s;} along the truss, (so,s;,) = (0, H), we impose N(&(s), s) =
N;(e(s)) for s € I;. Assuming dN;/de # 0, the strains are constant &(s) = ¢; for s € I;. Hence,

Ni(Ei) =f in],-,with |Il| =hi,i=1,...,m (41)

holds according to the force balance. Regarding the sample column Vk, the truss intervals
I; are identified with representative volume elements (RVE) of height %; that reflect the
contour surface of the microstructure and the effective force models N; are concluded
from simulations of the elastic fiber net in the respective RVEs. In view of the tensile
strength tests we restrict to N; : Rj — R{, presupposing N;(0) = 0, Nj(€) — co as € — 00
and surjectivity. By this, the existence of solutions to (4.1) is ensured. If several solutions
are possible, we consider the smallest strain. Consequently, the effective tensile behavior
of the underlying huge material sample VE can then efficiently be computed for given force
F € R} from the following effective strain and height functions &%, H*f,

H®(F) — H(F°)
ef _
e°(F) = Hef(Fe)

“ F
with H*(F) = Zhigi(—),si(f) = min{argmin|N,~(e) —f] }

n +

i=1 e€Ry
Effective force modeling based on fiber net behavior and RVE treatment. The effective
force model N; (4.1) is deduced from energetic investigations of the stress-strain relations
for the ith RVE with the elastic fiber net (3.5a)-(3.5b) subjected to axial displacements -
in analogy to the procedure presented in Section 3.2. Considering the RVE of referential
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Figure 11 Reduction of sample complexity for virtual tensile strength tests. From left to right: sample Vg
in experiment, column-like sample Wy of microstructure generation that is partitioned into a sequence of
representative volume elements and approximated by an inhomogeneous truss model with effective
material law.

Figure 12 Tensile strength simulation with RVE. RVE with fiber truss
network for & = 0 (left) and & = 0.6 (right). Axes units in [10~3 m]. Trusses
are colored with respect to inner forces: no forces in blue, increasing
forces from dark/light green to deep red.

height /; (Figure 11), all fiber node points at the upper face are vertically shifted with mag-

0 4 ye,, v e ./\/'B,Mp, while the ones at the lower face are kept at the

nitude u, i.e., r’ =1
referential positions. At the lateral faces only motions on the face plane are allowed. Eval-
uating & = u/h;, Ni=)_ . N > jcew M, - € for various u € R yields then the effective
force function.

The partition and size of the RVEs are chosen with respect to two demands: the RVEs
must show the characteristics of the microstructure (non-homogeneity over height, con-
tour surface, fiber properties), while the computational effort for the simulation has to
be practically manageable. In a RVE only connected subgraphs that contain fiber node
points at both, the upper and the lower, faces contribute to the reacting force. Hence,
without altering the tensile behavior, we delete all other components from the fiber net-
work to reduce the degrees of freedom for the simulation. In addition free ends, i.e., nodes
with multiplicity 1 at which no boundary conditions are imposed, have no impact and are
deleted. Serial subgraphs, where elements are connected by nodes with multiplicity 2 at
which no boundary conditions are imposed, might give rise to singularities in the numer-
ics and may therefore be interpreted as a single edge with an adapted material law. For a

visualization of a RVE under increasing tensile force we refer to Figure 12.

4.2 Stress-strain results

In the experimental tensile strength test with fixed sample size and pre-tensioning force
the measured stress-strain curves for the thermobonded nonwoven material samples
show a large volatility, in particular for increasing strains ¢ > 0.2. This observation is ex-
emplified by three (measured) curves in Figure 13 that correspond to the reliability zone
within the measurement accuracy (cf. Figure 10). The simulated stress-strain relations -
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Figure 13 Stress-strain results for Vg. Results 10f e T W 7 /
provided by measurements (black lines, cf. green i / / M
region in Figure 10) and by simulations for varying =5 / I 1/ v s
model parameters: RVE height h; [1073 m], net 3 '/ / ////// ///
stiffness & [N/m?] and contact threshold a [106 ml. g i ///// >
Here: h; = 10,15 (blue, red lines); & = 107,10°°,10°  § , iy ////// =
(dashed, thick solid, thin solid lines); a=7.5,7,6.5 ,{7,/////// -
(higher a implies steeper slope of curves). gy
0 5 10 15 20
strain [%]

that are computed on basis of our established process model chain - match the experimen-
tal ones in principle. But the simulation results are obviously affected by the model param-
eters for the fiber net, as variations of the topological contact threshold a (3.4), material
stiffness & (3.5a)-(3.5b) and RVE height 4; for the vertical non-homogeneity (4.1) show, see
Figure 13. As already discussed, the introduction of the parameter /; is due to numerical
reasons. Its choice has to ensure the representative character of the RVE and can be de-
termined by several simulation runs. In the industrial scenario at hand, #; ~1.5-1072 [m]
yields reasonable results by trend. Investigating the impact of the other two parameters,
the study of the contact threshold a reveals a robust tensile behavior whereas changes
of the net stiffness o are very sensitive. A larger contact threshold & causes an increas-
ing number of adhesive joints and hence a more connected net topology. This implies a
stiffer material behavior which is seen in slightly steeper stress-strain curves. However,
this effect is mainly restricted to small strains, the further behavior (shape) of the curves
is unchanged. In the airlay process the contact threshold of the net is related to the post-
processing step of thermobonding. Depending on process parameters, such as adhesive
properties of the used fiber material, temperature and duration of the thermobonding,
the threshold a could be calibrated from experimental data. In contrast to a, the link be-
tween the model parameter @ and the process parameters is not evident at all. From the
mathematical point of view « is a relaxation parameter that ensures the uniqueness of the
truss network solution. It might be interpreted in the context of net stiffness due to fibers’
entanglement, but the explanation is vague. We observe that changing « strongly affects
not only the slope but also the curvature of the stress-strain curves. Note that in a classi-
cal truss network model & = 0 holds true. At this point of the simulation study, @ ~ 107>
[N/m?] turns out to give an effective material behavior of the specific nonwoven sample
which is comparable to the measurements. However, to get a general understanding of « in
view of the airlay process parameters a sensitivity analysis in combination with a broader
experimental study is necessary. At last, the simulated stress-strain curves indicate gen-
erally a stiffer material behavior for higher strains than the measured curves. The reason
might be that the net topology, in particular the adhesive joints, is kept in the simulation -
even under large tensile forces, whereas the fiber web rips and undergoes plastic changes
in the experiment. This discrepancy might be overcome by introducing an additional pa-
rameter, a damage threshold, in the elastic net model. Its calibration requires certainly
information about the nature of the adhesive joints and hence a deeper investigation of

the post-processing step of thermobonding.

5 Conclusion and outlook
In this paper, we established a consistent, efficiently evaluable chain of mathematical mod-
els that enabled the simulation of the airlay process and the investigation of the resulting
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material properties by virtual tensile strength tests. For the long-term industrial objective,
the simulation-based process design towards the prediction and improvement of product
properties, the mathematical mapping between the parameters of process and material is
essential. We gave a proof of concept and showed the feasibility of a future optimization
by applying our model chain to an industrial set-up. Proceeding from an airlay process
simulation with a highly turbulent dilute fiber suspension flow, we used the process pa-
rameters (including fiber properties) and the numerically obtained deposition results to
set up the stochastic surrogate model for the microstructure generation. Thereby, certain
topological web parameters that characterize anisotropy, adhesive joints and height of the
microstructure have to be identified from computer tomography data and calibrated by
experiments (thermobonding effects). So far, the evaluation of the fiber distribution in
height direction lacks from the image analysis of the computer tomography scans, but re-
spective research work is in progress. The effective nonwoven material laws were deduced
from the underlying fiber properties and simulation runs using energetic homogenization
techniques. In the tensile strength tests the simulated and measured material behaviors
match well for small strains but deviate for higher strains. This discrepancy might be due
to plastic changes (rupture) that are not handled in the present elastic fiber net model.
The break-up of adhesive joints could be certainly included but requires a deeper insight
in the mechanism of thermobonding that was not analyzed in this paper.

At this point of research, however, we still face a difficulty: the model chain contains
one parameter that was introduced for mathematical reasons, i.e., well-posedness of the
elastic fiber net model, but turned out to strongly influence the tensile behavior. To gain
understanding of its dependencies on the process parameters which will be necessary for
future optimization issues, a sensitivity analysis in combination with a broader experi-
mental study might be helpful.
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Endnotes

a Www.ansys.com.

b ywwwitwrm fraunhoferde. FIDYST is a software tool for fiber dynamics simulations, developed by the Fraunhofer

ITWM, Germany. For details on the applicability spectrum, interfaces and algorithms we refer to [2]. We sketch here
briefly the underlying relevant numerical schemes.
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€ www.mavi-3d.de. MAVI (Modular algorithms for volume images) is a Fraunhofer software for image processing,

analysis and visualization, for details we refer to [43, 44].
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