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Abstract

Numerical reduced basis methods are instrumental to solve parameter dependent
partial differential equations problems in case of many queries. Bifurcation and
instability problems have these characteristics as different solutions emerge by
varying a bifurcation parameter. Rayleigh—-Bénard convection is an instability problem
with multiple steady solutions and bifurcations by varying the Rayleigh number. In
this paper the eigenvalue problem of the corresponding linear stability analysis has
been solved with this method. The resulting matrices are small, the eigenvalues are
easily calculated and the bifurcation points are correctly captured. Nine branches of
stable and unstable solutions are obtained with this method in an interval of values of
the Rayleigh number. Different basis sets are considered in each branch. The reduced
basis method permits one to obtain the bifurcation diagrams with much lower
computational cost.

Keywords: Reduced basis; Linear stability; Eigenvalues and eigenfunctions;
Bifurcation; Rayleigh Bénard instability; Convective flow

1 Introduction

Bifurcations and instabilities in differential equations are features that allow the explana-
tion of many fluid dynamics phenomena in nature and industrial processes [1]. An exam-
ple is the Rayleigh—Bénard convection problem [2, 3]. Rayleigh—Bénard and related natu-
ral convection phenomena are usual in many industrial applications. For instance, in the
formation of microstructures during the cooling of molten metals in computer chips or
large scale equipments. The model equations in this case are the incompressible Navier—
Stokes equations coupled with a heat equation under the Boussinesq approximation. Here
the conductive solution becomes unstable for a critical vertical temperature gradient be-
yond a certain threshold and therefore a convective motion sets in, and, depending on
boundary conditions and other external physical parameters, new convective patterns oc-
cur [1].

All these problems usually need to be solved with numerical methods. To find all the
different solutions for the same or different values of the bifurcation parameter and bi-
furcations among them specific continuation techniques are required. These techniques
are highly developed for ordinary differential equations [4], but are less advanced for par-
tial differential equations. Some continuation methods consider a perturbation with the
eigenfunctions at the bifurcation point in order to find the bifurcated solution, others are
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based on the existence of finite dimensional inertial manifolds [5] and projections on this
manifold [6], other use proper orthogonal decomposition (POD) [7].

In [8, 9] a Rayleigh—Bénard problem is studied under the perspective of looking for the
bifurcation diagrams. The different solutions and successive bifurcations when the tem-
perature gradients increase are obtained based on a branch continuation technique. In
the study of these bifurcation problems the model of partial differential equations must
be solved for lots of values of the bifurcation parameter and a linear stability analysis has
to be performed for each solution in order to know its linear stability properties and the
succession of bifurcations.

The reduced basis method is a meaningful numerical technique to solve problems of
partial differential equation for a large amount of values of the bifurcation parameter with
a reduced cost [10—17]. This method consists of the construction of a basis of solutions
for different values of this parameter. These solutions are obtained in a preliminary stage
with a standard discretization and a greedy selection is applied to them. A further use of
a Galerkin method for the reduced basis expansion is implemented.

In this work the reduced basis method is applied as a continuation technique to find the
multiple steady solutions and instabilities among them, that appear in a Rayleigh—Bénard
convection problem in a rectangle. In [18] the reduced basis method has been applied to
this problem to obtain some stable solutions, allowing one to prove the efficiency of the
given method to obtain solutions for different values of the parameters. The aim of the
present paper is to complete the study of bifurcations with the calculation of the whole
bifurcation diagram with all the solutions including the unstable ones, their linear stability,
bifurcations among them and the capturing of the bifurcation points. All the steps are
solved with reduced basis.

The article is organized as follows. In Sect. 2 we formulate the problem, providing the
description of the physical setup, the basic equations and boundary conditions. We de-
scribe the numerical stationary problem and the linear stability analysis of the stationary
solutions. Section 3 discusses the numerical reduced basis method. Section 4 describes
the numerical results. Finally Sect. 5 presents the conclusions.

2 Formulation of the problem

The domain is a rectangle 2 = [0,I"] x [0, 1] containing a fluid that is heated from below
at temperature T, and on the upper plate the temperature is 7T;. The equations governing
the system are the incompressible Navier—Stokes equations with the Boussinesq approx-
imation coupled with a heat equation. The variables present in the problem are u, and
u,, the components of the velocity vector field u, 6 the temperature, P the pressure, x and
z the spatial coordinates and ¢ the time. The magnitudes are expressed in dimensionless
form as explained in [18]:

0=V.u, ing, (1)
1 .

F(atu +u-Vu)=Rbe, - VP + Au, in &, (2)
r

0:0 +u-VO —u, =A0, inQ. (3)

Here e, is the unit vector in the vertical direction, R is the Rayleigh number that measures
the effect of buoyancy and Pr is the Prandtl number. Motivated by mantle convection
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modelling, the Prandtl number Pr is considered infinite as in [8, 9], then the left hand side
term in Eq. (2) can be made equal to zero.

Lateral walls are thermally insulated, non-deformable and free slip. The bottom plate is
rigid and the upper surface is non deformable and free slip. These conditions along with
the thermal boundaries on the top and bottom plates are expressed as,

u=0, 6=0 onz=0; 0=0,u,=u,=0 onz=1, (4)

0,0 =0, =1, =0, onx=0, and onx=T. (5)
Equations in problem (1)—(5) are invariant under the symmetry,

J/ : (x, zZ, le, uzr Q)P) - (_x) Z) _ux: uz; 9>P)'
Then, if S is solution of the problem, y S is a solution as well. This solution is said to be in
the orbit of S [19]. We consider solutions in the orbit of S to be equivalent, so sometimes

we restrict ourselves to one single solution in an orbit.

2.1 Stationary equations
The corresponding stationary problem is the following,

V.u=0, ing, (6)
ROe,—VP+Au=0, ing, (7)
u-Vo-u,=A0, inQ 8

with the boundary conditions (4)—(5). There are results for the existence of solutions in
this problem in [20, 21].

This stationary problem (6)—(8) with boundary conditions (4)—(5) is solved numerically
with a Newton method for the nonlinear terms [22] and a Legendre collocation [23, 24]
for each step in the Newton procedure. In the Newton method an aproximate solution
u?, u?, P°, 6° is required at the beginning. This guess solution can be the solution for a

different value of the parameters or the solution for the linear problem. This initial guess

is improved by adding to it a small correction as follows: u0 + iy, u + ii,, P° + P, o0+ 0.
These expressions are introduced into equations (6)—(8) and boundary conditions (4)—(5)
where only order one terms in the perturbation fields are kept in the linear approximation.

The fields are expanded into Legendre polynomials,

Uy = Z Z a;*Li(x)Lj(2), i, = Z Z a;’ Li(x)L;(2), 9)

=0 j=0 i=0 j=0
n m n m
P=Y "N alLWLiz), 0=) > ajLx)Li2) (10)
i=0 j=0 i=0 j=0

where L; is the Legendre polynomial of degree i. The expansions are introduced into the

equations, they are evaluated at the Legendre Gauss—Lobatto points and a linear problem
Yz al af
i 2 i iy
tion. Then we obtain the solution of the first iteration of the Newton method u. = u

on the coefficients agx, a ,i=0,...,mj=0,...,missolved with a Gaussian elimina-

0

o+ Uy
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ul = ul +it,, P' = P°+ P, 0" = §°+4. This procedure is repeated u

s+1
z

s+1
x

= U+, U = U+ 1y,
Pl = PS4 P, 0°*! = 6% + 0 until a convergence criterion is satisfied. In particular we have
considered that the L2 norm of the computed perturbation should be less than 10~7. Where
the L2 scalar product and norm are calculated with the Legendre Gauss—Lobatto quadra-

ture

n m

(f.8)aL =) Y f e 2)8(e z:) puss (11)

and x;,[=0,...,n, 25,5 =0,...,m, are the Legendre Gauss—Lobatto points, and pj; are the
Legendre Gauss—Lobatto weights. We have increased the number of polynomials in the
Legendre expansion with respect to [18] in order to improve the accuracy of the calcu-
lation of the bifurcation points. The criteria to choose an order expansion is the critical
Rayleigh number where the bifurcation takes place does not change if we increase further
the order expansion. So, in this calculations we have considered expansions of order n = 35

in the x-direction and m = 13 in the z-direction.

2.2 Linear stability of the stationary problem
Once the stationary solutions (u?, 6%, P?) (x, z) are obtained, the stability of these solutions
is determined by a linear stability analysis as in [8]. In this analysis the stationary solutions

are perturbed as follows:

u(x, z,t) = u’(x,2) + U(x, z) exp(o t), (12)
0(x,z,t) = 0°(x,2) + §(x, z)exp(ot), (13)
P(x,z,t) = P’(x,2) + IN’(x, z)exp(ot). (14)

Here superscript b indicates the corresponding solutions of the stationary problem (6)—
(8)—(4)—(5) and the tilde refers to the perturbation. Expressions for the perturbed fields
(12)—(14) are introduced in equations (1)—(5) and the resulting equations are linearized.

Therefore, if we drop the tildes to simplify notation, we get the following eingenvalue prob-

lem:
V-u=0, ing, (15)
RYe, —VP+ Au=0, ingQ, (16)
AG—u’ - VO-u-V0’ +u,=06, inQ, (17)

together with boundary conditions (4)—(5). The resulting problem is an eigenvalue prob-
lem in o (R). The sign of the real part of o(R) determines the stability of the stationary
solution. If Re(o (R)) < 0 for any eigenvalue of the stationary state, then it is stable, while
if there exists a value of o (R) such that Re(o (R)) > 0 then the stationary state becomes
unstable. If we name o07(R) the eigenvalue with largest real part, as Re(o1(R)) depends on
R, by increasing R, Re(o1(R)) changes sign at a critical threshold R., where Re(o1(R,)) =0
which separates stable from unstable solutions. The condition Re(o1(R.)) = O defines the

critical threshold of the bifurcation at which Im(o;(R.)) may be either zero or not.
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We choose the value of the aspect ratio I" = 3.495 as in [8, 18] and let the Rayleigh num-
ber R vary in the interval: [1000;3000]. In this interval two pitchfork bifurcations and two
inverse pitchfork bifurcations appear [18]. In this problem we take into account nine dif-
ferent solutions. In the interval [1000; 1102] there is only the zero solution Sy, in the inter-
val [1101;1252] there are two other solutions, three in total, Sy, S; and S,, in the interval
[1252;1538] five solutions Sp—Ss4, and finally in the interval [1538;3000] nine solutions
So—Ss. Therefore solution S exists in the interval [1000;3000], solutions S; and S, in the
interval [1102;3000], solutions S; and S, in the interval [1252;3000] and solutions S;—Sg
in the interval [1538;3000].

3 Numerical reduced basis method

The numerical method is based on the approximation of all the solutions by the linear
combination of some well chosen solutions computed for some particular values of R, the
same ones for every variable: u, 8, P. These values are obtained in a greedy fashion.

3.1 Construction of the reduced basis
The procedure we have implemented in this paper in order to obtain the reduced basis is
the pure greedy that is explained next in a inductive way:

— First we fix the solutions we want to calculate and the interval of values of R where
these solutions exist.

— We solve numerically the stationary equations (6)—(8) with boundary conditions
(4)—(5), with the Newton Legendre collocation method described in the previous
section, for different values of the Rayleigh number R chosen on a subset of the
interval, denoted as “trial set” Eyia. Some values of the Rayleigh number are
equidistant, and others are near the bifurcation points. We name the associated
solutions ®(R) = (u(R), 6(R), P(R)).

— For the first step i = 1, we choose a value of the Rayleigh number that we name Ry,
with its corresponding solution ®(R;), i.e. in this work it is the smallest value of R in
the interval we consider. We normalize this stationary solution according to the L2

scalar product:

u 6 P
\111:<1/,;': L 1,1”’:—1),

g2 6112 1Py l2

then we consider a first space X; = span{y'} x span{wf} x span{y’}.
— We introduce the projection operator ITys x II X0 X I1 xp onto X, for the L? inner
product and consider the approximation
(D (R), 0V (R), PV(R)) = [Mxu (a(R)), Mo (O(R)), My (P(R))] for every R. Note that it
corresponds to the product of independent projection operators ITxu , IT Xt and I1 xP-
— We evaluate the relative errors of the projections on X; for the velocity and
temperature fields u, 6 on one side and the pressure P on the other side:

104(R), =(R), O (R) = (1 (R), u” (R), 0V (R)) | 292
[l (2 (R), u-(R), 6 (R)) |l (12)3

e (R) =

and

IP(R) - P (R)l 2

(1) _
& B = T @

’
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over any values of R chosen on Ey,. We then choose R; as follows:

1
R, = argmax max e].( )(R)
ReBiyjal j=12

and the corresponding stationary solution is ®(R5).

— Given step i, we orthonormalize the i + 1 functions by Gram—Schmidt procedure and
we consider the i + 1 space
Xip1 = span{yf,..., ¥} x span{yr!, ..., ¥ |} x span{y?, ..., ¢P ).

— We introduce the projection operator Hx;il X HX?H X Hxﬁl onto Xj,; for the L?
inner product and consider the approximation

(0D (R), 6 V(R), P*V(R)) = [Txu (u(R)), My (6(R), My (PR))]

for every R.
— Again, we evaluate the relative errors of the projections on X;,; for the velocity and
temperature fields u, 6 on one side and the pressure P on the other side:

24 (R), o (R), O(R)) = (1" (R), " (R), 0F D (R)) 1259
” (Mx(R), uz(R), G(R)) || (L2)3

EYH)(R) _

and

1) ) IP(R) — PV (R)|| 2
& ) IPQR)] 2

’

over any values for R chosen on Eyia. We then choose R, as follows:

i+1
R;, = argmax max 61.(” )(R)
ReEyial j=12

and the corresponding stationary solution is ®(R;;5).

— This procedure is repeated until we reach a value N < card(Ey,)) for which the

stopping criterium ej(N) <1077, j=1,2 is satisfied.

Therefore, we obtain the reduced basis {V;, W,,..., ¥y} and a corresponding discrete
space Xy = X3 x X% x X%. For some solutions we have constructed a reduced basis, be-
sides for other solutions two reduced basis and for other ones three reduced basis, in order
to reach the same accuracy for all the solutions. Table 1 shows the number of snapshots
used to calculate the reduced basis and the number of elements of the reduced basis for
each solution.

Tables 2, 3, 4, 5, 6 present the maximum values of 610 ) and eg ) for increasing values of
j and the corresponding R parameter in which the maximum value is obtained for the
different solutions.

Table 1 Number of snapshots in the trial set for the different reduced basis (RB) for different solution

S S3 S3 (two sets) Ss Ss (three sets)

# B 23 22 29,19 19 22,26,51
#RB 9 8 66 10 677
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Table 2 ng)( eg)/j =1,...,Nand the respective Rayleigh number R in which the maximum takes place
for different dimensions j of the reduced basis space. R is in the interval [1102;3000] for solutions S

0

j €] eg) R

1 0.809 0.236 1102
2 0.085 0.0.009 3000
3 0.008 0.001 1500
4 0.003 47-10* 2200
5 33-10™% 67107 1110
6 1.1-107 17-107 2700
7 17107 27-107° 1900
8 28.10° 411077 1800
9 18-1077 17-108 1300

Table 3 eﬁj), eg),j =1,...,Nand the respective Rayleigh number R in which the maximum takes place
for different dimensions j of the reduced basis space. R is in the interval [1253;3000] for solutions S3

0

j €, € R

1 0.748 0.588 1253
2 0.056 0015 3000
3 0.007 0.001 1600
4 0.002 2510 2200
5 11107 35.107 1300
6 26-107 74107 2700
7 46-107° 75107 1400
8 70107 96-1078 1260

Table 4 61@, eg),j: 1,...,Nand the respective Rayleigh number R in which the maximum takes

place for different dimensions j of the reduced basis space. R is in the interval [1253; 1538] for

solutions S3 in the upper part of the table and R is in the interval [1538;3000] for solutions S3 in the

lower part of the table

; ) 0
J € € R

1 0354 0.198 1253
2 0011 0.002 1530
3 64-107 12107 1330
4 65-107 12-107 1270
5 14-.10°° 29-107 1450
6 27107 52-1078 1380
1 0442 0412 1539
2 0018 0.005 3000
3 0.001 27-107 2100
4 241074 52-107 1700
5 59.10° 89-1077 2600
6 55.107 21107 1900

Table 5 ng)( eg)/j =1,...,Nand the respective Rayleigh number R in which the maximum takes place
for different dimensions j of the reduced basis space. R is in the interval [1538;3000] for solutions Ss

0

J € & R

1 2.365 1.000 1539
2 0.290 0.162 3000
3 0.035 0010 1800
4 0010 0.003 2300
5 0.001 47107 1580
6 39-107* 72107 2700
7 1.1-107 3.1-107° 1550
8 16-107 44.10° 2000
9 23-10° 86-107 1700
10 39-107 94.1078 2900
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Table 6 61@, eg),j =1,...,Nand the respective Rayleigh number R in which the maximum takes
place for different dimensions j of the reduced basis space. R is in the interval [1539; 1600] for
solutions Ss in the first part of the table, R is in the interval [1600; 2000] for solutions Ss in the second
part of the table and R is in the interval [2000; 3000] for solutions Ss in the last part of the table

j € e R

1 0.785 0.265 1539
2 0016 0.006 1600
3 3.1-10 85.10™ 1560
4 44.107 1.1-107 1545
5 1.1-10°° 30-107 1585
6 721077 20-1078 1541
1 1.154 0683 1600
2 0.050 0.026 2000
3 0.003 66-107 1740
4 35.107 12107 1880
5 13-107 78-107° 1640
6 27107 64-1077 1940
7 24107 50-1078 1610
1 0.834 0.554 2000
2 0.039 0.022 3000
3 0.002 70-107% 2380
4 34.107 89-107 2700
5 12-107 40-107° 2120
6 24.10° 92-107 2880
7 13.1077 46-1078 2040

3.2 Galerkin procedure

Once the reduced basis {¥;, ¥,,..., ¥y} has been calculated, the Galerkin method with
expansions in this basis is implemented to solve the problem (6)—(8) with boundary con-
ditions (4)—(5). The nonlinearity of this problem is solved with an iterative Newton pro-
cedure, i.e. a linearization of the equations around a previous solution. We start with an
approximated solution at iteration s = 0, taken e.g. as a previously computed solution at a
Rayleigh number R* belonging to the trial set, then, at each iteration step s + 1 we solve the
linear problem obtained by linearizing around the previous step s. In practice this proce-
dure is equivalent to introduce a perturbation to the step s,

s+1 _ s ~ s+l _ s ~ s+1 _ps . o +1 _ D
Uy, = Un o + UN UN, = Un, + UNz 05" =63 +6n, Py =D + Py,

we want to emphasize that both (u3 ,, 43, ,) and (#yx, Un ) belong to Xy, both 63, and On
belong to X% and both P, and Py belong to X%

We then introduce these fields into the equations (6)—(8) and boundary conditions (4)—
(5) and linearize with respect to the perturbation. The following problem is obtained

(where the tildes have been omitted to simplify notation)

V.ouy=-V-u}, inQ, (18)
ROye, — VPy + Auy = —RO3e, + VP, — Auy,, in€Q, (19)
uy - VOy +uy - VO — Ay —un . = AOy —uy - VO + 1y, in Q. (20)

The variational formulation of this problem for the velocity and the temperature fields is

the following:
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Find uy € X} and Oy € X%, such that:

R/ GNVZ—/ VuN~VV:—R/ 9]{,VZ+/ Vuy - Vv, VveXy, (21)
Q Q Q Q
/(UN'VQJSV+U§\[~V9N—L£N,Z)~¢+/V9N~V¢)

Q Q

= _f Vo -V - / (uy - V0L -uy,) ¢ Vo eXP, (22)
Q Q

we discretize this problem by using expansions in terms of the reduced basis obtained in
the previous section, uy = Zf\:’l oy and Oy = Zﬁl B! . The integrals are calculated by
using Legendre Gauss—Lobatto integration. Note that our basis of solutions for the velocity
are divergence free, and thus the pressure disappears in this formulation.

Each step in the Newton iteration becomes a 2N x 2N algebraic system of equations:

" _ Al Bl ) o _ Fl
e+ (3 2)6)-5)

where

M = Al Bl ; E: o ;
Ay By B
AieMNxN, l:172; BieMNXN) l:1;2;

(x:(oll,...,OZN); ﬁ:(ﬁln--’ﬂ]\f); FiEMNXh i:1;2«

M is a non-singular and well conditioned matrix, condition numbers are O(10%) in all the
studied cases.

Note that the construction of the matrix M* can be done online very efficiently in O(N?)
operations if, during the pre-processing off-line stage, double integrals involving the ele-
ments of the reduced basis are computed, we are indeed in the case where the appear-
ance of the parameter is outside of the integrals and the problem is only slightly nonlinear
(bilinear), during the offline stage the integrals are calculated using the Legendre Gauss—
Lobatto quadrature formulas [24].

3.3 Linear stability analysis

Following the Galerkin variational procedure explained in the previous section, the eigen-
value problem (15)—(17) described in Sect. 2.2 is presented in its corresponding variational
form as follows:

Rf BNVZ—/ Vuy-Vv=0, VveXy, (23)
Q Q

/(uN-veﬁ,+uﬁ[-veN—uN,z)-¢+/veN-v¢

Q Q

:_U/GN-(;S, Vo € X3, (24)
Q
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we discretize this problem with the corresponding expansions into the reduced basis, uy =
SN i and Oy = YN, B!, The eigenvalue problem (23)—(24) is then transformed

into its discrete form as:

A, B 0 0
Mog=oBt & (") (%)=0 %) (25)
Ay B B 0 b B
where b = —(fQ wf’ . w]e)le = —In, where Iy is the identity matrix of size N, and A;, B,
Ay, By, a and B are defined in Sect. 3.2. The discrete eigenvalue problem (25) has a finite
number of eigenvalues o;. As explained in Sect. 2.2 we are interested in the presence of

eigenvalues that have a positive real part. If such eigenvalue exists the solution is unstable

otherwise the solution is stable.

3.4 Post-processing
The reduced basis is formed by functions that are not solutions of the Galerkin procedure,
indeed these are solutions of a Legendre collocation method. We introduce a rectification
post-processing presented in [18], which consists of a change of basis from the reduced
basis to the Galerkin solutions on the values of R of the basis as is explained as follows:

We start by computing the reduced basis Galerkin approximations for all values R = R;,
i=1,...,N, that are used in the reduced basis construction. This gives us coeflicients
uy(R) = Zﬁl a}t/fj“ and Oy (R;) = Zj\il ,B;I/fj". We name Q* (resp. Q) the matrix with en-
tries equal to oz} (resp. /3}). We call S (resp. S?) the matrix with columns equal to the
coordinates of u(R;) (resp. 6(R;)) in the reduced basis 1//j“ (resp. 1//19), j=1,...,N. Finally,
we set P* = S*[Q*]7! (resp. P/ = S?[Q%]71). This part is done during the off-line stage and
the matrix is stored.

Then for every other values for which we apply the RB Galerkin approximation, we are
able to rectify the coefficients as follows: e, = Pt (resp. B, = P°B) and the post-

processed solutions are then

N N
uy =~ Zanew,iwtu; 0 ~ Z ,Bnew,iwig' (26)
i=1

i=1

4 Results and discussion

As explained in Sect. 3.1. for each type of solution we have constructed one or more re-
duced basis with those solutions. We have calculated with reduced basis the nine different
solutions in the interval of R, [0;3000]. All these solutions except the conductive zero so-
lution are presented in Figs. 1-2 with plots of their isotherms and velocity fields. The zero
solution Sy is invariant under all the symmetries. A solution with 3 rolls, S;, without any
symmetry, can be seen in Fig. 1(a). Two solutions with 4 rolls, S3 and S4, with the symme-
try y, are shown in Figs. 1(c) and 1(d), respectively. Two solutions with 4 rolls, S5 and S7,
without any symmetry, can be seen in Figs. 2(a) and 2(c), respectively. If we consider so-
lutions in the different orbits, S, = ' S; (see Fig. 1(b)), S¢ = ¥ Ss (see Fig. 2(b)) and Sg = ¥ S7
(see Fig. 2(d)) are solutions as well, then we have found a total of nine solutions in that

interval of R.



Herrero et al. Journal of Mathematics in Industry (2018) 8:1 Page 11 0of 19

Figure 1 (a) Isotherms and velocity field for R = 1900 for solution S; and (b) S,; (c) isotherms and velocity
field for R = 1900 for solution S3 and (d) S4

Figure 2 (a) Isotherms and velocity field for R = 1900 for solution Ss and (b) Se; (c) isotherms and velocity
field for R = 1900 for solution S; and (d) Sg

4.1 Linear stability analysis

We have calculated the linear stability analysis for each type of solution. The exchange
of stability bifurcations are well captured. The stability of S; with respect to S; captures
correctly the bifurcation from S to S;. The real part of the eigenvalues is negative for any
value of R and the largest one becomes zero at R.; = 1101. The stability of S3 with respect to
Ss and S5 captures the bifurcation from S3 to Ss. The real part of the eigenvalues is negative
for R > R.;3 = 1538 and become positive for R < R 3 = 1538. Figure 3(a) presents real part of
the eigenvalues as a function of R for solutions Ss. In order to calculate a bifurcation point,
the equations have to be solved for a lot of values of the bifurcation parameter R. In this
case the problems are solved increasing R with steps of 1. Then the bifurcation point is the
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Figure 3 (a) Eigenvalue with maximum real part near the bifurcation point. Dashed line for the Legendre
solver and solid line for the post-processed reduced basis. (b) Norm of the difference between Re(a)
obtained with Legendre collocation and with a post-processed reduced basis method based on Legendre
collocation. (€) Norm of the difference between Re(a) obtained with Legendre collocation and with a
post-processed reduced basis method based on Legendre collocation divided by the norm of Re(o1)
obtained with Legendre collocation

first integer where the sign of the real part of the eigenvalue with largest real part changes
sign as R increases. For this reason we say the bifurcation point is correctly captured at
R,3 = 1538. But there is an error, with a linear interpolation the value of the bifurcation for
Reduced Basis is Rrp = 1537.5442 and for Legendre collocation it is R 3 = 1537.0860,
the relative error is O(10)~%. For both calculations, i.e., Legendre collocation solver and
post-processed reduced basis method, the real part of the eigenvalues becomes negative
for the same integer value, R = 1538. The same behavior is observed for the rest of the
bifurcation points at the values of R; = 1101 and R, = 1252. Therefore, we may conclude
that the bifurcation points are correctly captured.

Figure 3(b) shows the norm of the difference between the real part of the eigenvalue with
largest real part obtained via Legendre collocation and by a post-processed reduced basis
method based on Legendre collocation for solutions Sz in the interval of R [1534;1539]
near the bifurcation point at Rz = 1538. This difference is O(10~*) (where both approxi-
mations cross near the bifurcation point), increasing as we move away from the bifurcation
point. Figure 3(c) shows the norm of the difference between the real part of the eigen-
value with largest real part obtained via Legendre collocation and by a post-processed
reduced basis method based on Legendre collocation divided by the norm of the real part
of the eigenvalue obtained with Legendre collocation for solutions S in the interval of
R [1534;1539] near the bifurcation point at R.3 = 1538. This difference is O(107!) except
around R = 1537 where it is O(1) because the real part of the eigenvalue crosses the axis
and becomes zero near this point at R = 1537.0860, for this reason the relative error
becomes maximum at this value R = 1537.

4.2 Capturing the bifurcation points

Once we have calculated all solutions, a plot of the combination of coefficients ag3 + a;3 of
the Legendre expansion of the field u,y as a function of the Rayleigh number is drawn in
the bifurcation diagram in Fig. 4. The combination a3 + 413 is employed because some of
the coefficients for the stationary solutions are approximately zero but others are not. In

Page 12 of 19
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Figure 4 Bifurcation diagram where the value of the combination of coefficients ags + a;3 of the Legendre
expansion of the field uy as a function of the Rayleigh number is presented. Solutions S are calculated by
reconstructing all the solutions in each branch by Galerkin approach on the corresponding reduced basis

order to characterise the stationary solutions and its evolution as a function of the Rayleigh
number, we present the bifurcation diagram in Fig. 4 with a selection of nonzero coeffi-
cients ao3 + a3 for which the bifurcation diagram is clear. Four bifurcations are observed
in this problem. A first pitchfork bifurcation from the zero solution towards solutions with
3rolls, S; and S, = ¥ S;. A second pitchfork bifurcation from the zero solution towards so-
lutions with 4 rolls, S5 and S,. Two inverse pitchfork bifurcations from S; (respectively Sy)
towards non symmetric solutions with the same number of rolls, S5, S¢ = y S5 (respectively,
S7 and Sg = ¥ S7).

The point where different types of solutions intersect or get together is going to be the
bifurcation point, where the bifurcation takes place. The first pitchfork bifurcation takes
place at R = 1101, where solutions S; and S, get together. The second bifurcation occurs
at R = 1252, where solutions S3 and S, intersect. Finally both secondary inverse pitchfork
bifurcations take place at R = 1538, where S5 and S¢ intersect, and where S; and Sg get
together. These bifurcation points are correctly captured with the reduced basis method
by plotting the solutions in the bifurcation diagram in Fig. 4. The bifurcations are pitchfork
because symmetric solutions appear at those points.

The bifurcation points are also captured with the linear stability analysis as explained in
Sect. 4.1.

4.3 Errors on the solutions

Legendre collocation is a spectral method with exponential rate of convergence [23]. We
define the relative error as a measure of the difference between the solution obtained with
Legendre collocation and the solution obtained with the reduced basis procedure divided
by the measure of the solution obtained with Legendre collocation. In Fig. 5(a) the norm
of the difference between the stationary solution obtained with the reduced basis method
and the solution obtained with Legendre collocation divided by the norm of the solution

obtained with Legendre collocation in case R € [1101;3000] for solution S; are presented.



Herrero et al. Journal of Mathematics in Industry (2018) 8:1 Page 14 of 19

Figure 5 (a) Natural logarithm of the norm of the a)
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The errors are O(1072) far from the bifurcation point, that is already a quite good ap-
proximation in comparison with the number of degrees of freedom that have been used
in the reduced basis. Near the bifurcation point relative errors increase till O(107!) be-
cause those points are critical. The solutions cease to exist at these point. The norm of the
solutions goes to zero, for this reason a peak appear near the bifurcation point.

With the post-processing explained in Sect. 3.4 the solutions are improved, first, by con-
struction the error is zero at R = R;, for the other values of R € [1101;3000] the maximum
relative error becomes ((107%) outside the bifurcation point, see Fig. 5(b), where the norm
of the difference between the stationary solution obtained with Legendre collocation and
with a post-processed reduced basis method based on Legendre collocation divided by the
norm of the solution obtained with Legendre collocation for solutions S; in the interval of
R [1101;3000] is drawn. Near the bifurcation point the relative error increases to O(1073).
The solutions cease to exist at these point. The norm of the solutions goes to zero, and
the errors are relative, for this reason a peak appear near the bifurcation point. A better
relative error is obtained for the stable part of solutions Sz in the interval [1539;3000]
where the relative errors are O(1077) as can be seen in Fig. 6(a). The relative error for the
S3 unstable solutions are not better than O(10~%) outside the bifurcation point, near the
bifurcation points the relative errors increase to O(1072), as can be seen in Fig. 6(b). The
solutions cease to exist at the bifurcation point. The norm of the solutions goes to zero,
for this reason a peak appear near the bifurcation point. Figure 7(a) corresponds to rela-
tive errors for solution Ss in the interval [1539;1600]. Relative errors are O(107%), except
near the bifurcation point, where the error is O(1073). Solutions S5 cease to exist at these
point, for this reason a peak appear near the bifurcation point. The relative error in the
interval [1600;2000] is O(10~*) in Fig. 7(b), except a peak that appears O(1072) due to the
few values of snapshots considered in this case. A better relative error is obtained for the
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Figure 6 Norm of the difference between the a)
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third part of solution S5 in the interval [2000;3000] where the relative errors are O(1077)

as can be seen in Fig. 7(c).

4.4 Advantages of reduced basis method

The reduced basis method is supported by standard discretizations. The off-/ine work for
the calculation of the solutions to construct the reduced basis needs these standard meth-
ods. But, once the work of the standard method is done, the use of the reduced basis has
several advantages.

The pressure variable disappears in the Galerkin approach due to the variational for-
mulation and the incompressibility of the fluid (V - v = 0). This fact, together with the
few modes required for the Galerkin expansion, provides small matrices with the reduced
bases discretization. For a single value of the Rayleigh number R the size of the matrices
that appear after the discretizations is 2016 in Legendre collocation with expansions of or-
der 13 x 35, whereas in the case of the reduced basis with 8 elements the size of matrices
is 16. A factor of 126 in the size of the matrices for each value of R. Legendre collocation
matrices are dense by diagonal blocks of size 14 x 36.

The behavior of the Newton method for the nonlinearity is improved with respect to
standard methods. A branch of solutions of a type refers to the solutions of that kind
for different values of the parameter R in the interval where they exist. In the Legendre
collocation method case to calculate solutions in a new branch a continuation technique
isrequired, in this case it is based in adding the eigenfunction of the linear stability analysis
near the bifurcation point to the base solution as initial guess in the Newton method. Once
a solution in a branch is obtained to reach the solution in this branch for a larger value
of the Rayleigh number the new solution is considered as initial guess. For a large value
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of the Rayleigh number the solution must be calculated by increasing slowly the Rayleigh
number. For instance, we obtain the first solution in the branch in the interval [1101; 3000]
near R = 1101. To obtain the solution at R = 3000 we need to calculate the solution at R =
1102, take this solution as initial guess for R = 1110 and calculate the solutions increasing
the value of R in steps of 10 till R = 3000. Sometimes the steps of increase on R can be
larger. So, it is not possible to jump from R = 1101 till R = 3000 with Legendre collocation.
In the reduced basis this is not the case, the solution can be directly calculated for any
value of R. The reason for this behavior must be that nothing drive the solutions to be
attracted by a different branch since there is not unexpected elements in the basis set.
Also solutions obtained with reduced basis method are a great help as guess solutions for
the Newton method in Legendre collocation. In fact the Legendre solutions necessary to
valuate the errors have been calculated solving first with Galerkin reduced basis and taking
this solution as initial guess for Legendre.

The number of operations is drastically reduced. If we calculate the branch of solutions
S5 taking steps of 10 in R in the interval [1538;3000], 146 values of R are required, for
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the branch in the interval [1101;3000], 190 values of R and for the branch in the interval
[1252;3000] 175 values of R. Therefore the whole diagram requires 1314 values of R. If we
take into account symmetries only 511 values of R are necessary. The problem is nonlinear,
if we consider an average of 10 iterations for each problem and we solve the linear systems
with a method with O(N?) operations, being N the size of the matrices, for each value of
R we solve the system with O(107) operations for Legendre collocation and with O(10%)
with reduced basis. Then multiplying by 10% values of R, O(10'°) operations for Legendre
collocation and O(10°) for reduced basis to obtain the whole bifurcation diagram. The off-
line number of operations of reduced basis requires to solve Legendre for order 10 values
of the Rayleigh number, therefore O(10%) operations.

Summarizing, for a single value of the parameter R, the off-/ine number of operations
is O(10®), the on-line maximum number of operations for Legendre collocation is O(10°)
and for reduced basis O(10%). For the whole bifurcation diagram the off-line number of
operations is O(10%), the on-line number of operations for Legendre collocation is O(10'°)
and for reduced basis O(10°).

A significant advantage of solving the eigenvalue problem is provided by the use of a
reduced basis, which is due to a large reduction in computational cost. This reduction
arises due to the size of the matrices in the eigenvalue problem; in Legendre collocation
the size of the matrix is 2016, while using a reduced basis with 8 elements it is only 16.
The eigenvalue problem is solved with an adaptation of the implicitly restarted Lanczos
method [25]. This method has computational complexity O(N?), where N is the size of the
matrix. Therefore for a fixed value of R in Legendre collocation the complexity is O(10%)
whereas for reduced basis it is only O(103), six orders lower. For 1000 values of the Rayleigh
number Legendre collocation reaches O(10'?) and reduced basis O(10°). This is reflected
in the temporal computational cost, which is 122 s when using Legendre collocation and
only it is 6 s using a reduced basis. Therefore the reduction is of a factor of 20 in time.

5 Conclusions

We have solved a Rayleigh—Bénard problem in a rectangle using a reduced basis method
in an interval of values of the Rayleigh number R where there are four bifurcations and
nine different solutions. Different basis have been considered in each branch of solutions.
A linear stability analysis on those solutions has been performed with reduced basis. The
bifurcation points are correctly captured with the reduced basis method looking at the
intersection of branches of solutions or regarding the eigenvalues of the linear stability
analysis. The relative errors on the solutions in the unstable branches are of the same or-
der as the stable ones, O(1072), and O(10~%) after a post-processing, and become worse
near the bifurcation points. Near those points the errors are divided by the norm of solu-
tions that are disappearing, for this reason relative errors become O(107!). The behavior
of the Newton method for the nonlinearity is improved with reduced basis method with
respect to standard methods. Matrices are small with the reduced basis discretization.
For a single value of the Rayleigh number R the size of the matrices that appear after the
discretizations are 2016 in Legendre collocation, whereas in the case of the reduced basis
with 8 elements the size of matrices are 16 because pressure disappears in this formula-
tion. A factor of 126 in the size of the matrices for each value of R. The computational
complexity is less with reduced basis method. For a single value of the parameter R, the
off-line number of operations is O(108), the on-line number of operations for Legendre
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collocation is ((10%) and for reduced basis (O(103). For the whole bifurcation diagram the
off-line number of operations is O(108), the on-line number of operations for Legendre
collocation is ((10'°) and for reduced basis (O(10°). The advantage of solving the eigen-
value problem with reduced basis is huge as regards with respect to the large reduction
of the computational cost. For a fixed value of R in Legendre collocation the complexity
is O(10°) whereas for reduced basis it is only O(10?), six orders lower. This is reflected in
the reduction in the computational cost in time of a factor of 20. There is a startup work
in order to calculate the reduced basis, but once this is done, the reduced basis method
permits to speed up the computations of these bifurcation diagrams. A study of the eigen-
function spaces obtained with reduced basis can be also of interest and it will be addressed

in future work.
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