
Yoshioka and Yaegashi Journal of Mathematics in Industry  (2017) 7:8 
DOI 10.1186/s13362-017-0038-8

R E S E A R C H Open Access

Stochastic optimization model of
aquacultured fish for sale and ecological
education
Hidekazu Yoshioka1* and Yuta Yaegashi2

*Correspondence:
yoshih@life.shimane-u.ac.jp
1Faculty of Life and Environmental
Science, Shimane University,
Nishikawatsu-cho 1060, Matsue,
Shimane 690-8504, Japan
Full list of author information is
available at the end of the article

Abstract
A stochastic optimization model for management of aquacultured fish for sale and
ecological education is established. Population dynamics of the fish is described with
a system of stochastic differential equations assuming that they are stochastically
harvested after an opening time: the variable to be optimized. A remarkable
difference between the present and conventional models for the aquaculture is that
the former considers the harvesting for ecological education, which is a key for
current inland fishery especially in Japan. Finding the cost-effective optimal opening
time effectively reduces to solving an algebraic equation. Mathematical analysis on
the optimal opening time clearly reveals its unique existence and qualitative behavior,
such as its dependence on the model parameters, which have practical implications.
A demonstrative application example of the model is also presented focusing on an
aquaculture of Plecoglossus altivelis in Japan.
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1 Introduction
Aquaculture is one of the most profitable fisheries sectors that conventionally farms, har-
vests, and sells fishery resources []. Cost-effective and sustainable management strategies
for aquaculture have been studied from both scientific and engineering viewpoints. Clarke
et al. [] reviewed fish vaccine development using plant genetic engineering techniques
for sustainable aquaculture. Mazid et al. [] investigated cost-effective feeding strategy for
aquacultured fish using locally available ingredients.

Population dynamics models can efficiently simulate behavior and dynamics of aquatic
organisms [–]. For modeling the dynamics related to aquaculture, stochastic models
turned out to be able to compute cost-effective, environmentally- and/or ecologically-
sound management strategies of fishery resources under a variety of conditions [–].
Stochastic differential equations (SDEs) [] have served as one of the most important
tools for optimization problems in aquaculture because of their power to effectively han-
dle population dynamics subject to uncertainties. Nøstbakken [] numerically computed
optimal management rules of aquaculture systems subject to regime-switching stochastic
stocks and prices of farmed fishes. Reed and Clarke [] derived optimal harvesting and
pricing rules for aquacultured fishes with the stochastic and size-dependent growth rate.
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León-Santana et al. [] analytically derived formulae to achieve environmentally-sound
aquaculture based on linear SDEs.

Inland fishery resources, many of which are aquacultured, have long been of central im-
portance as food sources of humans [, ]. Currently, establishment of adequate manage-
ment policies for aquacultured fishes is an urgent issue for inland Fisheries Cooperatives
(FCs) because of their severe financial and operational difficulties, which are considered
due to decrease of the fish catches and aging of officers. Recently, the authors proposed de-
terministic [] and stochastic [] optimization models to achieve cost-effective manage-
ment of artificial aquaculture systems (pools). Their models can find the optimal opening
(stopping) time [], which gives the most cost-effective management strategy of aquacul-
tured fishes. The models, however, lack one important factor in the aquaculture of inland
fishery resources that some FCs have to manage harvesting not for sale. The most impor-
tant purpose of the harvesting not for sale is the ecological education [, ]. Actually,
each FC in Japan has a duty of ecological and environmental conservation and education
around the river where it authorizes []. Some FCs in Japan harvest aquacultured fishes
for the exchange meetings of ecological education where local residents and their children
learn about and enjoy ecology and environment of neighboring rivers []. For example,
the harvested fishes are used for catching competition of the fishes by the children of local
residents in exchange meetings (Figure ). Through the ecological education, FCs teach
about the fishes they farm and aquatic organisms living in their river. Throughout com-
munications between the authors and an FC in Japan during -, we found that
the effect of ecological education should be considered in optimization models of aqua-
cultured fishes of FCs in Japan, in which fishes are harvested for both sale and ecological
education. Furthermore, we also found that FCs consider that the ecological education can
be a critical factor to continue inland fishery sustainably. However, to the authors’ knowl-
edge, such mathematical modelling of an aquaculture considering the harvesting not for
sale, despite its importance, has not been carried out so far. This is the strong motivation
for writing this paper.

The purpose of this paper is to develop a new, tractable stochastic process model for
aquaculture considering the harvesting not for sale, which can be utilized for decision-
making of the cost-effective and ecologically conscious aquaculture. Stochastic popula-
tion dynamics in an artificial aquaculture system is described with a system of SDEs that
govern the total number of the population and its representative weight. The opening time
of harvesting is set as the variable to be optimized. The decision-maker in our optimiza-
tion problem is the manager of an FC. The opening time is optimized by the manager so

Figure 1 A catching competition of
aquacultured P. altivelis by children of local
residents. This competition was held in an
exchange meeting for ecological education
between HRFC and local residents in 2016. This
photograph was taken by the first author.
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that the performance index, which is a net profit by the aquaculture, is maximized. The
main difference between the present and conventional models [, –] is that fishes
are harvested not only for sale but also for ecological education to local residents. This
effect is incorporated into both the population dynamics model and the performance in-
dex. Mathematical analysis on the optimal opening time is carried out and its results are
verified with numerical computation focusing on Plecoglossus altivelis, which is one of the
most important inland fishery resources in Japan, managed by Hii River Fisheries Cooper-
ative (HRFC). This paper is the first attempt to model aquaculture considering harvesting
for ecological education.

The rest of the paper is organized as follows. Section  presents the mathematical model
for cost-effective management of aquacultured fishes without reproduction. Section 
presents mathematical analysis results on the model. Section  performs numerical com-
putation to verify the mathematical analysis results with an application to Plecoglossus al-
tivelis (Ayu), which is an important inland fishery resource in Japan. Section  concludes
this paper and presents future perspectives of our research.

2 Methods: mathematical model
The population dynamics model in this paper is not significantly different from the con-
ventional ones [] except for that it is driven by Poisson noises. On the other hand, the
performance index to be maximized, which has a term on profit by harvesting the fish for
ecological education, distinguishes the present model from the conventional ones. Here-
after, a ∧ b for a, b ∈R represents the smaller value between a and b.

2.1 Governing equations
The time is denoted as t ∈ [, T] where t = , T are the initial and terminal times of an
aquaculture, respectively. The fish is introduced into the system only at t = . The pop-
ulation dynamics in an artificial aquaculture system is reasonably considered to be non-
renewable []. The dynamics is described with the representative (average) weight of in-
dividuals Wt ≥  and the total number of individuals Nt ≥ . The governing equations
of Wt and Nt are assumed to be independent with each other. This is a reasonable as-
sumption for realistic aquaculture system operated by well-experienced managers with a
controlled, sufficiently large pool. The representative weight Wt monotonically increases
throughout the period. On the other hand, the total number of individuals Nt monotoni-
cally decreases at the same time. All the stochastic integrals in what follow are defined in
the Itô’s sense [].

There is an opening time τ ∈ [, T] of harvesting after which the population is har-
vested for sale and for exchange meetings for ecological education between FCs and local
residents. The exchange meetings are hosted by FCs for ecological education, so that the
residents can learn about their fishes and the contents of their works. At each exchange
meeting, several hundred individuals of the aquacultured fishes are used for the catch-
ing competition by children of local residents: the main event of the meeting (Figure ).
In addition, several lectures on ecology and biology of aquatic organisms including fishes
living in and around rivers, lakes, the seas, and in the aquaculture system are held at each
meeting. Selling events during [τ , T) is modelled with a Poisson process P()

t with the in-
tensity λ() > . The total number of potentially harvested individuals for sale, the demand,
at the time t follows a non-negative continuous-time stationary Markov process c()

t . The
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exchange meetings are held during [τ , T), which is also modelled as a Poisson process P()
t

with the intensity λ() > . The total number of potentially harvested individuals for eco-
logical education at the time t follows a non-negative continuous-time stationary Markov
process c()

t . Scheduled date and time of each exchange meeting are usually determined
before t = , but they are possibly held on different date and time due mainly to climate
stochasticity. The mean values of c()

t and c()
t are assumed to exist and are denoted as

C() >  and C() > , respectively. The stochastic processes P()
t , P()

t , c()
t , and c()

t are as-
sumed to be independent with each other. The stochastic population dynamics is consid-
ered under usual filtration generated by the processes P()

t , P()
t , c()

t , and c()
t as in the con-

ventional stochastic process models. Mathematical properties and applications of Poisson
processes are presented in Ross [].

The initial conditions of Wt and Nt at the time t =  are assumed to be given as non-
negative numbers. The governing equation of Wt is given by

dWt

dt
= Wtg(Wt), t >  ()

with the growth rate g . This paper assumes the constant g = r >  or the generalized Ver-
hulst model (theta-logistic model) given as []

g(w) = r
(

 –
(

w
K

)θ)
, w ≥  ()

with the intrinsic growth rate r > , the maximum body weight K > , and the nonlinearity
parameter θ > . This model is more realistic than that with g = r since the latter gives un-
bounded exponential growth. Setting θ =  in () yields the conventional Verhulst model.
Behavior of solutions to the generalized Verhulst model and its related models has been
investigated in detail [, ].

Denote the natural mortality rate of the fish as R. The governing equation of Nt is given
by the SDE

dNt = –RNt dt – χ{t≥τ }
∑

n=

c(n)
t dP(n)

t , t > , ()

which is explicitly solved with stochastic integrals (Chapter  of []) as

Nt =

⎧⎨
⎩

N exp(–Rt) ( ≤ t < τ ),

N exp(–Rt) –
∑

n=
∫ t
τ

exp(–R(t – s))c(n)
t dP(n)

t (τ ≤ t ≤ T),
()

where χ{t≥τ } is the indicator function such that χ{t≥τ } =  for t ≥ τ and χ{t≥τ } =  otherwise.
Hereafter, E[·] represents expectation. The mean E[Nt] is calculated as

E[Nt] =

⎧⎨
⎩

N exp(–Rt) ( ≤ t < τ ),

exp(–R(t – τ ))[N exp(–Rτ ) – B(exp(R(t – τ )) – )] (τ ≤ t ≤ T)
()

with B = R–(C()λ() + C()λ()).
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2.2 Performance index
The performance index that quantifies optimality of each management strategy is es-
tablished from the viewpoint of the manager of an FC as the decision-maker. The per-
formance index consists of (statistically) known variables and parameters so that the
decision-maker can choose a strategy before they start an aquaculture. We then assume
that the decision-maker can predict the (mean) extinction time Tex of E[Nt]:

Tex = inf
{

t|E[Nt] = , t ≥ 
}

. ()

This assumption is natural under the situation where the decision-maker can empirically
predict laws of the stochastic processes P()

t , P()
t , c()

t , and c()
t , but not their paths. It is then

reasonable to give the performance index, which is net benefit of the FC by the aquacul-
ture, as an expectation of a functional of stochastic processes. The present performance
index assumes a situation where the population is stochastically harvested with fluctuating
demands.

The present performance index is formulated as an extended, stochastic counterpart of
that in Yoshioka and Yaegashi []:

Jτ = E
[∫ T∧Tex

τ

α()c()
t Wt dP()

t +
∫ T∧Tex

τ

α()c()
t Wt dP()

t –
∫ T∧Tex


βpNtWt dt

]
, ()

where α(), α(), and β are positive weight parameters a priori determined by the manager,
and p is the cost of farming the fish per unit time. As presented in (), the performance
index consists of the three terms. The first term is the profit by selling the fish during the
period [τ , T]. The second term is the profit by providing the fish for exchange meetings
for ecological education during the period [τ , T]. The second term is possibly difficult to
financially evaluate. This term indirectly represents the profit by the exchange meetings.
Officers of HRFC consider that harvesting the aquacultured fish for ecological education
can indirectly lead to conservation of environment and ecology of rivers by local residents,
which consequently becomes beneficial for the FC. Finally, the third term is the cost of
farming the fish during the whole period [, T], which involves feeding cost of the fish
and cleaning cost of their excrements in the pool, both of which would be larger for larger
total biomass NtWt . As described above, Jτ is not purely monetary one whose weights
involve the attitude of the decision-maker. Importance of each term can be modulated by
the decision-maker based on his/her consideration that which term is of importance for
the FC. Therefore, different FCs would have different values of the weight parameters.

Since Jτ is a function of the opening time τ ∈ [, T], and it is continuous with respect to
τ , there exists at least one maximizer τ = τ ∗ of Jτ such that

τ ∗ = arg max
τ∈[,T∧Tex]

Jτ . ()

Remark . In practice, the orders of λ() and λ() are significantly different. As an ex-
ample of P. altivelis farmed by HRFC during , the exchange meetings for ecological
education were held at most several times in each month. During the same year, the aqua-
cultured fishes were sold almost every day. Therefore, we infer that λ() = O() (/day)
to O() (/day) and λ() = O(–) (/day) to O(–) (/day). We also infer C() = O()
to O() and C() = O() to O() based on interviews from HRFC during .
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3 Mathematical analysis
Mathematical analysis on existence and uniqueness of the optimal opening time τ ∗ is car-
ried out. A primitive stochastic process model is also analyzed in this section. Practical
implications of the mathematical analysis results are presented as well, which are verified
numerically in the next section.

3.1 Primitive model
Theoretical behavior of a primitive population dynamics model is briefly studied in order
to get insights on the behavior of the presented model. Let k be a fixed natural number.
Let P(n)

t (n = , , . . . , k) be independent Poisson processes with the intensities of λ(n) > .
The amplitude of P(n)

t is modulated by the stationary and continuous-time non-negative
stochastic process c(n)

t having the mean value C(n). The processes P(n)
t and c(n)

t are assumed
to be independent with each other. Consider the primitive model that governs a stochastic
process Mt :

dMt = –RMt dt –
k∑

n=

c(n)
t dP(n)

t , t > . ()

The SDE is subject to the initial condition M at the initial time t = .
The SDE () can be solved as

Mt = M exp(–Rt) –
∫ t


exp

(
–R(t – s)

) k∑
n=

c(n)
s dP(n)

s , t > . ()

Since P(n)
s and c(n)

s are independent, the mean E[Mt] is calculated as

E[Mt] = M exp(–Rt) – E

[∫ t


exp

(
–R(t – s)

) k∑
n=

c(n)
s dP(n)

s

]

= M exp(–Rt) –
∫ t


exp

(
–R(t – s)

) k∑
n=

E
[
c(n)

s
]
λ(n) ds

= exp(–Rt)
[
M – A

(
exp(Rt) – 

)]
, t > , ()

with

A =
k∑

n=

C(n)λ(n). ()

The extinction time Tex, of Mt is defined as

Tex, = inf
{

t|E[Mt] = , t ≥ 
}

, ()

which is exactly calculated as follows by (). The extinction time Tex, is calculated as

Tex, =

R

ln

(
 +

M

A

)
=


R

ln

(
 + M

( k∑
n=

C(n)λ(n)

)–)
. ()
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Remark . The variance of the process Mt is explicitly expressed for some c(n)
t , although

it has less simpler expression than that of the mean value (). Assume that each c(n)
t follows

a Cox-Ingersoll-Ross (CIR) model []

dc(n)
t = a(n)(C(n) – c(n)

t
)

dt + σ (n)
√

c(n)
t dB(n)

t , t > , ()

subject to the initial condition c(n)
 = C(n) where a(n) >  and σ (n) ≥ , and B(n)

t (n =
, , . . . , k) are standard -D Brownian motions independent with each other. For a pos-
itive initial condition, the process is strictly positive if []

√
a(n)C(n) > σ (n), ()

which is assumed throughout this paper. The CIR model is a minimal model that has a
stationary distribution with exact mean and variance [, ]. Assume that the process
c(n)

t satisfies c(n)
 = C(n). Then, the mean and variance of c(n)

t for t >  are E[c(n)
t ] = C(n) and

Var[c(n)
t ] = C(n)(σ (n))

a(n) , respectively. Actually, c(n)
 = C(n) is a possible candidate of the initial

condition, but may not be realized in practice. For the sake of simplicity of mathemati-
cal analysis, the mean value of the process c(n)

t , which is weak stationary and has a finite
invariant measure, can be approximated by C(n). A similar treatment is applied to the vari-
ance of c(n)

t . This approximation does not significantly affect the numerical analysis results
presented later because of the condition a(n)T �  where the influences of the initial con-
dition rapidly decay. By (), the variance Var[c(n)

t ] is bounded from above as

Var
[
c(n)

t
]

=
C(n)(σ (n))

a(n) <
(
C(n)) =

(
E
[
c(n)

t
]). ()

The variance of the process Mt is then exactly calculated with the help of the isometry
formula for Poisson processes (Chapter  of []). The exact expression of the variance
of Mt is presented in Appendix , which is utilized in Section .

3.2 Existence and uniqueness of optimal opening time
Existence of the optimal opening time τ ∗, which is a maximizer of the performance index
Jτ , is mathematically analyzed. Several auxiliary results for analyzing τ ∗ are firstly pre-
sented. By (), the extinction time Tex = Tex(τ ) for Nt is given as follows. The extinction
time Tex = Tex(τ ) for Nt is

Tex = τ +

R

ln

(
 +

Nτ

B

)
= τ +


R

ln

(
 +

N exp(–Rτ )
B

)
. ()

A straightforward calculation shows that the first- and second-order derivatives of Tex =
Tex(τ ) with respect to τ are

dTex

dτ
=

B
B + N exp(–Rτ )

,  <
dTex

dτ
<  ()

and

dTex

dτ  = R
dTex

dτ

(
 –

dTex

dτ

)
=

BRN exp(–Rτ )
[B + N exp(–Rτ )] > , ()
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respectively. Therefore, Tex is convex and increasing with respect to τ . Equation () leads
to Tex(τ ) ≥ Tex() for τ ≥ , showing that Tex(τ ) ≥ T for τ ≥  if Tex() ≥ T . Therefore,
Tex ≥ T if

N ≥ B
(
exp(RT) – 

)
. ()

The inequality () means that there are remaining individuals at the terminal time T
when sufficiently large number of the individuals are introduced into the system.

It is shown below that behavior of the optimal opening time τ ∗ is qualitatively different
between the exclusive cases Tex ≥ T and Tex < T . In both cases, the performance index Jτ
can be rewritten as

Jτ =
∫ T∧Tex

τ

λ()α()C()Wt dt +
∫ T∧Tex

τ

λ()α()C()Wt dt

–
∫ T∧Tex


βpE[Nt]Wt dt

= Ã
∫ T∧Tex

τ

Wt dt – βp
∫ T∧Tex


E[Nt]Wt dt ()

with Ã = λ()α()C() + λ()α()C(). The first-order of partial derivative of Jτ with respect to
τ is calculated as (Appendix )

dJτ
dτ

= –
[

ÃWτ + βpBR
∫ T

τ

exp
(
–R(t – τ )

)
Wt dt

]
<  ()

for Tex ≥ T . dJτ
dτ

is calculated as

dJτ
dτ

= Ã(Fτ – ηGτ ) ()

for Tex < T . Here,

Fτ =
dTex

dτ
WTex – Wτ ()

and

Gτ =
∫ Tex

τ

exp
(
–R(t – τ )

)
Wt dt ()

with η = βpBR
Ã

.
The equation () immediately gives the following proposition since Jτ is monotonically

decreasing with respect to τ when Tex ≥ T . Define the critical opening time τex as

τex = inf
{
τ ≥ |Tex(τ ) ≥ T

}
. ()

The critical opening time τex is the unique positive solution to

T = Tex(τex) = τex +

R

ln

(
 +

N exp(–Rτex)
B

)
()
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when the condition () does not hold, which certainly exists by () and (). In addition,
 < τex < T . On the other hand, τex =  if (). From a mathematical viewpoint, it is impor-
tant to remark that τ ∗ ≤ τex when Tex ≥ T , J ∈ C([, T ∧Tex])∩C(, τex)∩C(τex, T ∧Tex),
τ ∗ =  when (). The condition τ ∗ ≤ τex when Tex ≥ T shows that it is optimal to set τ ∗ = 
if N is too large. Although this is theoretically optimal for such a case, it has not been em-
ployed in conventional aquacultures. Therefore, this strategy is not reasonable from the
viewpoint of managing fishery resources. We thus assume that the condition () is not
satisfied in what follows. The mathematical analysis below focus on the case Tex < T . The
possible range of τ ∗ is then [, τex]. In the above-mentioned sense, τex is an upper bound
of τ ∗.

A sufficient condition for τ ∗ > , which is consistent with the actual strategies for manag-
ing aquaculture systems by FCs, is presented below. Practical implications of the condition
are presented as well.

Proposition . τ ∗ >  if

dTex()
dτ

WTex() – W > η

∫ Tex()


exp(–Rt)Wt dt. ()

Proof τ ∗ >  if dJτ
dτ

|τ= >  since Jτ is continuously differentiable with respect to τ ≥ .
Substituting () and () into dJτ

dτ
|τ= >  leads to () since Ã > . �

Based on Proposition ., the conditions to guarantee τ ∗ >  for several growth models
are derived.

Proposition . For g = r (= const) > , the condition () is satisfied for sufficiently large
r and η–.

Proof The condition () is satisfied if its left-hand side is positive and η is sufficiently
small. The latter is always possible because the parameters p, β , α(), and α() involved in
η do not appear in the left-hand side of (). Actually, choosing sufficiently small pβ or
sufficiently large Ã = λ()α()C() + λ()α()C() can achieve arbitrary small and positive η.

Since Wt = W exp(rt) in the present case, the left-hand side of () becomes

dTex()
dτ

WTex() – W =
B

B + N
WTex() – W =

[(
 +

N

B

) r
R –

– 
]

W. ()

The right-hand side of () becomes

η

∫ Tex()


exp(–Rt)Wt dt =

ηW

r – R
(
 – exp

(
–RTex()

))
<

ηW

r – R
()

if r > R. The condition () is thus satisfied if

(
 +

N

B

) r
R –

>
ηW

r – R
, ()

which holds true for sufficiently large r and η–, which completes the proof. �
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Proposition . then leads to the following theorem for the generalized Verhulst model:

Wt =
(

K θ

(K θ W –θ
 – ) exp(–rθ t) + 

) 
θ

, ()

which behaves for sufficiently small WK– as

Wt ∼ K

(K θ W –θ
 – )


θ

exp(rt). ()

Theorem . For the generalized Verhulst model, the condition () is satisfied for suffi-
ciently large r and sufficiently small WK– and η.

Proof Following the proof of Proposition ., to prove the proposition, it is sufficient to
show that the left-hand side of () can be made positive for sufficiently large r and suffi-
ciently small KW –

 . By () and (), the left-hand side of () is evaluated as

dTex()
dτ

WTex() – W ∼ K

(K θ W –θ
 – )


θ

[(
 +

N

B

) r
R –

– 
]

. ()

On the other hand, the right-hand side of () is evaluated as

η

∫ Tex()


exp(–Rt)Wt dt <

ηK
R

(
 – exp

(
–RTex()

))
<

ηK
R

. ()

Therefore, the condition () is satisfied if

η

R
<



(K θ W –θ
 – )


θ

[(
 +

N

B

) r
R –

– 
]

, ()

which holds true for sufficiently large r and sufficiently small WK– and η. �

Remark . Proposition . and Theorem . show that the optimal opening time τ ∗ is
positive, which is in accordance with the reality, if the aquacultured fishes grow sufficiently
fast and large and the demand of harvesting them is sufficiently large. A practical implica-
tion of the analysis results on management of aquacultured fish is that the decision-maker
should carefully observe their growth. Similar results have been theoretically derived in
Yoshioka and Yaegashi [] using a different population dynamics model based on an op-
timization approach. This fact implies that there exists an underlying universal principle
for cost-effective management of aquacultured fish harvested at a certain rate after an
opening time.

Uniqueness results of τ ∗ for small p are finally presented in this sub-section. Key propo-
sitions for the case p = , which seem to be not reasonable from a practical viewpoint
but actually serve as the basis for dealing with the case with sufficiently small p > , are
presented below.

Proposition . For p = , g = r (= const) >  and r 
= R, τ ∗ ∈ [, τex] exists uniquely.
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Proof By () and η = ,

dJτ
dτ

= ÃFτ = Ã
(

dTex

dτ
WTex – Wτ

)
,  ≤ τ < τex. ()

By () and (), () is rewritten as

dJτ
dτ

= ÃW
dTex

dτ

[
exp

(
(r – R)(Tex – τ )

)
– 

]
exp

(
(r – R)τ

)
,  ≤ τ < τex, ()

showing

sgn

{
dJτ
dτ

}
= sgn{r – R}. ()

Therefore, by (), τ ∗ is determined uniquely as

τ ∗ =

⎧⎨
⎩

 (r < R),

τex (r > R).
()

�

Proposition . Assume p = , g is given by the generalized Verhulst model () with r > R
and θ ≥ . Then, τ ∗ ∈ [, τex] exists uniquely.

Proof In this case, η =  as in Proposition . and

dJτ
dτ

= Ã
dTex

dτ
exp

(
(r – R)Tex

)[
WTex exp(–RTex) – Wτ exp(–Rτ )

]
,  ≤ τ < τex ()

by () and (). In addition,

dJτ
dτ  <  ()

when τ = τ ∗ ∈ (, τex) exists (Proposition A. in Appendix ). Therefore, Jτ does not have
local minimum in (, τex). This follows that τ ∗ ∈ [, τex] is determined uniquely with the
help of the classical intermediate value theorem as

τ ∗ =

⎧⎪⎪⎨
⎪⎪⎩

 (if F ≤ ),

τ̃ (if F > , Fτex < ),

τex (if F > , Fτex ≥ ),

()

where τ̃ is the unique solution of Fτ = . �

Now, an application of the classical implicit function theorem with the smoothness of
Fτ – ηGτ with respect to τ and p immediately shows the following unique existence theo-
rem of τ ∗ ∈ (, τex) such that dJτ

dτ
for small p > .

Theorem . Assume (). Then, under the assumption of Proposition . where ‘p = ’ is
replaced by ‘sufficiently small p > ’ , τ ∗ ∈ (, τex) exists uniquely.
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Theorem ., although it can effectively characterize τ ∗ ∈ (, τex), is possibly not sharp
as the numerical computation results demonstrate later.

3.3 Comparative statics of the critical and optimal opening times
Comparative statics of the critical opening time τex and the optimal opening time τ ∗ such
that  < τ ∗ < τex, namely their dependences on model parameters, is carried out. The com-
parative statics of τex is firstly carried out. A straightforward calculation shows the follow-
ing proposition.

Proposition . The critical opening time τex satisfies

∂τex

∂R
=


RB

(T – τex)
[
B + N exp(–Rτex)

]
+

Nτex

RB
exp(–Rτex) > , ()

∂τex

∂N
= –


RB

exp(–Rτex) < , ()

∂τex

∂C(n) =
Nλ

(n)

RB exp(–Rτex) >  (n = , ), ()

and

∂τex

∂λ(n) =
NC(n)

RB exp(–Rτex) >  (n = , ). ()

Proof Partially differentiating both-hand sides of the governing equation of τex, which is

T = τex +

R

ln

(
 +

N exp(–Rτex)
B

)
, ()

with respect to R leads to

 =
∂τex

∂R
–


R ln

(
 +

N exp(–Rτex)
B

)
+


R

∂

∂R
n
(

 +
N exp(–Rτex)

B

)

=
∂τex

∂R
–


R

(T – τex) +

R

N
∂
∂R exp(–Rτex)

B + N exp(–Rτex)

=
B

B + N exp(–Rτex)
∂τex

∂R
–


R

(T – τex) –

R

Nτex exp(–Rτex)
B + N exp(–Rτex)

, ()

which is () since  < τex < T . Other inequalities are derived in a similar way. �

Proposition . indicates that the critical opening time τex increases as the natural mor-
tality rate of the fish R, the mean harvesting rates C(n), or the intensities λ(n). On the other
hand, τex decreases as the initial total number of individuals N increases. The results thus
indicate that the critical opening time τex, which is interpreted as an upper bound of the
optimal opening time τ ∗, is larger (smaller) for relatively sparse (abundant) population in
the aquaculture system.

Secondly, comparative statics of τ ∗ is carried out. Let u be one of the parameters p, β ,
α(), or α(). Assume the interior solution τ ∗ ∈ (, τex). This τ ∗ solves

Fτ∗ – ηGτ∗ = . ()
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In addition, assuming τ ∗ is an optimizer that gives a strict maximum of Jτ yields the
second-order condition of optimality

dJτ
dτ  =

d(Fτ – ηGτ )
dτ

∣∣∣∣
τ=τ∗

< . ()

The following propositions reveal dependence of the above-mentioned τ ∗.

Proposition . Assume τ ∗ ∈ (, τex). Then, τ ∗ satisfies

∂τ ∗

∂u
=

∂η

∂u

(
dJτ
dτ 

∣∣∣∣
τ=τ∗

)–

Gτ∗ . ()

Proof Partially differentiating both-hand sides of () with respect to u yields

 =
∂

∂u
(Fτ∗ – ηGτ∗ )

=
∂τ ∗

∂u
d(Fτ∗ – ηGτ∗ )

dτ

∣∣∣∣
τ=τ∗

–
∂η

∂u
Gτ∗

=
∂τ ∗

∂u
dJτ
dτ 

∣∣∣∣
τ=τ∗

–
∂η

∂u
Gτ∗ , ()

which is (). �

Proposition . leads to the following theorem.

Theorem . Assume τ ∗ ∈ (, τex). Then, τ ∗ satisfies

∂τ ∗

∂p
< ,

∂τ ∗

∂β
< , and

∂τ ∗

∂α(n) >  (n = , ). ()

Proof Substituting η = βpBR
Ã

and () into () with the positivity of Gτ leads to (). �

Theorem . has significant practical implications to management of aquacultured fish.
Larger p or β gives smaller optimal opening time τ ∗, meaning that increasing the cost
of farming the fishes makes the manager harvest them earlier. This is a consequence of
the fact that the cost by farming, which is mainly for feeding the fishes and for cleaning
up their excrements decreases as the total number of individuals decreases. On the other
hand, larger α() or α() gives larger optimal opening time τ ∗. This implies that increasing
the profit by harvesting the fishes, for sale and for exchange meetings for ecological educa-
tion, makes the manager harvest them later. The aquacultured fishes are used for catching
competition by children of local residents, and utility of the children can be larger with
better-grown fishes since they can eat the caught fishes after the competition. Therefore,
the dependence of τ ∗ on the parameters α() or α() is considered to be consistent with the
reality. It should be noted that similar comparative statics results have been obtained in
the deterministic optimization model for aquacultured fish [].
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3.4 Analogy with a model for managing non-renewable released fish
This sub-section shows an analogy between the present model for managing aquacultured
fish and that for released fish, P. altivelis in particular. The fish has been the major inland
fishery resource in Japan for recreational and fishery purposes. P. altivelis is an endemic
fish in Japan and has an annual life history, which is reviewed in detail in the literature and
the references therein [–]. In Japan, in each spring, FCs release juvenile P. altivelis
into the rivers that they authorize. Harvesting the fish starts at the coming summer. The
harvesting period is closed at the end of the autumn, on which the fishes spawn. The im-
portant point is that the released fish is often non-renewable possibly due to genetic and
environmental reasons [].

As a simple model we can hypothesize that the population dynamics of released P. al-
tivelis in a river follows the SDEs () and () where the parameters and variables have dif-
ferent meanings. Under this setting, R is the mortality rate of the fish by natural death and
predation from waterfowls such as Phalacrocorax carbo []. The stochastic processes P()

t

and P()
t represent the events of harvesting the fish for recreational and fishery purposes,

respectively. We assume that the FC wants to choose the opening time of harvesting so
that a performance index with the form () is maximized. The parameter p in this case
represents the cost of exterminating the predators; the parameters R and p may be de-
pendent with each other. The weight parameters β , α(), and α() depend on the attitude
of the decision-maker as in the presented model for aquaculture. The above discussion
implies that the present framework of mathematical modeling can be used not only for
aquacultured fishes but also for some of the non-renewable released fishes.

4 Results and discussion
The present optimization model is applied to a demonstrative numerical computation of
management of aquacultured P. altivelis.

4.1 P. altivelis and HRFC
In each year, farming juveniles of P. altivelis in an aquaculture system in Japan starts in
spring (early to middle May) and they mature in summer around which harvesting opens
(beginning of July). The harvesting ends in the coming autumn (late August to early Oc-
tober). HRFC in Shimane Prefecture, Japan farms P. altivelis from May to October in each
year. Recently, officers of HRFC measured mean body weight of the individuals in the
aquaculture system to track their growth. Both feeding the fish and cleaning up the pool
are constantly carried out by the officers. According to the officers of HRFC, aquaculture
of P. altivelis is one of the most indispensable sources of its income. They are trying to find
cost-effective and ecologically sound management strategy of harvesting aquacultured P.
altivelis.

4.2 Parameter identification
The previous research [, ] implied that the growth of P. altivelis in HRFC is reasonably
described with the conventional Verhulst equation

dWt

dt
= rWt

(
 –

Wt

K

)
. ()



Yoshioka and Yaegashi Journal of Mathematics in Industry  (2017) 7:8 Page 15 of 23

Figure 2 Measured (circle) and fitted (line)
representative body weight in 2012 (black), 2013
(grey), 2014 (blue), 2015 (red), 2016 (green).
Table 1 summaries the identified parameters values
and t = 0 in each year, which are used for drawing
the figure.

Table 1 The initial time t = 0, the identified W0, K , and r, and R2 value between the measured
and identified Wt in each year

Year t = 0 W0 (g) K (g) r (1/day) R2

2012 May 9 8.6 72.8 0.047 0.980
2013 May 9 8.7 83.8 0.040 0.995
2014 May 9 7.8 71.0 0.046 0.991
2015 May 7 10.1 78.0 0.042 0.997
2016 May 10 8.4 106.7 0.036 0.976

Figure  shows the measured and fitted Wt in each growth period from  to . The
circles are measured values and the curves are fitted growth curves based on the Verhulst
model.

Table  summarizes the initial time t = . The table also shows the identified values of
the parameters W, K , and r for each year using a nonlinear least squares method with
the R value between the measured and identified Wt . The order of the parameters W,
K , and r are same in each year, while their values are slightly different between different
years. Figure  and Table  show that the growth of aquacultured P. altivelis in each year is
accurately approximated with the conventional Verhulst model (). The identified result
suggests K = O() (g), W = O() (g), and rT = O() (-); the last one follows from the
discussion below. In what follows the data in  is used in the numerical computation
as a demonstrative application of the present model.

The terminal time is set as T =  (day) considering current management strategy by
HRFC. The optimal opening time τ ∗ is computed directly from () using the classical
Simpson’s rule. The time increment for integration �τ is set as . (day). The total num-
ber of individuals at the time t =  is specified as N = , based on an actual manage-
ment strategy by HRFC. This N has been empirically determined by HRFC considering
the size of the pool used for their aquaculture.

The variance Var[Nt], which is an index used for verifying optimal management strategy,
is obtained with the formula () in Appendix  as

Var[Nt] = Var[Mt–τ ] with k =  ()

for t ≥ τ and Var[Nt] =  for  ≤ t < τ with M = N. The standard deviation is then com-
puted as

√
Var[Nt]. The variance Var[Nt] is increasing with respect to each λ(n), C(n), and
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Figure 3 Optimal opening time τ ∗ in the
α(1)-α(2) 2-D parameter space. τ ∗ = 0 in the white
area, which is placed near the origin (α(1) ,α(2)) = (0,
0). The grey line corresponds to τ ∗ = 52 (day).

σ (n), while it is decreasing with respect to each a(n). Comparing the magnitude of the three
terms of Var[Nt] (right-hand side of the formula () in Appendix ) can quantify and qual-
ify uncertainties involved in the management strategy.

Based on the personal communications with the officers of HRFC and their account-
ing book during , the parameters λ(n) and C(n) are set as λ() =  (/day), λ() = .
(/day), C() =  (kg), C() = , (kg), respectively. The parameters a(n) and σ (n) are set
as a() = a() =  (/day), σ () =  (/day), and σ () =  (/day). The parameter p is set as
. (/day). The mortality rate R is set as . (/day) considering the fact that almost
% of aquacultured P. altivelis died during the growth period in . There are three
weight parameters α(), α(), and β in the model. Considering the form of the performance
index Jτ , the following relationship is assumed without the loss of generality of analysis:

α() + α() + β =  with α(),α(),β > . ()

Therefore, choosing α() and α() gives β as β =  – (α() + α()).

4.3 Computational results
Figure  plots the optimal opening time τ ∗ in the -D α()-α() parameter space. The grey
line in the figure corresponds to τ ∗ by HRFC in . In addition, Figure  plots the extinc-
tion time Tex computed with the optimal opening time τ ∗ in the -D α()-α() parameter
space. The grey line in the figure corresponds to Tex by HRFC in . Figure  shows
consistency between the computational result and the mathematical analysis result since
there exists an area with τ ∗ =  near the origin (α(),α()) = (, ), at which η is large and the
inequality () is not satisfied. Figure  also shows that the computational results are con-
sistent with the Theorem .. The computational result suggests unique existence of τ ∗.

Conjecture . τ ∗ ∈ [, T] exists uniquely.

Figure  plots E[Nt], E[Nt] ± √
Var[Nt], and ten sample paths of Nt assuming the actual

value τ ∗ =  (day) of HRFC in  with the time increment for temporal integration .
(day). The Runge-Kutta scheme [] has been used for generating the sample paths where

the transformation of variables ft =
√

c(n)
t , so that () is transformed to the SDE with the
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Figure 4 The extinction time Tex computed with
the optimal opening time τ ∗ in the α(1)-α(2) 2-D
parameter space. The grey line corresponds to Tex
with τ ∗ = 52 (day).

Figure 5 E[Nt] (blue), E[Nt] +
√

Var[Nt] (red), E[Nt] –
√

Var[Nt] (pink), and sample paths of Nt (black)
assuming τ ∗ = 52 (green). Ten sample paths have been simulated using the strong numerical scheme
(Wilkie [42]) with the time increment for temporal integration 0.01 (day).

additive noise term

dft =



[

ft

(
a(n)C(n) –

(σ (n))



)
– a(n)ft

]
dt +

σ (n)


dB(n)

t , t > , ()

which is easier to numerically handle []. The sample paths of Figure  well characterize
the behavior of Nt that it is monotonically decreasing due to frequent small shocks by
harvesting for sale and large and rare shocks for harvesting for ecological education, which
is in accordance with the actual situation of HRFC. In the actual management strategy of
P. altivelis by HRFC, Tex in  was  (day). The modelled extinction time Tex with
τ ∗ =  (day) is . (day), which agrees well with the actual value by HRFC in ,
implying that the utilized parameter values are reasonable.

Finally, to compare impacts of the two different stochastic harvestings, the following
stochastic variables that quantify the profit of the harvestings

j(n) =
∫ T∧Tex(τ∗)

τ∗
α(n)c(n)

t Wt dP(n)
t (n = , ) ()
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Figure 6 Numerically computed V (n) for 0 ≤ σ (1),σ (2) ≤ 10 (kg1/2/day1/2) with τ ∗ = 52 (day): n = 1
(harvesting for sale, red) and n = 2 (harvesting for ecological education, blue).

are considered. The non-dimensional indexes to evaluate relative variability of the profits
are presented as

V (n) =
√

Var[j(n)]
E[j(n)]

(n = , ), ()

which are computed with a numerical integration technique based on the standard mid-
point rules. The index V (n) measures the fluctuation of the process j(n)

τ relative to its mean
value. Therefore, larger V (n) implies relatively larger stochastic fluctuations of j(n). The
indexes V (n) are computed for different values of σ (n) to evaluate dependence of the profits
by harvestings for sale and ecological education on the stochasticity of demands.

Figure  plots the numerically computed V (n) for  ≤ σ (),σ () ≤  (kg//day/). Fig-
ure  shows that the indexes V (n) are larger in the harvesting for ecological education
(n = ) than in the harvesting for sale (n = ). In addition, each V (n) is monotonically in-
creasing with respect to σ (n), and variability of V (n) for the range of σ (n) examined are larger
in the harvesting for selling than in that for ecological education. The computational re-
sults show that the harvesting for sale is more robust against the stochastic fluctuation of
the demand, implying that it can be a major source of profit of the FC. Nevertheless, the
harvesting for ecological education, although it turned out to be less robust with larger
V (n), actually should not be abandoned since it has served as an indispensable part of the
work of the FC. The computational results in this paper provide useful information for
decision-making on management of aquaculture systems subject to the stochasticity.

5 Conclusion
The present mathematical model is the first model that can evaluate the influences of
the harvesting for ecological education on the aquaculture management. Mathematical
and numerical analyses on the optimal opening time were carried out to comprehend its
existence, uniqueness, and behavior. The analysis results focusing on P. altivelis in Japan
demonstrated that the harvesting for ecological education is less robust than that for sale,
but should not be abandoned since it has served as one of the most indispensable works
of the FC. From the analysis results, we recommend FCs to create a working environment
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where the harvesting for ecological education can be more efficiently carried out with
wider spillover effects. Financial and social supports from local governments would be
helpful for FCs to achieve this attempt.

Future research will develop an optimization theory for long-term, multi-year manage-
ment of aquacultured P. altivelis, so that FCs in Japan can find the way to achieve cost-
effective management strategy of the fish. In addition, local economic dynamics around
the FCs will also be mathematically described, so that the demand of the fishes is more
reasonably tracked. Investigations both from theoretical and practical viewpoints are nec-
essary for further advance of fishery science and engineering.

Appendix 1
This appendix presents a calculation procedure of the variance of Mt , which is defined
as Var[Mt] = E[M

t ] – (E[Mt]). By the martingale property of the compensated Poisson
process P(n)

t – λ(n)t (Chapter  of []) and stationarity of c(n)
t , E[M

t ] satisfies

exp(Rt)E
[
M

t
]

= E

[(
M –

∫ t


exp(Rs)

k∑
n=

c(n)
s dP(n)

s

)]

= M
 – MB

(
exp(Rt) – 

)
+ E

[(∫ t


exp(Rs)

k∑
n=

λ(n)c(n)
s ds

)]

+ E

[ k∑
n=

λ(n)
∫ t



(
c(n)

s
)

exp(Rs) ds

]
. ()

By stationarity and independency of c(n)
t , the second term in the right-hand side of ()

becomes

E

[(∫ t


exp(Rs)

k∑
n=

λ(n)c(n)
s ds

)]

=
k∑

m=

k∑
n=

λ(n)λ(m)
∫ t



∫ t


exp

(
R(s + u)

)
E
[
c(m)

u c(n)
s

]
ds du

=
k∑

m
=n,m≥,n≥

λ(m)λ(n)C(n)C(m)
(

exp(Rt) – 
R

)

+
k∑

n=

(
λ(n))

∫ t



∫ t


exp

(
R(s + u)

)
E
[
c(n)

u c(n)
s

]
ds du. ()

Then, () is rewritten as

exp(Rt)E
[
M

t
]

= exp(Rt)
(
E[Mt]

) – B(exp(Rt) – 
)

+
k∑

m
=n,m≥,n≥

λ(m)λ(n)C(n)C(m)
(

exp(Rt) – 
R

)
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+
k∑

n=

(
λ(n))

∫ t



∫ t


exp

(
R(s + u)

)
E
[
c(n)

u c(n)
s

]
ds du

+ E

[ k∑
n=

λ(n)
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

(
c(n)

s
)

exp(Rs) ds

]
. ()

Note that

E

[ k∑
n=
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(
c(n)

s
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exp(Rs) ds
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=
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(
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(
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]
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= B( – exp(–Rt)
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and
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(
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R + a(n)

⎧⎨
⎩
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Therefore, with () through (), a closed-form expression of the variance Var[Mt] is
obtained as

Var[Mt] =
k∑

m
=n,m≥,n≥

λ(m)λ(n)C(n)C(m)
(

 – exp(–Rt)
R
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(λ(n))C(n)(σ (n))
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×
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
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+
( + exp(–Rt))( – exp(–Rt))

R

k∑
n=

λ(n)C(n)(σ (n))

a(n) . ()

The formula () shows that Var[Mt] is increasing with respect to each λ(n), C(n), and σ (n),
while it is decreasing with respect to each a(n).

Appendix 2
This appendix shows calculation procedures of the first-order derivative of Jτ . A key of the
calculation procedures is using the Leibnitz’s rule (Appendix A of []). By (), assuming
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T > Tex, differentiating both-hand sides of () with respect to τ yields

dJτ
dτ

=
d

dτ
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combining () and () yields
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= –ÃWτ – βpBR
∫ T

τ

exp
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which is (). Similarly, for T > Tex,
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[
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]
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The first term in the right-hand side of () is calculated as

Ã
d

dτ

∫ Tex

τ

Wt ds = Ã
(

dTex

dτ
WTex – Wτ

)
= ÃFτ . ()

By (), the second term in the right-hand side of () is calculated as

d
dτ

[
–βp
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d
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τ

d
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)

= – ÃηGτ ()

since E[NTex ] = . Combining (), (), and () yields ().

Appendix 3
The following proposition used in Proposition . is proven in this appendix.

Proposition A. Assume p =  and g is given by the generalized Verhulst model () with
r > R and θ ≥ . In addition, assume τ ∗ ∈ (, τex) solves dJτ

dτ
= . Then, dJτ

dτ <  at τ = τ ∗.
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Proof Under the stated assumption, dJτ
dτ at τ = τ ∗ is


Ã
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Substituting () into () yields
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which with Ã >  proves the proposition. �
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