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Abstract
The accurate analog simulation of critical circuit parts is a key task in the R&D process
of integrated circuits. With the increasing complexity of integrated circuits it is
becoming cumulatively challenging to simulate in the analog domain and within
reasonable simulation time. Previous speedup approaches of the SPICE (Simulation
Program with Integrated Circuit Emphasis) analog circuit simulator included either
solver improvements and speedup or model order reduction of the semiconductor
devices.
In this paper we present a comprehensive approach to significantly speedup a

SPICE-based analog circuit simulator while keeping the single-rate characteristic of
time domain simulations. The novelty of our approach consists in the combination
and extension of existing approaches in a unique way, enabling fast transient
SPICE-level simulations. The main component of our approach is the circuit
partitioner that combines relevant aspects from circuit theory and linear algebra in a
unifying way. This enables the construction of an efficient and parallel BBD (bordered
block diagonal) solver. Furthermore, this BBD structure allows for intrinsic model order
reduction of the partitions during the Newton iteration, transforming the Newton
method to a Quasi-Newton method.
For mid-sized and large-sized circuits our BBD approach leads to significant

sequential and parallel accelerations of transient simulations. Additional speedup can
be gained from our block-bypass strategies exploiting the latency in the partitioned
circuit. Altogether our approach leads to a speedup of up to two orders of magnitude
compared to the state-of-the-art KLU solver while maintaining SPICE-level accuracy.

Keywords: SPICE; analog circuit simulation; transient analysis; circuit partitioning;
differential-algebraic equations; Newton method; parallel numerics; numerical linear
algebra; bordered block diagonal

1 Introduction
The introduction of the first SPICE [1] simulator revolutionized the design of electrical
circuits. The ability to simulate the circuit in various conditions and scenarios, before the
circuit is actually built, is crucial for fast and cheap circuit development.

State-of-the-art commercial [2, 3] and open-source [4, 5] SPICE simulators offer nu-
merous analyses in different physical domains and for various circuit types, helping the
engineers to analyze the behavior of the circuit under different conditions. One of the
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most basic and workhorse-like analyses of SPICE simulators within a commercial R&D
environment is the transient analysis which computes the behavior of a circuit in the time
domain up to a specified time point. Although one might consider the transient analy-
sis as consecutive operating point analyses in the time domain, we consider the transient
analysis as a separate analysis. Anyway the presented methods exploit some of the partic-
ular aspects of the transient analysis which could not be applied within an operating point
analysis.

The computational overhead of a transient analysis is increasing with the circuit size
and with the number of time steps required during the discrete time integration. With
constantly growing circuit complexity the transient simulation poses a significant bottle-
neck in the circuit design and verification pipeline. Hence, we focus in this paper on a
holistic approach to improve the performance of the transient analysis in a general SPICE
simulator, while maintaining the same level of accuracy. The proposed methods from this
paper were implemented within the frame of the analog in-house circuit simulator of In-
fineon called TITAN [6–8]. However, our approaches are of general character and can be
exported not only to other analog simulators but also to more general nonlinear transient
problems.

SPICE simulators like TITAN use the modified nodal analysis (MNA) to build up the
mathematical representation of the circuit. This formulation is mainly based on Kirch-
hoff’s current law stating that the balance of all incoming and outgoing currents in a
node must sum up to zero. The additive contribution of each individual device is spec-
ified by its characteristic equation which might have static and/or dynamic contents. The
unknowns of the mathematical system essentially represent the node voltages; however,
for each voltage-defining element such as voltage sources, an additional variable has to be
introduced which represents the contribution of its branch current in the Kirchhoff’s cur-
rent law formulation. Altogether this approach leads to a system of differential-algebraic
equations of the following general form

d
dt

q
(
x(t)

)
+ f

(
x(t)

)
+ s(t) = 0. (1)

Here q, f ∈R
n are the charge vector and the resistive current vectors, whereas s ∈R

n is the
stimulus vector. The vector x(t) = (v(t), i(t)) ∈ R

n represents the unknowns of the system:
the node voltages v and the MNA branch currents i, respectively. As a starting point for
the transient analysis the values of x(0) = (v(0), i(0)) are given or computed by an operating
point analysis. Starting at t = 0 the goal of the transient analysis is to compute the unknown
values for t ∈ [0, T], where T represents the stop time of the simulation. For more details
on the circuit modeling we refer to [9].

The DAE system (1) is discretized for time points tk ∈ (0, T], k = 1, . . . , M. Considering
the backward Euler formula as a simple representative of an implicit integration scheme,
the discrete form of (1) at time point tk is

q(x(tk)) – q(x(tk–1))
hk

+ f
(
x(tk)

)
+ s(tk) = 0, (2)

with the time step hk = tk – tk–1.
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For each time point tk a system of nonlinear equations, derived from the discretized
DAE system (2), needs to be solved with the unknown vector xk = x(tk):

1
hk

· q(xk) + f (xk) –
1
hk

· q(xk–1) + s(tk) = 0. (3)

More generally, an implicit integration method takes the form

d
dt

q
(
x(t)

)
∣∣
∣∣
t=tk

= αkq(xk) + βk ,

with the integration coefficient αk ∈ R and the history information βk ∈ R
n which are

both constant for the current time point. Applied to the differential-algebraic system (1),
the nonlinear system at time point tk for the unknown xk reads

αkq(xk) + βk + f (xk) + s(tk) = 0. (4)

Applying the Newton-Raphson method transforms this nonlinear system into a se-
quence of linear problems: The linearization of (4) at the current value of xk specifies
the Newton correction �xk as the solution of the linear system

(
αk

dq(xk)
dxk

+
df (xk)

dxk

)
�xk = –

(
αkq(xk) + βk + f (xk) + s(tk)

)
. (5)

We denote by C(xk) and G(xk) the Jacobian matrices of the charge and of the resistive cur-
rent vectors. Then A(xk) = αk · C(xk) + G(xk) represents the combined system matrix. The
residual on the right-hand side of (5) is referred to as r(xk), so that the Newton correction
�xk is the solution of the linear system A(xk)�xk = –r(xk).

The linear system (5) is the foundation of the Newton method which is required for each
time step k. The Newton loop is the most inner loop (see Figure 1) within the transient
analysis and represents the largest portion of the computational task within a transient
simulation.

In order to speed up the transient simulation while maintaining the SPICE-level accu-
racy, the algorithm on Figure 1 should be significantly improved, while keeping the single-
rate and implicitly coupled characteristic of the algorithm.

Abandoning the single-rate principle or the implicit characteristic of the algorithm on
Figure 1 results in a fast-SPICE algorithm [10, 11] that especially for large circuit have
the potential to be 10-100 times faster than their SPICE counterparts but are consider-
ably inaccurate and with default settings, without circuit specific settings, there is a high
probability of producing wrong results. However, for large circuits and long transient sim-
ulations, the only feasible analog simulation is through such fast-SPICE algorithms.

Partitioning the circuit is a fundamental element in most of the fast-SPICE accelera-
tion techniques. In one of the fast-SPICE approaches [12, 13] the partitions are solved
implicitly but are coupled explicitly in a multi-rate manner. In this case the static parti-
tioner [12] of the circuit must capture each feedback loop within the same partition [13]
and decouple the circuit along weak capacitive connections. A similar approach is pre-
sented in [14], where the feedback loops are also included in the same partition, but the
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Figure 1 Transient analysis algorithm. The flow diagram presents the algorithmic steps during the
transient analysis. The steps (1.4)-(1.7) within the nested loop are the most critical in the transient analysis. The
outer loop represents the time loop of the whole circuit.

partitions are overlapping and coupled explicitly by multiplicative or additive Schwarz it-
erations resulting in an accurate and fast simulation especially for RC dominated circuits.
Another fast-SPICE approach [15] uses the hierarchical circuit description in the input
netlista to partition the circuit by capturing the repetitive elements in the circuits. If many
instances of a given element share the same state, then significant computation can be
saved during step (1.4) in Figure 1. Furthermore, depending on the coupling strength [15],
selected partitions can be coupled explicitly. A similar approach is introduced in [16] with
emphasis on efficient and parallel computing. The method presented in [17] also uses the
hierarchical netlist structure for partitioning [6] and applies the multi-rate time integra-
tion for the resulted partitioning, resulting in a considerably shorter simulation time but
also in unpredictable accuracy. For a comprehensive overview of fast-SPICE techniques
we refer further to [10, 11].

Another important approach to further speed-up the simulation is to apply model-order
reduction to the circuit used as input for the simulator such that accuracy is not com-
promised and simulation time is drastically reduced [10, 18, 19]. These methods are also
named as SPICE-in, SPICE-out network reduction methods, and they work especially well
with circuits dominated by passive elements [18, 19]. In an industrial environment they
are typically applied before the actual SPICE-level simulations are started.

In order to deliver reliable SPICE accuracy, preserving the algorithmic framework in
Figure 1 is an important aspect of the SPICE acceleration techniques. The main focus of
these methods is to speed up and parallelize the inner loop of the algorithm, steps (1.4)-
(1.7) in Figure 1. The direct linear solvers in SPICE simulators, depending on the nature
of the circuit, scale O(n1.3-1.8) with the size n of the circuit [11]. Constructing the matrix
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and the right-hand side in step (1.4) is done with linear complexity O(n1), but the constant
factor of the complexity function is of order 103-105, since the industrial semiconductor
models typically have numerous nonlinear equations to evaluate. All other steps ((1.6)
and (1.7) in the inner loop) have linear O(n1) complexity and only require a couple of
operations per MNA variable. Therefore for large circuits the solver step (1.5) is the most
dominant part of the Newton loop and was the subject of several research work. In several
publications [20–23] the authors present various methods to speed up and to parallelize
the linear solver step in the inner loop. These approaches are limited not just by Amdahl’s
law for parallelization, but they also have limited speedup capability due to their pure
linear algebra view on the problem [10]. Even the approaches that partition the circuit on
the pure linear algebra view [24] of the problem [10, 11] have limited speed up capacity
for different circuit types and sizes.

For mid-sized circuits,b the most compute-intensive part of the inner loop is the evalu-
ation of the semiconductor models during the setup of the linear system (5), step (1.4) in
Figure 1. Hence, other approaches target the evaluation of the semiconductor devices by
either accelerated and parallelized evaluation [5, 25, 26] or by model order reduction such
as table models [27] of the complex semiconductor models.

Focusing only on one single step of this inner loop results in significant speedup either
for RC-c or semiconductor-dominatedd circuits of either large or mid-sized circuits. For
smalle and mid-sizedf circuits the semiconductor model evaluation and building the Jacobi
matrix is usually the most dominant part. For large-sized circuits,g most of the computa-
tional workload is in the linear solver. In addition to the size n of the circuit, it is also
relevant which type of devices are dominating the circuit: If the circuit is dominated by
parasitic resistors and capacitances and their number is usually considerably larger than
n, then the Jacobi matrix becomes more dense and the solver more computationally dom-
inant.

1.1 Structure of this paper
In this paper we present a comprehensive approach to speed up and parallelize all the
computational intensive steps of the inner loop in Figure 1, while maintaining the single-
rate characteristic and thus the reliable SPICE accuracy of the algorithm.

The starting point of our approach is a circuit partitioner. Our approach of partitioning
uses, extends, and combines existing partitioning approaches. Similar to other domain
decomposition approaches [6, 28] our partitioner minimizes the number of connection
nodes between the partitions, but in addition it also makes sure that the fill-in rate of
the resulting coupling system is limited [24] and that all partitions can be evaluated and
solved in a fully parallel way [6]. This partitioner is presented in the first section of this
paper.

In the second section of the paper, we present the resulting BBD matrix data structure
and the hybrid solver that extends the approach presented in [24].

The third section of this paper describes the partition bypass approach that extends the
BBD solver and the partition evaluation process. By skipping parts of step (1.4) and step
(1.5) for converged partitions of the inner Newton loop in Figure 1 significant computation
can be skipped, yet maintaining the same numerical precision of the simulation.

The final section of this paper presents the numerical results and simulation time com-
parison of our approach. We measure the run time and check the accuracy of our im-
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plementation for a large range of circuit types and circuit sizes. Thereby we demonstrate
that our approach results in significant parallel and sequential speedup compared to clas-
sical SPICE algorithms and also delivers reliable accuracy for all circuits that we simu-
lated.

2 Methods
2.1 Circuit partitioner
In most comprehensive SPICE and fast-SPICE acceleration approaches, the static or dy-
namic partitioner plays a central role. In our approach, since we keep the single-rate
principle of the simulation and also for sake of simplicity, we only considered a static
partitioner that divides the circuit in an early setup phase into a predefined number of
partitions. In contrast to a static partitioner, dynamic partitioners re-partition the cir-
cuit during the transient analysis based on the current state and activity of each circuit
part [15].

Due to the static nature of our partitioner it is crucial that all relevant performance as-
pects and constraints are considered already in the setup phase. We group the devices from
the circuit into separate partitions as it is illustrated in Figure 2 for a simple circuit with
only two partitions. The resulting partitions in Figure 2 have no electrical meaning be-
cause the partitioner minimizes the coupling nodes regardless of the subcircuit structure
of the input circuit. Similar to common circuit partitioning approaches [6, 11, 17, 29], the
devices are grouped such that the number of coupling nodes are minimized. This objective
can be achieved with a general graph partitioning algorithm [30–32], where the devices
are the nodes in the graph and the matrix entries in A (see (5))h of the circuit represent
the edges in the graph. Another approach is to transform the circuit into a hypergraph,
and use an appropriate partitioning algorithm [29].

Figure 2 Circuit partitioning. The figure illustrates the partitioning of a simplified operational amplifier
composed of 19 MOSFETs and one ideal voltage source of zero Volts into two partitions (P1 and P2). The six
coupling nodes (VDD, N1, N2, N3, N4, and VSS) are marked by arrows. The first partition P1 has five internal
nodes and one current variable (due to the MNA approach each voltage source has one current as MNA
variable in the system), whereas the second partition P2 has six internal nodes. The whole circuit has 17 nodes
(and thus 18 MNA unknowns) in total.
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After grouping the devices into partitions and ordering the rows and columns of A ac-
cording to these partitions, the system matrix will have the BBD structure (6).

A =

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

A1,1 0 0 · · · 0 A1,c

0 A2,2 0 · · · 0 A2,c

0 0 A3,3
. . .

...
...

...
...

. . . . . . 0
...

0 0 · · · 0 Ap,p Ap,c

Ac,1 Ac,2 Ac,3 · · · Ac,p Ac,c

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

. (6)

The block index c represents the coupling part of the p partitions in the circuit. One
main objective of the partitioner is to create a matrix structure that can be built and par-
tially solved independently by each partition. In this way, the coarser-grained parallelism
can be realized significantly improving the parallel performance also for mid- and small-
sized circuits. Since this BBD structure (6) is resulting from the device grouping partition
approach, this also means that Ac,c is the only matrix block that needs synchronization for
writing in a multi-threaded mode. Fortunately, this write conflict can be simply solved by
splitting the coupling system Ac,c into the contributions from each partition, i.e.,

Ac,c = A(1)
c,c + A(2)

c,c + A(3)
c,c + · · · + A(p)

c,c . (7)

After splitting the coupling matrix Ac,c the global system A can be written also in this
split form (7) with the following matrix structure:

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

A1,1 0 0 · · · 0 A1,c

0 0 0 · · · 0 0

0 0 0
. . .

...
...

...
...

. . . . . . 0
...

0 0 · · · 0 0 0
Ac,1 0 0 · · · 0 A(1)

c,c

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

+

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0 0 0 · · · 0 0
0 A2,2 0 · · · 0 A2,c

0 0 0
. . .

...
...

...
...

. . . . . . 0
...

0 0 · · · 0 0 0
0 Ac,2 0 · · · 0 A(2)

c,c

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

+ · · · . (8)

Analog to Figure 2 we denote the partition matrices by A = AP1 + AP2 + · · · + APp, where
the global system matrix is the sum of all partition matrices.

Applying the same splitting to the right-hand-side vector, we get p separate right-hand-
side vectors r(xi) = rP1 + rP2 + · · · + rPp:

r(xi) =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

r1

r2
...

rp

rc

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

r1

0
...
0

r(1)
c

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

+

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0
r2
...
0

r(2)
c

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

+ · · · +

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0
0
...

rp

r(p)
c

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

. (9)

Given the splittings (8) and (9), and the condition that each device must be assigned
uniquely to one partition, there is no writing conflict for devices from different partitions,
hence the partitions can build their matrices (step (1.4) in Figure 1) in a fully parallel and
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unsynchronized manner. In the upcoming section about partition bypass, we present fur-
ther aspects of this matrix and right-hand-side separation, which will turn out to be ben-
eficial also for sequential simulations.

The next crucial objective of our partitioning approach is to limit the fill-in entries in Ac,c

which will result from the LU solving process. A given matrix APi of partition i is partially
LU decomposed except the A(i)

c,c part. The solving step of the BBD matrix is presented in
detail in the next section.

In previous approaches [6, 11] the authors point out that if these fill-ins are not con-
trolled then for only 103-104 coupling nodes solving the coupling system Ac,c of the BBD
matrix becomes a bottleneck or even unfeasible. In [24], the author uses a fill-in minimiza-
tion technique by analyzing the elimination tree of the global BBD matrix and identifying
the coupling nodes such that the fill-in entries are minimized. However, the resulting par-
titioning cannot be built independently by the devices, since this approach considers only
the matrix view of the circuit.

Since it is difficult to compute the fill-in rate at the circuit device level, we analyze the
fill-in rate of the coupling system in a second step after the device grouping, once the fill-in
entries in A(i)

c,c, i = 1, . . . , p can be computed. In this second step, for each row of Ai,i and
Ai,c we compute how many fill-in entries would be inserted into the matrix blocks Ac,i and
A(i)

c,c. If the number of fill-ins for a row exceeds a threshold in the range of [103, 104], then
the row is moved from Ai,i and Ai,c to the coupling part Ac,i and A(i)

c,c. In our empirical tests
it turned out that a constant threshold of 1500 increases the number of coupling nodes
only marginally but decreases the number of fill-ins drastically in the accumulated Ac,c.
The value of this threshold can be explained by the structure of the system matrix, where
most of the matrix rows have less then 10 entries, therefore they cause marginal fill-in
entries. According to [24] and to our experience, there are only proportionally few rows
that cause a significant number of fill-ins, and these rows are detected by this threshold
value and are moved to Ac,c.

The final objective of our partitioning approach is to ensure that all block matrices can
be LU decomposed by a static pivoting solver. The fill-in minimization reordering does
always symmetric row and column swapping, so that the diagonal elements remain on
the diagonal. Node voltage MNA variables can be used for static pivoting, since they have
nonzero diagonal entries. However, the branch current MNA variables which are required
by voltage sources and inductors have no diagonal entries in all analyses. Therefore they
require a neighboring node voltage MNA variable for pivoting. This row swapping be-
tween these two MNA variables must be possible within one partition or within the cou-
pling part of the system. In this last step of the partitioning, it is ensured that all current
MNA variables and their neighbor node voltage MNA variables are either in the same par-
tition block matrix Ai,i or in the coupling system Ac,c. For this reason, if necessary, further
MNA variables are moved to the coupling system. In other words, we ensure that all cur-
rent paths are contained completely either in a unique partition matrix or in the coupling
matrix. In this way it is always ensured that the diagonal entries will stay nonzero during
the block-wise Gaussian eliminations.

The novelty of our circuit partitioning approach is that we consider various aspects of
the problem, that all enable at the end a fast and parallel simulation of mid-sized and large
circuits. At the end of this section as a summary we list all the objectives that represent
the core of our partitioning approach.
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1. Parallel building and solving of each partition’s matrix.
2. Minimize the number of coupling nodes.
3. Minimize the fill-in rate in the coupling system.
4. Ensure for all partitions the solvability with static pivoting LU solvers.
These objectives are achieved by the following three consecutive steps that form our

novel partitioner’s pseudo algorithm:
1. Group the devices into partitions with the graph partitioning algorithm [30] such

that the coupling nodes are minimized.
2. Apply the fill-in threshold of 1500 to minimize the fill-in rate in the coupling system.
3. If necessary, ensure for all partitions the solvability with static pivoting LU solvers by

moving MNA variables into the coupling part.

2.2 Solving the BBD system
In this section, we present in more detail our approach to solve the BBD system. For more
details on the mathematical background of the BBD systems and Schur complement we
refer to [11, 24, 33]. By permuting the rows and columns according to partition nodes xi,
i = 1, . . . , p or coupling nodes xc, the BBD system matrix A and right-hand side r take shape
as

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

A1,1 0 0 · · · 0 A1,c

0 A2,2 0 · · · 0 A2,c

0 0 A3,3
. . .

...
...

...
...

. . . . . . 0
...

0 0 · · · 0 Ap,p Ap,c

Ac,1 Ac,2 Ac,3 · · · Ac,p Ac,c

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

x1

x2

x3
...

xp

xc

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

r1

r2

r3
...

rp

rc

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

. (10)

The solution of each partition from (10), assuming xc is known, is given by xi =
A–1

i,i (ri – Ai,cxc), whereas the solution for the coupled system is determined by

(

Ac,c –
p∑

i=1

Ac,iA–1
i,i Ai,c

)

xc = rc –
p∑

i=1

Ac,iA–1
i,i ri. (11)

Using the splitting of the partitioner for parallel matrix and right-hand side building, in-
troduced in (8) and (9), the coupled system (11) is transformed to

( p∑

i=1

(
A(i)

c,c – Ac,iA–1
i,i Ai,c

)
)

xc =
p∑

i=1

(
r(i)

c – Ac,iA–1
i,i ri

)
. (12)

Each summand in the sums of (12) is the contribution from one partition, and only in the
final step they need to be summed sequentially. Using the abbreviations

Si = A(i)
c,c – Ac,iA–1

i,i Ai,c, si = r(i)
c – Ac,iA–1

i,i ri,

the coupled system (12) can be written as

( p∑

i=1

Si

)

xc =
p∑

i=1

si,



Benk et al. Journal of Mathematics in Industry  (2017) 7:12 Page 10 of 19

yielding the coupling system Sxc = s which needs to be solved before all xi, i = 1, . . . , p can
be determined.

The contributions Si and si of partitions i = 1, . . . , p to the coupling matrix S and right-
hand side s are computed by a partial in-place block LU-decomposition of each partition’s
matrix, i.e.,

[
Ai,i Ai,c

Ac,i A(i)
c,c

]

=

[
Li,i 0

Ac,iU–1
i,i I

][
Ui,i L–1

i,i Ai,c

0 Si

]

. (13)

The matrix Si = A(i)
c,c – Ac,iU–1

i,i L–1
i,i Ai,c will be the direct result of the partial block LU-

decomposition, and the right-hand-side contribution is given by the subsequent partial
forward substitution of the resulting LU-decomposition with the given right-hand side
si = r(i)

c – Ac,iU–1
i,i L–1

i,i ri for i = 1, . . . , p. Due to the criterion 4 of the partitioner it is ensured
that the partial LU-decomposition is made with in-place and static pivoting solver, result-
ing in maximal numerical performance. Referring to Figure 1, we also point out that with
our BBD approach not just step (1.4) but also partially step (1.5) can be computed in par-
allel. The first synchronization point in the Newton loop is the building and solving of the
coupling system Sxc = s.

Subsequent to the coupling system solution and in accordance to the partial LU de-
composition (13), a partial backward substitution is necessary to compute the unknowns
xi = U–1

i,i L–1
i,i (ri – Ai,cxc), i = 1, . . . , p. Once xc is known, this step can be computed in a par-

allel and unsynchronized manner.
Figure 3 summarizes the presented steps to build and to solve the BBD system. The three

steps on Figure 3 represent steps (1.4) and (1.5) from Figure 1 which is the most compu-
tational intensive part of the Newton loop within transient simulations. The sequential
part of Figure 3 is grouped into step (3.2) that needs to be addressed for both parallel and
sequential computational performance.

2.3 Solving the coupling system
Building the matrix S and corresponding right-hand side s is a sequential but linearly com-
plex task. Since the matrix S is more dense than the partition matrices APi , i = 1, . . . , p [11,
24], solving this coupling system becomes more computational complex than building the

Figure 3 Steps to build and solve the BBD system. This figure illustrates in more detail steps (1.4) and (1.5)
of the inner loop in Figure 1 in the frame of our BBD approach. Both of the loops, step (3.1) and step (3.3) of
this figure can be done in fully parallel and decoupled mode, whereas step (3.2) represents the sequential
bottleneck of the BBD approach.
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matrix and right-hand side. Therefore, in the following subsection, we focus on our ap-
proach to solve the coupling system that is a crucial element in step (3.2) of Figure 3.

The criterion 3 of the partitioner ensures that the number of fill-ins in the matrix are
reduced, but they are overall significantly higher than for the individual partition matrices.

For mid-sized circuits, if the number of coupling nodes is less than a few hundreds and
a direct solver does not produce significant additional fill-ins, a direct solver works the
best also for the coupling solver. However, even for mid-sized circuits, when the number
of coupling nodes is beyond 300-400, efficient iterative solvers become more competitive
than direct solvers.

Our approach is based on the ILU(ε)-preconditioned GMRES Krylov space algorithm,
cf. [34–36]. This iterative solver was already successfully used in [24] as an efficient cou-
pling system solver. While the author used a constant ε = 0.001, we extend this approach by
using an adaptive ε-strategy. Previously in [24] this approach was tested for one constant
matrix. During the transient simulation using the same threshold value ε, as activity might
change in the circuit, the pattern of the ILU(ε) preconditioner might also change signif-
icantly. On the other hand, recomputing the pattern of the ILU(ε) preconditioner poses
a significant computational overhead. Therefore the convergence of the preconditioned
GMRES and the computational overhead for an ILU(ε) update needs to be balanced. If the
pattern stays the same, then one simple measure is to only update the ILU-decomposition
of the matrix, considering the current values of the Newton iteration matrix.

In summary, we developed an adaptive ε-strategy for our ILU preconditioner which
detects poor convergence or divergence of the GMRES by monitoring the number of re-
quired iterations. Depending on the level of divergence one of the following steps is being
executed:

1. Update the ILU-decomposition using the current pattern and values of A.
2. Recompute the pattern of ILU(ε) with the value of ε and do (1).
3. Decrease ε by two and do (2).

We use a starting value of ε = 0.05 which for average simulations remains unchanged or
decreases only slightly, so that the ILU(ε) preconditioner remains computationally cheap.
The values of ε are limited by a lower bound of 10–5, and in case of divergence of the
iterative solver for ε ≤ 10–5 a direct solver is used instead. With this backup strategy we
do not just ensure robustness of transient simulations but we also avoid too small values
of ε.

One additional important aspect is that the core GMRES method consists mainly of ma-
trix vector multiplications [35] which can be parallelized efficiently, but the ILU precon-
ditioner, for such matrix sizes, does not run efficiently in parallel. Therefore, large values
of ε favor parallel simulation since the computations in ILU(ε) are marginal compared to
GMRES. On the other hand, with small values of ε a more accurate preconditioner is cre-
ated and fewer GMRES iterations might be required. For the enlisted reasons it is crucial
to automatically select the optimal values of ε for a given transient simulation and circuit,
extracting the maximal efficiency for sequential and parallel transient simulations.

2.4 Partition bypass acceleration
In the previous two sections, we presented the main components of our approach. The
partitioner, the parallel matrix building and solving method result already in substan-
tial transient simulation speedups. In this section, we present one additional acceleration
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method that exploits the latency in the partitioned circuit while maintaining the single-
rate and SPICE-accuracy aspects of the transient simulation. Furthermore, this accelera-
tion technique is built on top of the previous methods and can be deactivated.

The characteristic of large- and mid-sized circuits is that during their operation mode
the activity is mainly concentrated within a few number of partitions [10, 11]. In this analog
context, ‘activity’ means the process when a semiconductor changes its state from ON
to OFF or vice versa. During this transition the semiconductors have highly nonlinear
behavior and SPICE-level accuracy is crucial to capture this transition. Furthermore, such
nonlinear transitions can trigger a chain of other transitions at the same time during the
Newton loop. Therefore it is crucial for SPICE-level accuracy to simulate the partitions in
a single-rate way.

The main idea of the partition bypass is to reuse the factorized Ai,i, the right-hand side ri,
and the contributions to the coupling system Si and si from the previous Newton iteration,
if the bypass criterions are met. Since we operate directly with the partition matrix Ai,i

and with the right-hand side ri, as the Newton linearization (5) shows, we cannot reuse
the matrices from previous time steps, while the integration coefficient α changes with
the time step size and integration method. Therefore the bypass method starts with the
second Newton iteration, such that Ai, ri, Si and si are computed with the correct α. Hence,
each device is evaluated at least once in a time step ensuring the single-rate aspect of our
approach.

Figure 4 presents the modified Newton loop of Figure 3. The difference to Figure 3 is only
in step (4.1). If for a partition i the bypass criterion is fulfilled, then the whole computation
is skipped and the results from the previous Newton loop are reused. Steps (4.2) and (4.3)
are computed as in Figure 3. If a partition is bypassed for a Newton iteration, this does not
imply that for subsequent Newton iterations it will be skipped as well, since in step (4.2)
xc is updated and in step (4.3) even a bypassed partition’s unknowns xi will be changed.

As next we introduce the partition bypass criterion that is the key for the success of
this acceleration. A strict partition bypass criterion increases the speedup only marginally,
whereas inaccurate criterions can cause convergence problems or can even produce wrong
results in certain cases.

We denote by x̂i the values of the unknowns xi of partition i where the last Ai,i and ri

was built. Since not all of the elements xc contribute to all partitions, we denote by x(i)
c the

Figure 4 Partition bypass acceleration. If the bypass criterion for a partition is met, the devices within this
partition need not to be evaluated and matrix LU-decomposition can also be skipped. Subsequent
computations are unchanged compared to Figure 3.
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subset of xc that contributes to partition i, and x̂(i)
c denotes the last values of x(i)

c where the
partition i was evaluated. Newton convergence of partition i is monitored by the vector
Ti which has the values

Ti;j =
|ri;j|

ABSTOL + RELTOL · imaxi;j
, j ∈ Pi. (14)

Here imaxi;j is the absolute value of the maximal current contribution to voltage node j
within partition i, and Pi represents the MNA unknowns xi and those MNA unknowns
from xc that contribute to partition i. The absolute tolerance ABSTOL is set to 10–12 for
the voltage nodes and to 10–6 for the current equations. The relative tolerance RELTOL
is 10–3 for all MNA unknowns. The indicator vector represents the convergence state of
the MNA variables during the Newton loop. The right-hand-side vector is the sum of
the currents at a given node, and this sum, according to Kirchhoff’s current law, should
converge numerically to zero. If Ti;j ≤ 1.0, then the jth unknown of partition i is converged
in terms of the Newton criterion. The Newton iteration is converged for partition i when
‖Ti‖∞ ≤ 1.0. With the introduced notation we define the bypass indicator for all MNA
variables belonging to a partition i = 1, . . . , p:

Bi =

⎧
⎨

⎩
1, if (‖x̂i – xi‖∞ < εx and ‖x̂(i)

c – x(i)
c ‖∞ < εx) or ‖Ti‖∞ < εN ,

0, otherwise,
(15)

where εx = 10–6 and εN = 0.8. The tolerance εx represents the trust region of the last eval-
uation point x̂i and x̂(i)

c where partition i was evaluated. The coefficient εN ≤ 1.0 ensures
that the partition is converged in terms of the Newton criterions. The indicator Bi in (15)
has a value of 1 when the new evaluation point for partition i is within the trust region
of the last evaluation point or when the Newton is already converged for partition i. If
the value of the indicator function Bi is zero, it means that the partition i should not be
bypassed.

The bypass indicators (15) are evaluated at the beginning of each Newton iteration. The
computational overhead for this block bypassing consists in storing the partition’s LU-
factorized matrix and the right-hand side, and in computing the bypass indicators (15).
Thus it does not pose significant additional computations compared to Figure 3.

The bypass method of Figure 4 transforms the Newton method into a Quasi-Newton
method by using a reduced model for the partition. If a partition is bypassed, then a con-
stant extrapolation is used with the values of the last evaluation point. The possibility of
linear extrapolation has also been studied in [37], but it turned out that the constant ex-
trapolation gives the best cost-benefit ratio overall for robust transient simulations.

2.5 Applicability of the BBD solver for other analyses
So far we investigated the concept and application of our BBD matrix and solver approach
in the context of transient analyses. In the following we emphasize some of the high-level
aspects of our approach applied to other circuit analyses that are often used beside tran-
sient analysis. The basic principle that each device contributes additively to the overall
system is still true for DC and AC analyses. Therefore our concept of partitioning the cir-
cuit and solving the respective BBD system can be correspondingly used also for these
analyses.
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Apart from the absence of dynamic contributions, each step of a DC analysis can be
considered as computing one transient timestep. Therefore the solving approach of the
whole BBD system is the same as for transient analyses, and it might result in substantial
performance gains compared to conventional solvers.

A small-signal AC or AC NOISE analysis is built upon a linearization around an oper-
ating point and results in a sequence of linear problems for the selected frequency points.
Then the whole BBD system becomes complex-valued, but is still structurally equivalent
to the respective transient system.

In both cases we solve the coupling system of the BBD matrix with a direct solver, al-
lowing to use the same matrix structure and solver for all these analyses. Further detailed
elaboration of our matrix and solver approach in the context of AC and DC analysis is
beyond the scope of this paper.

3 Results and discussion
In this section, we demonstrate the speedup potential of our presented method to signifi-
cantly speed up transient analog circuit simulations. The implementation of the presented
approach was done in Infineon’s in-house SPICE simulator TITAN, and all the numerical
comparisons were made in the frame of this simulator, assuring that the numerical meth-
ods are tested in the same environment. The TITAN simulator is used in productive envi-
ronment and its implementation is trimmed for high performance computing, therefore
the presented novel method is tested in practical productive environment, showing the
true potential of our approach.

For the numerical comparison we consider the nine circuits from Table 1. These cir-
cuits represent a wide range of circuit sizes and types. We consider the semiconductor-
dominated circuits cir1, cir2, cir3, cir6, cir7, and cir8, whereas the RC-dominated circuits
are cir4, cir5, and cir9. Furthermore we consider the mid-sized circuits where the total
number of MNA variables is less than 106, these circuits are cir1, . . . , cir5, whereas the
large circuits are cir6, . . . , cir9. As shown in Table 1, the number of nonzero entries in the
system matrix is increasing with the increasing number of MNA unknowns.

In an industrial context the RC-dominated circuits are always preprocessed by a state-of-
the-art SPICE-in, SPICE-out network reduction tool [18, 19]. This is also the case for the
input circuits in our test suite. Hence the speedup of such network reduction techniques

Table 1 List of the nine test circuits that were taken from a wide range of applications (e.g.,
ADCs, mixers, PLLs) and semiconductor technologies

Name # semicond. # MOSFET # R # C # MNA # NNZ

cir1 35,671 35,621 1160 1633 20,826 173,347
cir2 20,057 20,057 395 2820 9837 92,921
cir3 10,979 10,919 599 34,010 6559 90,859
cir4 713 613 11,585 26,533 10,492 93,762
cir5 31,185 31,075 4884 205,219 80,706 885,501
cir6 239,034 217,034 4806 13,348 145,903 1,158,732
cir7 319,395 318,395 4072 43,837 170,524 1,498,263
cir8 109,379 109,279 5563 745,088 270,044 3,129,289
cir9 55,601 55,491 319,110 2,228,295 432,009 5,991,033

For each circuit we list in the second column the total number of semiconductors (MOSFETs, BJTs, JFETs, diodes) and in the
next column only the number of MOSFETs. In the following columns we enlist the number of resistors and capacitors which
are the dominant part for extracted circuits. In the last two columns we list the total number of MNA variables in the DAE
system and the number of nonzero entries in the resulting system matrix.
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is orthogonal to the speedup of actual SPICE-like simulations, and not taken into account
in the following comparison.

As a base line of comparison we choose the KLU solver [23, 38] within the TITAN simu-
lator. This solver is well suited for sparse matrices that arise from analog circuit simulation,
and this solver is also widely used in open-source [4, 5] and commercial SPICE simulators.
Since KLU [23, 38] does not have a parallel version, we consider the elapsed time of the
sequential simulation as a reference for the sequential and parallel simulations with our
approach.

The measured elapsed time results of the sequential and parallel simulations are pre-
sented in Table 2. The number of partitions and the bypass rate of the partitions are pre-
sented in Table 3. We also underline here that the presented circuits and their setup are
taken from an industrial and practical context. Therefore they contain output and other
sequential parts that by Amdahl’s law limits the theoretical speedup of the total simulation
time. For these reasons, we only scale up to 8 CPUs and we aim at a speedup in a range of
[3, 4] with 8 CPUs compared to the same sequential run.

In the first step we consider the mid-sized circuits, cir1, . . . , cir5. Within this group
there are both RC- and semiconductor-dominated circuits. cir1, cir2, and cir3 are
semiconductor-dominated and our approach matches the sequential performance of the
KLU solver. In these cases the partition bypass strategy also significantly improves the
BBD solver performance. Especially for cir1 and cir3 we get a partition bypass rate around
30% (see Table 3) and thus additional overall sequential speedup of 20% in the elapsed
time. The parallel scaling for these circuits is also satisfactory since the speedup is around
factor 3 with 8 CPUs.

However for RC dominated circuits, cir4-5, the parallel scaling only reaches a factor
of 2 with 8 CPUs. For such circuits, as Table 3 shows, the coupling system is relatively
large compared to the overall system matrix, and the presented ILU preconditioned GM-
RES solver for the coupling system is not well suited for parallelization. Furthermore, the
evaluation of simple devices such as linear resistors and capacitors represents a signifi-
cantly smaller and parallelizable computation task than complex semiconductor models.
For these reasons, the speedup factor compared to the semiconductor-dominated circuits
is significantly lower. In comparison to the KLU solver, our BBD solver performs signifi-
cantly better for cir5, but for cir4, due to the small circuit size, KLU performs sequentially
20% better.

The large-sized circuits truly display the true potential of our approach. For the
semiconductor-dominated circuits cir6 and cir7 the speedup compared to KLU is sub-
stantial, and additionally we get more than factor 4 speedup with 8 CPUs. Overall, in com-
parison with the sequential KLU solver in both cases we get double digit factor speedup
factors, which yield a huge step forward in the analog transient circuit simulation.

For the RC-dominated large circuits the sequential speedup of the BBD compared to
the KLU is substantial and for very large circuits can have double digits. On the other
hand in these cases the parallel speedup of the BBD solver is only around factor 2. This
bad behavior is due to the ILU preconditioner which runs sequentially at the moment. For
such very large circuits this limits the parallel scalability of our approach.

Another important aspect is the effect of the partition bypassing. As it is shown in
Table 2, turning on the partition bypassing in sequential mode does not have any sig-
nificant effect on the number of time steps nor on the number of iterations. Therefore
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Table 2 List of the 9 test circuits that were taken from concrete circuits

Circuit/solver/# CPU Elapsed time (s) # time steps # Newton iter. Speedup

cir1/KLU /1 55.05 400 1781
cir1/BBD1/1 52.33 422 1861 1.05
cir1/BBD2/1 45.45 418 1895 1.21
cir1/BBD2/2 29.44 423 1929 1.87
cir1/BBD2/4 18.59 419 2026 2.86
cir1/BBD2/8 16.43 412 2013 3.35

cir2/KLU /1 42.72 657 2450
cir2/BBD1/1 43.82 657 2438 0.97
cir2/BBD2/1 42.43 686 2545 1.01
cir2/BBD2/2 27.53 655 2453 1.55
cir2/BBD2/4 19.16 707 2574 2.22
cir2/BBD2/8 14.30 659 2467 2.98

cir3/KLU /1 165.95 1920 7803
cir3/BBD1/1 139.00 1844 7452 1.19
cir3/BBD2/1 118.44 1870 7673 1.40
cir3/BBD2/2 83.88 1872 7646 1.97
cir3/BBD2/4 62.10 1877 7756 2.67
cir3/BBD2/8 55.92 1845 7655 2.96

cir4/KLU /1 125.01 3206 10,257
cir4/BBD1/1 153.48 3213 10,488 0.81
cir4/BBD2/1 151.89 3218 10,488 0.82
cir4/BBD2/2 103.58 3213 10,488 1.21
cir4/BBD2/4 87.31 3213 10,488 1.43
cir4/BBD2/8 71.39 3213 10,488 1.75

cir5/KLU /1 1616.62 892 2987
cir5/BBD1/1 510.28 897 3032 3.16
cir5/BBD2/1 508.44 897 3032 3.18
cir5/BBD2/2 354.05 897 3030 4.56
cir5/BBD2/4 268.39 897 3031 6.02
cir5/BBD2/8 256.78 897 3034 6.30

cir6/KLU /1 2482.57 153 893
cir6/BBD1/1 225.35 154 880 11.01
cir6/BBD2/1 212.00 147 866 11.71
cir6/BBD2/2 123.13 147 869 20.16
cir6/BBD2/4 81.50 147 875 30.46
cir6/BBD2/8 66.96 147 880 37.10

cir7/KLU /1 2456.89 176 1132
cir7/BBD1/1 497.99 176 1132 4.93
cir7/BBD2/1 475.30 180 1164 5.16
cir7/BBD2/2 286.65 180 1164 8.57
cir7/BBD2/4 172.19 180 1164 14.29
cir7/BBD2/8 132.23 180 1164 18.58

cir8/KLU /1 8490.84 484 2964
cir8/BBD1/1 2593.06 454 2829 3.27
cir8/BBD2/1 2462.75 463 2879 3.44
cir8/BBD2/2 1846.18 462 2877 4.60
cir8/BBD2/4 1470.81 464 2872 5.77
cir8/BBD2/8 1312.55 458 2854 6.47

cir9/KLU /1 23,238.25 68 193
cir9/BBD1/1 1296.32 68 193 17.92
cir9/BBD2/1 1254.30 68 209 18.52
cir9/BBD2/2 1083.28 68 209 21.45
cir9/BBD2/4 870.81 68 209 26.68
cir9/BBD2/8 712.55 68 209 32.61

The base line for comparison is a simulation with the KLU solver [23, 38]. The sequential run with the BBD1 solver is the
presented approach but without partition bypassing. The sequential and parallel runs with BBD2 solver represent the full
approach with partition bypassing. For each sequential and multi-threaded simulation we enlist the elapsed simulation time
on an Intel Xeon 2.9 GHz processor with 12 cores, without considering any setup time of the solver or simulator. Starting
from the third column, we enlist the number of time steps, the number of Newton iterations, and the speedup in the elapsed
time compared to the KLU solver.
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Table 3 The resulting number of partition and bypass ratio for each of the nine test circuits

Circuit # partitions Partition bypass ratio # coupling nodes # NNZ in S

cir1 16 33% 1005 4.8E+4
cir2 16 12% 797 5.3E+4
cir3 16 29% 831 6.6E+4
cir4 16 9% 1003 5.7E+4
cir5 24 10% 6402 5.5E+5
cir6 48 14% 6550 3.7E+5
cir7 56 12% 7277 4.9E+5
cir8 64 4% 20,137 1.9E+6
cir9 64 11% 90,347 1.3E+7

In the last two columns we enlist the number of coupling nodes and the number of nonzero entries in the coupling matrix S.

the presented approach for partition bypass represents a robust method to speed up the
presented BBD solver. Table 3 summarizes the partition bypass rate which depends not
just on the size of the circuit or number of partitions, but mostly on the scenario that
is simulated. A circuit start-up scenario usually results in single digit partition bypass
rates, since the supply voltage ramp up usually affects the whole circuit and results in
activity in all partitions. On the other hand for circuits in the normal working regime
at a given time point the activity is concentrated in a relatively small portion of the cir-
cuit.

In this section we demonstrated that the presented approach for transient analog circuit
simulation is capable of double digit speedups for large-sized circuits in comparison to the
state-of-the-art KLU solver.

4 Conclusion and outlook
In this publication we presented a holistic approach to achieve double digit speedups for
analog transient simulation of large-sized circuits compared to existing state-of-the-art
KLU [23, 38] solver. The novelty of our approach consists in the combination and exten-
sion of existing approaches in a unique and unprecedented way. In the first step of our
approach we partition the circuit such that the system matrix and right-hand side can
be built in parallel, while minimizing the fill-in rate in the resulting coupling system of
the BBD matrix. For solving the coupling system during the simulation we introduced
an adaptive ε approach for the ILU(ε) preconditioned GMRES solver which solves the
coupling part efficiently. As an additional speedup measure we introduced the partition
bypass method. If certain criterions are met during the Newton iteration of a time step,
the partition bypass method skips significant computations of the Newton loop. The nu-
merical examples clearly underline not just the robustness of our approach but its true
speedup potential especially for large-sized circuits in the frame of an industrial analog
simulator.

Further work should be focused on the ILU(ε) preconditioner of the GMRES solver
which represents a performance bottleneck for large-sized circuits. Furthermore the GM-
RES solver should be coupled to the Newton convergence criterion such that fewer GM-
RES iterations are computed. The current form of the partition bypassing is also rather
simple and could be also further extended to increase the bypass ratio of the partitions.
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Endnotes
a Netlist is the input file format that describes the hierarchical structure of the circuit.
b 104 ≤ n ≤ 106.
c Circuit where the linear resistors and capacitance dominate the circuit. This type of circuit is also called post-layout.
d The number of MOSFETs, bipolar transistors, diodes, and other semiconductors are dominant in the circuit. This is

also called pre-layout circuit.
e n ≤ 103.
f 103 < n≤ 106.
g n > 106.
h For the sake of simplicity we use A = A(xi).
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