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Abstract

Comprehension of moisture dynamics in fibrous sheets is indispensable in a wide
variety of industrial areas. This paper proposes a practical mathematical model, which
is referred to as the 2-D extended porous medium equation (PME), to physically
describe moisture dynamics in fibrous sheets under evaporative environment.

A numerical method, which is referred to as the 2-D dual-finite volume method
(DFVM), to approximate its solutions in a stable manner is also presented so that the
moisture dynamics is reasonably simulated. The 2-D DFVM, which can optionally be
equipped with isotone numerical fluxes, is examined with test cases to show its
satisfactory accuracy and versatility. The parameters and coefficients involved in the
mathematical model for a non-woven fibrous sheet are identified with laboratory
experiments. Numerical simulation of moisture dynamics in the horizontally or
vertically placed sheet is performed as a demonstrative application example of the
present model and the numerical method.

Keywords: fibrous sheets; moisture dynamics; extended porous medium equations;
dual finite volume method; non-woven fibrous sheets

1 Introduction

Comprehension of moisture dynamics in fibrous sheets are necessary in a wide variety
of industrial areas, such as chemical engineering [1, 2], environmental engineering [3, 4],
precise agriculture [5], and sanitary engineering [6]. Moisture dynamics in porous media
such as fibrous sheets is macroscopic appearance of microscopic liquid water transport in
multiply-connected pore network structures [7, 8]. In practical applications, moisture dy-
namics both in fibrous sheets and on their surface, the latter is due to evaporation driven
by the humidity dynamics between the sheets and atmosphere [9, 10], is of importance
for manufacturing better products in paper and textile industry [11-13]. Assessing mois-
ture dynamics in non-woven fibrous sheets is therefore indispensable for development of
products that are better fit-for-purpose.

Moisture dynamics occurring in the fibrous sheets have been described with nonlinear
conservation laws based on the classical fluid dynamics [14, 15]. Numerically approximat-
ing solutions to nonlinear conservation laws requires applications of a conservative and
stable numerical method, so that reasonable numerical solutions are obtained, such that
positivity and/or monotonicity of certain physical quantities are realized. One common
numerical method for nonlinear conservation laws is the finite volume method (FVM)
© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://dx.doi.org/10.1186/s13362-017-0040-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13362-017-0040-1&domain=pdf
http://orcid.org/0000-0002-5293-3246
mailto:yoshih@life.shimane-u.ac.jp

Yoshioka et al. Journal of Mathematics in Industry (2017) 7:10 Page 2 of 25

based on local conservation principles [16]. The core of the FVM is evaluating numerical
fluxes on cell interfaces, which determine accuracy and stability of numerical solutions
[17, 18]. For solving conservation laws with dominant advection in particular, numerical
fluxes should guarantee unconditional stability in space and should possess least numer-
ical diffusion effects. This issue is more delicate for degenerate conservation laws than
for those with non-degenerate counterparts because of possibly vanishing diffusion co-
efficients [19-21]. Mathematically, degeneration of the diffusion coefficients significantly
affects qualitative behavior of the solutions to the conservation laws [22, 23]. Degener-
ation of diffusion coefficients would cause numerical instabilities even with sufficiently
fine meshes when a standard numerical method is utilized [24]. Handling source terms in
nonlinear partial differential equations like conservation laws also requires devised tech-
niques for stable computation [25, 26]. Analyzing the moisture dynamics that we focus
on would require sophisticated numerical techniques due to its complexity, which is our
motivation of writing this paper with a particular emphasis on numerics.

This paper focuses on an FVM for porous medium equations (PMEs), which govern
moisture dynamics in porous media, such as soils [27-29], fibrous sheets [4, 30, 31], and
debris materials [32]. Similar differential equations are encountered in different physical
problems, such as heat conduction problems in plasma [33, 34], combustion of liquids [35,
36], evaporation dynamics of volatile liquids [37], chemotaxis of cells and organisms [38,
39], and astrophysics [40]. Detailed, extensive mathematical and numerical analyses on
the PMEs have been performed so far [41-43]. Zambra et al. [44] proposed an oscillation-
free FVM with the weighted essentially non-oscillatory interpolation. The Discontinuous
Galerkin methods are finite volume analogues of finite element methods, which also are
conservative [44, 45]. Finite Volume Element Methods are conservative methods that con-
currently use finite element and finite volume discretization schemes, which have also
been effectively used for PMEs [46, 47].

Literature indicate that the concept of the isotonicity on numerical fluxes, originally
stated in Ortega and Rheinboldt [48] and has later been discussed in Fuhrmann and Lang-
mach [49], can possibly help develop stable and physically consistent FVMs in a simple
manner. According to Fuhrmann and Langmach [49], numerical fluxes in the FVMs for
nonlinear conservation laws such as PMEs should equip with the isotonicity for computing
oscillation-free numerical solutions without extremely fine computational meshes. Their
numerical fluxes for the conventional PMEs are isotone and can compute oscillation-free
and non-negative numerical solutions; however, they would not be suitable for the PMEs
of moisture dynamics in fibrous sheets as later demonstrated in this paper.

The purpose of this paper is to propose and examine a practical, stable FVM for 2-D
PME-type equations that is referred to as the 2-D dual-finite volume method (DFVM),
focusing in particular on application to moisture dynamics in fibrous sheets under evap-
orative environment. The governing equation of the moisture dynamics is an extended
PME having nonlinear advection and evaporation terms [6, 50]. Yoshioka and Unami [51]
originally proposed a prototype DFVM for simulating solute dispersion phenomena in
surface water networks (connected graphs) consisting of 1-D reaches (lines or curves) and
0-D junctions (vertices). Yoshioka et al. [6] and Yoshioka and Triadis [50] later extended
the DFVM for nonlinear conservation laws in 1-D domains and connected graphs. The
original DFVM is unconditionally stable in space for linear parabolic equations and is un-
conditionally stable in both space and time when equipped with a fully-implicit temporal
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discretization method [51]. Numerical fluxes are evaluated with analytical solutions to
linearized local two-point boundary value problems in the DEVM. This numerical tech-
nique is referred to as the fitting technique. Fitting technique have successfully been used
for solving differential equations encountered in a variety of problems, such as option
pricing [52, 53], optimal controls [54], and reactive transport phenomena [55, 56]. Nu-
merical fluxes with the fitting technique guarantee first-order spatial convergence for lin-
ear problems [57, 58]. This paper provides an isotone numerical flux specialized for the
2-D extended PMEs and its application to test cases and a realistic problem. Stability of
the present DFVM for the extended PMEs is achieved with a new isotone numerical flux.
Nonlinear source terms involved in the extended PMEs are dealt with using an operator-
splitting technique [59] to compute stable and physically consistent numerical solutions.

The rest of this paper is organized as follows. Section 2 presents the 1-D and 2-D PMEs.
Their regularized counterparts for well-posing the problems are also presented in this
section, which are used in numerical computation in this paper. Section 3 presents the
discretization procedure of the 2-D DFVM. Section 4 presents applications of the 2-D
DFVM and 2-D extended PME to test cases and a realistic problem. Section 5 concludes
this paper.

2 Mathematical model

The extended PMEs for moisture dynamics in fibrous sheets subject to evaporation are
presented. The 1-D extended PME [50], although it is not explicitly used in this paper, is
firstly presented as a reduced counterpart of the present 2-D model for self-contentedness.

2.1 1-D extended porous medium equation

The 1-D extended PME was formulated for simulating 1-D longitudinal moisture dynam-
ics occurring in porous media with a striped shape. It is physically reasonable to assume
that moisture profiles in such a sheet are transversely homogenous, leading to a longitu-
dinally 1-D model. The saturation at each longitudinally 1-D position x of a sheet at the
time ¢ is denoted by 6 = 0(¢,x), and is normalized in [0,1] as 0 < u = (0 — 0,)(6s - 6;) 1 <1
where 0, and 6, are the maximum (saturated) and minimum (residual) water contents of

the sheet.
Based on the non-dimensionalization method [60], the 1-D extended PME is presented
as [4, 31]
d ] a a -
8_;! == ((m —p)u’”"’_la—;) + sin(xﬁ (u"'u) — Equ? 1)

subject to appropriate initial and boundary conditions with the non-dimensional variables

K2(m - p)
D52

K(m - p)
Ds6s

- D,6?
x, and E,= ——S _FE, (2)
KZ2(m - p)

S

t= t, X=
where Dy(> 0) is the saturated diffusivity, Ks(> 0) is the saturated permeability, E(> 0) is
the evaporation coefficient, m, p <m —1, and 0 < g < 1 are positive nonlinearity parame-
ters determining nonlinearity of (1), and —0.57 <« < 0.57 is the inclination angle of the
sheet as depicted in Figure 1. A remarkable difference between the extended PME (1) and
the conventional models for moisture dynamics in fibrous sheets [31, 61] is that the for-
mer can simulate the evaporative moisture dynamics that the latter in principle cannot do
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Figure 1 The 1-D model domain of the extended ‘fv
PME (1).

a
'S

Horizontal surface

because of the absence of a source term to describe the effect of evaporation. According to
the standard theory of evaporation from porous media, it is only as the saturation u < 1
that the evaporation rate rapidly decreases to zero [62]. The pressure head /() and the
hydraulic permeability K(u) consistent with the 1-D extended PME (1) are

0D 1 o
W(u)=m( _J) and K(u) = K™, 3)

respectively. The former reduces to the conventional model when p — +0 [4, 31]:

0,D.
> Inu. (4)
K

Y(u) =

The angle « may be spatially distributed, but is assumed to be constant in this paper. There
exist two contrasting cases on arrangement of the sheets, which are the horizontal (« = 0)
and vertical cases (o = £0.57). The advection term of (1) vanishes in the horizontal case
because of the equality sina = 0. Hereafter, ’ representing non-dimensional variables are
omitted from the variables for the sake of simplicity of description.

Degenerate advection and diffusion terms of (1) possibly serve as severe mathematical
and computational difficulties at the point of degeneration (# = 0) in particular. This paper
mitigates the degeneration with a regularization technique [50], which modifies (1) as

3 8 m-p—. a . 8 m—
a_j: = ((m -p)[h:w)]"” 18_3:) + s1n(x£([hg(u)] lu) —Eu? (5)
with the regularization kernel /. (u) = vu? + €2 (> ¢) and a small positive constant ¢
(=107° in this paper), which completely rules out the degeneration. The diffusion coef-
ficient in (5) is entirely positive over the domain where the PME (1) is considered. The
regularized extended PME (5) can be written in the flux form as

du OF

- _Euft 6
ot Tax (©)
with the flux F = F(u) given by

F=—(m-p)[h@]""" ?TZ —sina [k ()] u. @)
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Convergence of numerical solutions subject to the regularization to the exact solutions,
at least practically, is demonstrated in Section 4, where utilizing sufficiently small regular-
ization parameter does not significantly affects the computational results. This is possibly
because the computational errors in the spatial and temporal discretization dominate that
due to the regularization. It should be remarked that a similar regularization technique has
already been successfully applied to nonlinear advection-diffusion equations with both
mathematical and numerical analyzes [63]. Mathematically rigorous analysis of the regu-
larization method for the PMEs, which would be more difficult to perform, is beyond the
scope of this paper and will be addressed elsewhere.

2.2 2-D extended porous medium equation

The 2-D extended PME, which is a 2-D counterpart of the 1-D model (1), is presented. This
model is necessary for simulating essentially 2-D moisture dynamics in inclined fibrous
sheets, such that an application of the 1-D model is inadequate. The inclination angle is
again denoted by «, which is typically horizontal (« = 0) or vertical (¢ = £0.57) of the
sheet. The 2-D x;-x, Cartesian coordinates is taken over the surface of the sheet, which is
identified with a 2-D flat domain 2 as depicted in Figure 2. It is assumed for the sake of sim-
plicity of description that the sheet is horizontal on the x,-direction. Under this assump-
tion, the 2-D extended PME that governs s the saturation u = u(¢, %1, %;) in 2 is presented as

22 (i )

Fr x1 0x1
9 AN
+ 8_x2 ((m —p)u’”‘p_la—xz) + smaa—xl(u lu) — E,uf (8)

subject to appropriate initial and boundary conditions. The regularized counterpart of (8)
is given following (5) as

ou _ i _ m—p—la_u i _ m—p—la_u
o (2 LX) ) R (GO (X))
+ sinaaim([hs(u)]mflu) — Euf 9)

Figure 2 The 2-D model domain of the
extended PME (8).
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to practically mitigate the degeneration. As for the 1-D model, (9) can be written in the
flux form as
ou 8F1 8F2

—+ + — =—-Eu? (10)
ot 8x1 3962

with the couple of fluxes (F;, F,) given by

(a) : (—(m —p)lhe ()7 e — sina[hg(unm-lu) , an

I3 —(m = p)[he ()] 2
which is a more suitable expression for application of and FVM.

Finally, in this section, remarks on boundary conditions to be supplemented to the 2-D
extended PME and its regularized counterpart are provided with particular emphasis on
the wetting process. From a mathematical viewpoint, at least some boundary conditions
should be supplemented to these PMEs in general, since they are partial differential equa-
tions of the parabolic-type, although with possible degeneration of the coefficients. From
a physical view point, a reasonable boundary condition for simulating a wetting process
where a part of the boundary of the domain (9Qy) touches liquid water is the Dirichlet
boundary condition # = 1 meaning that the boundary 9Qy is fully-wet. Of course, it is
theoretically possible to specify the net flux F - n on dQyy, but directly measuring the flux
is, at least to our experience, technically not easy. On the other part of the boundary, a
simple and appropriate boundary condition is the no-flux condition F - n = 0 where the
inner product between the flux vector F and the outward boundary normal vector n van-
ishes. This boundary condition represents that no liquid water escapes from the boundary,
which is a reasonable assumption for moisture dynamics with evaporation as focused on
in this paper later.

3 2-D dual-finite volume method
The discretization procedure of the 2-D DFVM is explained in this section.

3.1 Spatial discretization

The 2-D domain €2 is divided into triangular (regular) cells in the usual conforming man-
ner. The cells and the nodes are indexed with the natural numbers. The total numbers of
the regular cells and nodes are denoted by N, and N, respectively. The ith node is de-
noted by P;. The number of nodes directly connected to the node P; is denoted by (i)
and the /th of them is denoted by the p(i,/)th node P, ;. The length of the edge PP, is
denoted by d;;. A dual cell associated with the node P; is denoted by S;, which is defined
as the conventional 2-D Voronoi cell [64]

T

i) T

i)
Si=\ )Si;= {x | dist(x, P;) < dist(x, Pp(i,l))}, 12)
! !

I
—_
Il
[

where dist(-, -) represents the conventional distance function between a couple of points
located in the domain 2. Figure 3 illustrates the 2-D computational cells used in this paper.
The area of the dual cell S; is denoted by |S;|. The length of the outer perimeter of the sub-
cell S;; of the dual cell S; is denoted by L;;. The unknown u is attributed to the dual cells
(or equivalently to the nodes).
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Figure 3 lllustration of triangular cells and dual
cells for 2-D spatial discretization.

3.2 Operator-splitting algorithm

The regularized counterpart (9) is regarded as an advection-diffusion-decay equation hav-
ing solution-dependent coefficients, which are discretized fully explicitly at each time step.
The 2-D DFVM thus avoids using nonlinear iteration methods such as the Newton and Pi-
card algorithms to realize a simpler and more easily implementable numerical algorithm.
An operator-splitting algorithm analogous to that of Li et al. [59] specialized for (9) is in-
corporated into the 2-D DFVM, so that numerical instability due to nonlinearity of the
evaporation term is avoided. This approach has successfully been used for conservation
laws with nonlinear source terms [65, 66]. The time increment at each time step is denoted
as At and the partial differential operators defining the advection and diffusion terms of
(9) as Pap and that for the evaporation term as Pg: namely,

0 m-p-1 0
Pppdp = P ((m -p)[h)]"" 1—¢>

X1 8x1
i _ m-p-1 a_¢ . i m—1 (13)
+ 5 ((m P)[h:(9)] sz) +sinw v ([7e(#)]" " #) and
PE¢ = _Es(»bq

for generic ¢ = ¢(x1,x;). The 2-D DFVM discretizes (9) at each time step as
uk = exp(0.5AtPg) exp(AtPap) exp(O.SAtPE)u(k), (14)

where ¥ represents the numerical solution at the kth time step. Although the 2-D DFVM
is unconditionally stable for linear advection-diffusion equations, preliminary computa-
tion showed that it is not the case for the extended PMEs if At is too large. The reason of
this issue would be the loss of ellipticity of the discretized system as already implied in Pop
et al. [67]. This drawback would be overcome if an implicit treatment of the coefficients
is used, which will be addressed in future research. Discretization procedure of the two
sub-steps is explained below.

3.3 Evaporation sub-step
At an evaporation sub-step, the equation to be solved at each node is expressed as the
ordinary differential equation (ODE)

u

i —Esu?. (15)
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Let U; be the nodal value of the numerical solution at the previous time step or that at the
end of the previous advection-diffusion sub-step at the ith node. Starting from the formal
initial condition U; at the time ¢y, (15) with ¢ > £y follows

1

L{i(t) _ (max{0’¢i(ui’ t»tO)})q (0 <g< 1) (16)
U; exp(-E(t — o)) (g=1)
with
di(u,t,t0) = u'™7 — (1 - q)Eq(£ — to) 17)

for u € R*. By (16), the first evaporation sub-step at the kth time step for the ith node is
ul = expd(O.SAtPg)u(k) (18)

with

(max{o0, d)i(ugk), t+0.5ALt)}) g (0<g<1)

expg(0.5AeP ) = 1
u;’ exp(—Es0.5A¢) (g=1),

(19)

where u] represents the updated nodal value, which is used as the initial condition of
the advection-diffusion sub-step. The updated nodal value at the ith node just after the
advection-diffusion sub-step is denoted as u;*. The second evaporation sub-step is then
expressed as

u®*Y = exp,4(0.5ALPE)u}* (20)
with

(max{0, ¢;(u}*,t + 0.5At, t)})%i (0<g<1)

expy(0.5At P )u™ =
u;* exp(—0.5E5At) (g=1).

(21)

No restriction on At has to be imposed for each evaporation sub-step because the tem-
poral integration on the evaporation term is carried out with the analytical solutions.

3.4 Advection-diffusion sub-step
At the advection-diffusion sub-step, the equation to be solved is given by

du oF 0F,

— + +—=0. (22)
ot 3361 8962

A finite volume discretization is applied to (22) as explained below.

3.4.1 Finite volume formulation
Integrating the (22) in the dual cell S; with the application of the Gauss-Green theorem
yields

(0

3

o / uds+ Y LiysFiyi =0, (23)
Si I=1
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where F;; is the numerical flux to be evaluated on the cell face between the dual cells S;
and S, ;. The first term in the left hand-side of (23) is evaluated as

9 du;
2 wdx~ s L:

24
ot Js, d &4

The numerical flux F;; is evaluated with a fitting technique, which uses the analytical

solution # of the two-point boundary value problem

d - ou
g (bp(i,l)u — Api)) g) =0 (25)

along the edge P;P ;) with the local 1-D coordinate s taken from P; to P ;5 and the bound-
ary conditions

u(x;) = u;, U(X (i) = Up(ih) (26)
with
| . _ am-l
apip = (m—p)[he(op) """ and by = —sina[h.@a)]" mpen (27)

where u,(;;) represents the value of u# on the edge P;P,;; that is specified later and 7 ;)

is the x;-component of the unit normal vector (#1,,(;1), #2,5(;,)) having the same direction

. é . . ~ . .
with the vector P;P ;5. The analytical solution # is obtained as

~ explpipu; —u,; Uil — Ui by
7 = P(P;,l) i (i) + p(i,0) i ex < p(i,0) (S—Sl')), (28)
exp(pi) — 1 exp(pi) —1 Ap(i)
which is used for directly evaluating the numerical flux F;; as
ou
Fii=b,ipth—ayin—
il (i) p(id) 9s
(m — p)ny,p(in m-p-1_ eXppin)U; — Up(i)
= Ty (o P LA B AU 29
0 (e @pa)]™ " pi o) 1 (29)
with the local Peclet number
nl,p(i,;)diyl sina
i = ——————h (1) (30)
m-—p

The numerical flux F;; is fully specified if the value of u, is evaluated. A remarkable
point of the 2-D DFVM is that the Peclet number p;; is independent of # when p = 0: By
(30), p;; with p = 0 is expressed as

nl,p(i,l)di,l sina

Dil = (31)

m

This property help establish an isotonic numerical flux as presented below.



Yoshioka et al. Journal of Mathematics in Industry (2017) 7:10 Page 10 of 25

3.4.2 Numerical flux

The value of #,(;) is specified to determine F;;. The three evaluation schemes for %, are
presented in this paper, which are the central (CE) scheme, fully-upwind (FU) scheme,
and the isotone (IS) scheme. The CE and FU scheme have been used in Fuhrmann and
Langmach [49], and the IS scheme is a new numerical method proposed in this paper.
The approximation ¢ = 0 is used in this and next sections because it is assumed to be a
sufficiently small positive constant such that it does not significantly affect accuracy of
numerical solutions.

The CE and FU schemes evaluate 7, as

Upil) = %(ui + Up(i)) (32)
and

Up(iy) = max(ug, Up(ip), (33)
respectively.

The concept of isotonicity is presented in this sub-section for proposing an isotonic
numerical flux suited to solving the extended PME. The numerical flux is regarded as a

bi-variate function of the non-negative parameters A, it > 0 as

E,l = E,l()‘" M)|X=M,',u.=up(i’[) (34')
with

Fyy ) = TP sy PP — it (35)

S di P exp(pir) — 1
The numerical flux Fj; is said to be isotone if both
dF;,

nl,p(i,l)a—)i >0 (36)

and
dF;,
—1,p(3) a,l >0 (37)

for arbitrary A, i > 0 [49]. The value of u,;;) should be determined so that both (36) and
(37) are satisfied; however, analytically finding such %,(;;) in generic cases is difficult be-
cause of the nonlinearity of F;;. An exceptional case is that with p = 0 where the analytical

expression of #,(;; is found as demonstrated in the next subsection.

3.4.3 Isotonicity on the CE scheme
The CE scheme possibly gives unphysical (negative) numerical solutions because it does
not comply with (36) and (37) even with the absence of advection term [32].
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3.4.4 Isotonicity on the FU scheme
The FU scheme can potentially mitigate such computational difficulty but has excessive
numerical diffusion. In addition, FU scheme with the 2-D DFVM is not isotone as shown

below. The quantities 7;,(; ) % and -y, ,(3) % are calculated for A > > 0 with the FU

scheme as
o i _ 0 [mpy -1 R Bi0? ~
1,0(i,0) In I di,l exp(pi,l) -1
m bii =
= ———————(mexppi)i — (m—1)u)A" (38)
disexp(pi) —1 ( l )
and
—M1 (i OF _ 9 [ mpuy a1 H = exp(pi)r
L S| T exp(piy) — 1
M P yma
d;jexp(piy) —1
o (39)

respectively. Similarly, for ;1 > A > 0 with the FU scheme, the inequalities are calculated

as
. @:i Mpi; . €Xp@i)A — 1
LoD T d # exp(pi) —1
_m pyexp@i))
disexp(pi) —1
>0 (40)
and

OF, |:Wlpi,z mo1 = eXp(pi,z))»j|

MG T A M
M0 T o d; exp(pi) —1
m pil m=2
= ———————|mpu — (m—1)exp(pi)A |u" ", (41)
dii exp(pi) — 1 [ ]

respectively. By (38), (36) follows if

1
exp(pis) — 2= >o. (42)

m
Similarly, by (41), (37) follows if

m-—1
exp(-pii) — o >0. (43)

Thus, both (36) and (37) are true if

m—1 m
—— <exppy) < —, (44)
m—1
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demonstrating that the FU scheme is not isotone when the condition (44) is violated,
which is true when the advection is dominant.

3.4.5 Isotonicity on the IS scheme

A new evaluation scheme of the numerical flux, the IS scheme, is presented as a possible
alternative to the CE and FU schemes. Assuming p = 0 for mathematical tractability, the
IS scheme is expressed as

u; if exp(p;)u; —u,ip >0
Tyl = i ( P(Pz,l) i p(il) = ) (45)
Uy (otherwise).

By (36) and (37), isotonicity of the IS scheme follows for exp(p;;)A — it > 0 as

3?1‘[ m Pil -2
) — = — )\m M)A — -1
M = g e 1 e = m = T))

m Dil m-2

> _7)u i -1 i A
i exp(piy) — (mexp(pi)a — (m —1) exp(pin)1)

_m puexpWi) ;g
di; exp(pii) —

0 (46)

that verifies (36). The scheme for exp(p;;)A — ;& > 0 verifies (37) as

8le m Dil -1
-n — A" >0. 47
MDY dyg expl(pig) — 1 - 47)

The proof of the isotonicity of the IS scheme for exp(p;;)A — i < 0 proceeds in an essentially
similar way since

BF,I _m pirexp(pir)

m-1
or  digexp(pir) —1

Mp@il) o1

and

31:;1 a |:W1pi,z el M~ eXP(Iﬂi,l)?»}

Yo T | dy " exp(pi) — 1
_ mpiy mp — (m —1) exp(pi) A
di exp(pis) — 1
ﬂ pi:l m-1
diy exp(pip) -1
>0. (49)

(40), (46), and (47) prove that the IS scheme is isotone. In this paper, for the sake of sim-
plicity of analysis, the FU scheme is used for the 2-D model when p > 0. This is because the
analytical condition for choosing #,; as in (45) is not available. Nevertheless, for small
p such that m > p the IS scheme is expected to be not completely but nearly isotone. The
condition m 3> p is actually satisfied for a non-woven fibrous sheet examined in Section 4.
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3.4.6 Temporal integration
Assembling (23) for every node yields the system of linear ODEs. The 2-D DFVM finally
yields the system of linear ODEs

ccl{—l: =Bu+é, (50)
where u = [4;] is the N,-dimensional solution vector, E = [E; ] is the N, X N,-dimensional
matrix arising from the spatial discretization, and & = [§;] is the N,,-dimensional vector in-
dependent of u. The boundary conditions, if necessary, are included in &. The system of
ODE:s (50) is temporally integrated with the 6-method [68]. This paper specifies 0 as 1
(Fully implicit scheme). In the 2-D DFVM, the temporal integration of the advection-
diffusion sub step is then expressed as

ut = (I - EAD) T (u* + EAL), (51)

where [ is the N, x N),-dimensional identity matrix and the vectors u** and u* are given
by u* = [u}] and u** = [u}*], respectively. The inversion of the matrix I — & is justified be-
cause of the positivity conditions of the spatial discretization in the 2-D DFVM as proved
in Yoshioka and Unami [51]. The linear system is numerically solved with the conventional
Gauss-Seidel method whose iteration is terminated until the absolute value of the differ-
ence of nodal values between before and after an updating is smaller than 1078 for every
node.

4 Application

4.1 Test cases

The 2-D DFVM is applied to a series of test cases for its verification of accuracy and stabil-
ity. Note that the aim of these test cases is not comparing the 2-D DFVM with other meth-
ods but to confirm its satisfactory convergence to analytical solutions, since the purpose
of this paper is establishment of a mathematical model and a simple numerical method
that can reasonably simulate the 2-D moisture dynamics. In each test case, the indepen-
dent variables are appropriately scaled without the loss of generality. The 2-D DFVM is
developed in a standard C++ environment. Each unstructured triangular computational
mesh in what follows has been generated with free software VORO Ver. 3.17 (available
at http://www32.ocn.ne.jp/~yss/voro.html). The 2-D DFVM with the operator splitting
technique is expected to perform first-order accuracy in time according to Li et al. [59].
Note that using the Crank-Nicolson scheme (6 = 0.5) in the temporal integration of the
advection-diffusion sub-step yields oscillatory numerical solutions in the test cases exam-
ined below. The exact solutions in some test cases are partially # > 1, which is physically in-
valid. These test cases therefore solely concern computational accuracy of the 2-D DFVM
and do not discuss physical meaning of the solutions.

4.1.1 Test1: Barenblatt problem
This is a classical, radially symmetric weak solution to the conventional PME that has a
sharp and non-smooth profile [69]. The PME to be solved is given by

] 92 92
ou_ —5+t " inR? (52)
ot oxy  0x;


http://www32.ocn.ne.jp/~yss/voro.html
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whose exact solution, the Barenblatt solution, is expressed for ¢ > 0 as
(m—1)(x? +x2) =
#} } (53)

1
upa(t,%1,%) = max4 0, i 1- i

A series of structured (square) dual grid with the resolution of 32 x 32, 64 x 64, 128 x 128,
and 256 x 256 are examined and the numerical solutions are compared with the exact
solution (53) for m = 2,3, and 4 and the convergence rate was estimated for each 7. The
time increment At is set as 0.001 throughout this test case. The initial condition is set as
u(0,x1,%2) = upa(0.001, %1, x7) to avoid the deltaic singularity of the initial condition at the
time ¢ = O of up,. The computational domain is set as the square (-5,5) x (-5,5) where
the support of the exact solution does not touch its boundary at least at the time ¢ = 0.200
where the exact and numerical solutions are compared. The conventional nodal /? error

norm Er between exact ¢yt and numerical solutions i4,ymerical, Which is defined as

Nn
1
Er= X E (uexact - unumerical)z (54‘)
Nu i=1

is used as an error metric throughout this paper. The reason of using structured meshes
is to verify exact symmetry of the numerical solutions with respect to the x;- and x,-axis
that the meshes have. The focus of this test case is on accuracy of the scheme in space
rather that in time. The exact and numerical solutions are compared at ¢ = 0.15.

Figure 4(a) through 4(c) compare the numerical and exact solutions for m = 2,3, and 4
with the spatial resolution of 128 x 128. Table 1 summarizes the error norms and con-
vergence rates. The numerical solutions are certainly axially symmetric but not radially
symmetric because of using the structured grid that does not have radial symmetry. The
radial symmetricity is recovered and the front position is more accurately captured as the
mesh is refined. The computational results show that the order of convergence of the 2-D
DFVM degrades as the parameter m for the nonlinearity increases. The order of con-
vergence is almost one for each m. Qualitatively similar computational results have been
obtained for m = O(10°).

4.1.2 Test 2: steady problem with evaporation

This second test considers water infiltration from one side (x; = 0) of a horizontal sheet
(¢ = 0 and p = 0) in evaporative environment [4]. The domain is set as the unit square
(0,1) x (0,1). Assuming that = 1 on the boundary x; = 0, an elementary calculation shows
that the steady solution to this test case is

u(x1,%2) :max{(l—(m—q) lﬁ:q)aq)mqﬁ}, (55)

which is homogenous in the x,-direction. The function in the exact solution is cut to 0
if it becomes negative as in the right-hand side of (55). The support of the exact solution
is bounded when m > g. This analytical solution is a weak solution since it is continuous
but not differentiable at the free boundary. The focus of this test case is to see ability of
the 2-D DFVM to capture the steady state solutions having bounded supports. The time
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Figure 4 Comparisons of the numerical and exact solutions for Test 1. The computational results with
(@) m=2, (b) m=3,and (c) m=4.The contour lines for u = 0.1n where n represent non-negative integers are
depicted: black lines are for numerical solution and grey lines for exact solutions.

Table 1 Computed error norms and the order of convergence for Test 1

Mesh Error norm Order of convergence in space

m=2 m=3 m=4 m=2 m=3 m=4
32 %32 3.66E-02 6.29E-02 7.69E-02
64 x 64 2.12E-02 4.12E-02 5.70E-02 7.88E-01 6.10E-01 4.32E-01
128 x 128 8.54E-03 2.22E-02 3.40E-02 1.31E+00 8.92E-01 745E-01
256 x 256 3.85E-03 1.25E-02 2.28E-02 1.15E+00 8.29E-01 5.77E-01

increment is set as At = 0.001. Steady numerical solutions are computed starting from
the initial guess u = 0 over the computational domain where the homogenous Neumann
condition is specified on the boundaries x; = 0, x; = 1, and x; = 1; the last one does not
affect computational results since the numerical solutions almost vanish near x; = 1. The
parameters Eg, m, and g can be chosen such that the support of the exact solution (55)
becomes [0, 0.5]. The parameter g for the evaporation term is fixed to 0.01, and examined
m = 3, so that E; = 8.08. The final time of computation is empirically set as ¢ = 5 at which
the numerical solutions are observed to be sufficiently close to steady state. A series of
structured (square) dual grids with the resolution of 32 x 16, 64 x 16, and 128 x 16 are

examined. In addition, the time increment of 0.01, 0.001, and 0.0001 are examined.
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Figure 5 Comparisons of the numerical and Solution
exact solutions for Test 2. The contour lines for 1 1.0
u=0.1n where n represent non-negative integers ’
are depicted: black lines are for numerical solution
and grey lines for exact solutions.
X2 0.0
0
0
X
Table 2 Computed error norms and the order of convergence for Test 2
Time increment Error norm Order of convergence in time
At 32x 16 64 x 16 128 x 16 32x 16 64 x 16 128 x 16
0.01 5.04E-02 5.77E-02 6.05E-02
0.001 6.35E-03 5.01E-03 551E-03 9.00E-01 1.06E+00 1.04E+00
0.0001 1.29E-02 5.65E-03 2.31E-03 -3.08E-01 -5.22E-02 3.78E-01

Figure 5 compares the numerical and exact solutions for the spatial and temporal reso-
lution 0f 128 x 128 and Az = 0.001. Table 2 summarizes the error norms and convergence
rates in time. Table 2 implies that choosing too small At for a given computational mesh
would not be effective. This is considered due to that the front position of the solution is
sensitive to spatial resolution rather than the temporal resolution. This computational re-
sult suggests employing fine spatial resolution rather than fine temporal resolution would
be effective for analyzing steady problems with the support. The computational result also
suggests that both space and time resolution should be fine for computing steady solutions
having the source term, which is considered to be due to dependence of the numerical so-
lution on At through the proposed operator-splitting process.

4.1.3 Test 3: travelling wave solution

The travelling wave solutions available in Nasseri et al. [70] are used for examining the
present DFVM against the 2-D extended PME without the source term. A particular em-
phasis is put on a comparison of the performances of the FU and IS schemes for evaluation
of the numerical fluxes. The equation to be discretized is the extended PME for @ = 0.5

without the evaporation term and p = 0 whose exact solution is expressed as

u= [§{1+tanh<—l;lm_D1(x2 _ct)>”m_l, (56)

where c is set to be 1, m is fixed to 3 in the present case, and the diffusion coefficient

D = 0.25 is multiplied by the second-order partial differential terms. This problem is an
initial and boundary value problem of a nonlinear advection-diffusion equation where
the source term is absent whose focus is to assess its ability of capturing travelling wave-
type solutions that often arise in describing moisture dynamics in porous media [71, 72].
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@) ®)

Solution Solution

Figure 6 Comparisons of the numerical and exact solutions for Test 3. The results with (a) FU scheme
and (b) IS scheme. The contour lines for u = 0.05n where n represent non-negative integers are depicted:
black lines are for numerical solution and grey lines for exact solutions.

Table 3 Computed error norms and the order of convergence for Test 3

Mesh Error norm Order of convergence in space

FU scheme IS scheme FU scheme IS scheme
348 cells 6.95E-03 5.11E-03
1,296 cells 4.29E-03 3.39E-03 6.98E-01 5.92E-01
4,949 cells 1.67E-03 9.80E-04 1.36E+00 1.79E+00
19,565 cells 7.61E-04 5.96E-04 1.14E+00 7.17E-01

Since the present DFVM reduces to the conventional upwind FVM for small diffusion
coeflicient, its expected order of accuracy in space is one. The same computational meshes
with the previous test cases and the additional, finer mesh with 38,588 triangular cells and
19,565 dual cells are examined. The numerical and exact solutions are compared at the
time ¢ = 1. The time increment At is set to be 0.0001, which is found to be sufficiently
small to for assessing computational accuracy in space of the FU and IS schemes.

Figure 6(a) and 6(b) compare the numerical and exact solutions to this test case with the
second finest mesh for the 2-D DFVM with the FU and IS schemes, respectively. Table 3
compares the error norms for the present test case with the FU and IS schemes, showing
that the convergence order of the both of the schemes are almost one. It is also shown that
the numerical solutions with the IS scheme have several tens present have smaller errors
than those with the FU scheme except for the finest mesh. There is no significant quali-
tative difference between the obtained numerical solutions with the FU and IS schemes.
The results indicate that the IS scheme performs slightly better than the FU scheme for

the traveling wave-type solutions.

4.2 Demonstrative application

A demonstrative application example of the 2-D (regularized) extended PME and the 2-D
DFVM to simulating moisture dynamics in an existing non-woven fibrous sheet is pre-
sented in this sub-section where the advection, diffusion, and evaporation terms do not

vanish.



Yoshioka et al. Journal of Mathematics in Industry (2017) 7:10 Page 18 of 25

4.2.1 Parameter identification

To be used in applications, the extended PME has three coefficients of the functions of u
to be estimated: the pressure head v (i), the hydraulic permeability K(x), and the evapo-
ration rate Equ?. This sub-section presents our experimental results to identify reasonable
ranges of the parameters involved in these coefficients. In the experiments, a non-woven
fibrous sheet for water absorption was used where the product number is not presented in
this paper. Thickness of the sheet is 1073 (m). The company manufactured this product for
multiple purposes, such as materials for vehicles, materials used in civil engineering, water
transportation and adsorption in agricultural fields, and sanitary purposes. The parame-
ters Oy and O, for this sheet has been estimated as 6y = 0.48 and 6, = 0.07, respectively.

Pressure head  As in the case for the conventional hanging water column method to be
applied to soil materials [73], matric potential was steadily controlled for each fixed pres-
sure —n (kPa) with non-negative integers 0 < n < 6. The moisture weight percentage of the
material, which is denoted by w, was measured at each value of the matric potential. This
experiment was repeated twice to reduce statistical errors in the identification process of
the matric potential. A standard nonlinear least square method is applied to identify the
pressure head v (u).

Figure 7 presents the measured and identified v (x) where the identified parameter val-
ues are p = 1.5 x 1072 and 61):—1?: =1.08 x 10%. The identified ¥ () underestimates the mea-
sured counterpart except for small z, which possibly results in overestimation (underesti-
mation) of capillary transport for small (large) u. It would be possible to find more complex
but more accurate parameterization of v (i) to improve this problem; however, the PMEs
with such a coefficient can have higher nonlinearity that is possibly more difficult to nu-
merically deal with. This topic is approached in future research and is not focused in this
paper. The same applies to the other coefficients.

Hydraulic permeability A tensiometer (Stec Co., Ltd.) was utilized. At the beginning of
the experiment, a sheet material that is fully wet was prepared, and it was drained from
the wet state until it finalizes the drainage of water. During the drainage process, pres-
sure, moisture flux, and moisture weight percentage of the material were measured at
one-second interval. This experiment was carried out seven times to reduce statistical er-
rors in the identification process of the hydraulic permeability: four times with the pres-
sure head of —25 (cm) and the remaining three with —35 (cm). The length of the period

8.0
— Measured
OO Identified
4.0+
M ©
(kPa) 00
O © @}
0.0 :
0.0 0.5 1.0
u
Figure 7 Comparison of measured and identified pressure head ¥ (u).
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Figure 8 Comparison of measured and identified hydraulic permeability K(u).
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Figure 9 Comparison of measured and identified variations of u on the evaporation term.

for the drainage was 40 to 50 (min). Assuming the conventional Darcy’s flux [73], the hy-
draulic permeability was identified from the experimental results. A standard nonlinear
least square method is applied to identify the hydraulic permeability K(x) as a function
of u.

Figure 8 presents the measured and identified K () with the identified parameter values
of Ky =2.00 x 107 (m/s) and m = 1.64. The parameter % =1.08 x 10? is thus identi-
fied as Ds = 6.75 x 10~ (m?/s). The measured K () for each u is subject to fluctuation
because of experimental errors. The identified K(u) is found to be an almost median of
the measured counterpart for each u. The identified K(u) thus reasonably reproduces the

measured counterpart, and both of them qualitatively and qualitatively agree well.

Evaporation rate The evaporation term is identified with a fully wetted sheet placed in a
nearly temporally homogenous environment (a closed laboratory room) where the relative
of about 42% to 44% and the temperature of 25 to 26 degree Celsius. The experimental
setting is simple: a fully wetted sheet is placed on an electric balance and its weight is
measured at the interval of 30 seconds. The measured data is calibrated with analytical
solutions to the ODE % = —Eu?. A standard nonlinear least square method is applied to
identify the parameters g and E.

Figure 9 presents the measured and identified time series of u. The identified parameter
values in the dimensional form are g = 2.00 x 1072 and E = 8.06 x 10~ (1/s). Figure 10
shows that the present evaporation term can reasonably reproduces the measured varia-
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tion of u. Both the measured and identified time series of u agrees reasonably well except
for small u despite the present parameterization for the evaporation term is very simple.

4.2.2 Computational examples

An application of the presented mathematical model and the numerical method to mois-
ture dynamics in the non-woven fibrous sheet is carried out where it is placed horizontally
(o = 0) or vertically (o = 0.57). The identified coefficients and parameters in the previous
sub-sections are used in the numerical simulation here. The focus here is to track mois-
ture dynamics in a sheet with the two contrasting placement patterns under an evaporative
environment.

A sheet with a circular shape with the radius of 0.05 (m) is considered, which is con-
sidered as the domain Q = {(x1,%2) | 7 + x5 < 0.05%} in the dimensional form. The finest
computational mesh for the unit circular domain with 38,588 triangular cells and 19,565
dual cells is used where its spatial scale has been accordingly changed so that the above-
mentioned domain is created. The sheet is initially assumed to be dry (z = 0), which is
specified as the initial condition at the time ¢ = 0 (s). The part of the boundary of the do-
main (x;,%2) with 0 <x; < 0.05 (m) in the dimensional form is assumed to be fully wet
(# = 1) and the other part of the boundary is considered as the no-flux boundary with
the conventional zero-flux condition. The time increment At is set as 0.001 in the non-
dimensional form, which corresponds to 24.0 (s) in the dimensional form.

Figure 10(a) through 10(d) present the computed saturation at the times 0.6 x 102 (s),
1.2 x 103 (s), 4.8 x 103 (s), and 4.8 x 10* (s) (almost steady state) for the horizontal displace-
ment, respectively. Similarly, Figure 11(a) through 11(d) present the computed saturation
at the times 0.6 x 103 (s), 1.2 x 103 (s), 4.8 x 103 (s), and 4.8 x 10* (s) for the vertical
displacement, respectively. The spatial distributions of the saturation u at the transient
states (Figures 10(a) through 10(c) and 11(a) through 11(c)) are not significantly different
between the horizontal and vertical placements; however, they are qualitatively different at
the steady state (Figures 10(d) and 11(d)). The spatial distribution of the saturation u at the
steady state for the horizontal placement is symmetric with respect to the line x; + x; = 0,
but that for the vertical placement is not. This is because the moisture transport is (is not)
subject to the gravitational effect for the vertical (horizontal) placement modelled with the
nonlinear advection term. Figures 10(a) and 11(a) show that the sharp transitions of the
solutions are reasonably captured without numerical failure. The obtained computational
results show that the numerical solutions obtained do not have unphysical oscillations,
overshoots, and undershoots, indicating that the present 2-D DFVM is able to effectively
simulating moisture dynamics subject to the evaporation.

It should be finally noted that both the IS scheme has also been applied to the numerical
simulation, but relative error between the numerical solutions with the FU and IS schemes
was smaller than several percent. This is considered to be due to the relationship m > p for
the examined non-woven fibrous sheet where p is sufficiently small to affect the isotonicity
of the IS scheme established at p = 0.

5 Conclusions

This paper presented the 2-D extended PME for moisture dynamics in fibrous sheets un-
der evaporative environment. Each coefficient involved in the 2-D extended PME is pos-
sible to identify with physical experiments, and this statement was checked with labora-
tory experiments. The 2-D DFVM for approximating solutions to the equation was also
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Figure 10 Computed saturation at each time for the horizontal displacement. The computational
results at (@) 0.6 x 103 (s), (b) 1.2 x 10° (s), (€) 4.8 x 10° (s), and (d) 4.8 x 10* (s) (almost steady state),
respectively. The contour lines for u = 0.05n where n represent non-negative integers are depicted.

presented in this paper with detailed spatial and temporal integration schemes. The con-
cept of isotonicity was effectively incorporated into the evaluation of the numerical flux
to compute physically reasonable numerical solutions. An operator-splitting technique
based on the analytical solutions to the ODEs was applied to the temporal discretization
procedure to handle the problems with nonlinear source terms. Application of the 2-D
DFVM to test cases demonstrated its satisfactory computational accuracy and stability.
A demonstrative application example of the 2-D extended PME and the DFVM showed
their potentially high functionality to simulating essentially 2-D moisture dynamics in fi-
brous sheets under evaporative environment.

Although this paper focused solely on the moisture dynamics in fibrous sheets, the pre-
sented model can be applied to the dynamics in other materials, such as papers, and even
to different phenomena if the coefficients involved in the PME are appropriately modified
[74-76]. The present DFVM can be used for solving similar differential equations arising
in the other research areas where the equations of the PME-type are of central use. Fu-
ture research will focus on exploring more relevant functional forms of the coefficients of
the extended PMEs based on physical experiments, which requires sampling larger num-
ber of measured data with higher accuracy. Although the 2-D extended PME assumed
homogeneity and isotropy of sheets, real problems of moisture dynamics in non-woven
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Figure 11 Computed saturation at each time for the vertical displacement. Computed saturation at the
times (a) 0.6 x 103 (s), (b) 1.2 x 103 (s), (c) 4.8 x 10° (s), and (d) 4.8 x 10* (s) (almost steady state),
respectively. The contour lines for u = 0.05n where n represent non-negative integers are depicted.

fibrous sheets would involve spatially heterogeneous and/or anisotropic sheets. Hetero-
geneity can be partly resolved with the parameters or the coeflicients, but appropriate
internal boundary conditions will be necessary on the boundary of heterogeneity as in
Kuraz et al. [77, 78]. Transport phenomena of chemical substances whose dynamics typi-
cally follows certain conservation laws can be simulated basted on the moisture dynamics
with the present model. From a mathematical side, theoretical numerical analysis of the
2-D DFVM will be performed to deeper comprehend its properties, theoretical order of
convergence in particular. Mathematical analysis on the regularization for the nonlinear
degenerate parabolic PDEs like PMEs will also be addressed. Approaching from mathe-
matical, experimental, and numerical sides to these un-resolved issues will be carried out
in future research.
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