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Abstract
Two basic problems in optics are presented. The solutions to both problems are
formulated in terms of the associated ray mappings. An alternative formulation based
on a weighted sum of the actions along the rays is derived. Existence of solutions is
established via the Weighted Least Action Principle. Numerical methods for
computing the ray mappings are discussed. Finally, we demonstrate the theoretical
considerations by presenting complete solutions to a phase retrieval problem and to
a specific beam shaping lens design.
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1 Introduction
Ray mappings are fundamental objects in geometrical optics. Given an optical element, its
Hamilton’s point eikonal function includes the information on all possible ray mappings
induced by it. However, in many applications one looks for specific ray mappings that sat-
isfy certain constraints. In this paper we shall consider two such cases. In the first case we
search for all ray mappings associated with a single monochromatic beam whose intensity
is known at two planes. This question, known as the phase from intensity problem, arises
in many applications ranging from astronomy [18, 24] to ophthalmology [12]. The second
case concerns the shaping of a collimated beam with arbitrary incident and refracted in-
tensity distributions. Beam shaping has many applications ranging from solar energy to
chip manufacturing and medical instruments [6].

While these two cases involve two completely different problems in optics, we shall show
that their mathematical formulation is essentially identical. We shall then introduce two
characterizations of these problems, provide practical methods to compute the ray map-
pings, and from the mappings obtain the unknown phase in case one, and the beam shap-
ing lens in case two.

2 Methods
In the next section we formulate the wave propagation problem via the Rayleigh-
Sommerfeld diffraction integral. This formulation is natural for problems where the wave
might pass through a caustic. The large wave number expansion of the diffraction inte-
gral is used to derive the ray mapping equations for the phase retrieval problem. The ray
mapping condition for the beam shaping lens, that was derived in an earlier work by us, is
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presented in Sect. 4. In Sect. 5 we show that both ray mapping problems can be solved by
the Weighted Least Action Principle (WLAP). This variational method, which is a natural
extension of the Fermat principle of least time [19, 20], was extensively studied in recent
years both theoretically [25] and in a number of applications. In particular we character-
ize important properties of the critical points of the weighted least action functional, and
associate them with the phase retrieval and beam shaping problems. Numerical meth-
ods for computing the ray mappings, or equivalently for finding the critical points of the
Weighted Least Action functional, along with one example of phase retrieval and one
example of lens design are provided in Sect. 6.

3 Phase from intensity
We denote u(x, y, z) a monochromatic wave propagating in the positive z direction. We
express u in the form

u(x, y, z) = A(x, y, z)eikφ(x,y,z). (1)

The goal is to find the phase (or eikonal) φ from measurements of its intensities I = A2 at
two planes, say z = 0 and z = h:

I(x, y) := I(x, y, 0), Ip(x, y) := I(x, y, h). (2)

The wave u is assumed to obey the Helmholtz equation �u + k2u = 0, where k is the wave
number, and we assume that the refraction index is n = 1.

In the geometrical optics limit the phase is equivalent to the rays, which are the normals
to the wavefronts. A point (x, y) at the aperture � on the plane z = 0 is mapped into a
point T(x, y) = (xp, yp) at the imaged aperture �p on the second plane z = h. To find the
relation between the ray mapping and the phase φ(x, y, 0) we use the Rayleigh-Sommerfeld
diffraction integral [3], [23]:

u(xp, yp, h) =
–ik
2π

∫
�

A(x, y, 0)
exp(ik(φ(x, y, 0) + d(xp, yp, x, y)))

d(xp, yp, x, y)
cos θ dx dy. (3)

Here d = ((xp – x)2 + (yp – y)2 + h2)1/2, and θ is the angle made by the line connecting (x, y)
and (xp, yp) with the plane z = 0. The integral is approximated in the large k limit by the sta-
tionary phase method [10], [22]. The stationarity condition is ∇x(φ(x, y, 0)+d(xp, yp, x, y)) =
0, or equivalently:

∇φ = –∇xd =
(xp – x, yp – y)

((xp – x)2 + (yp – y)2 + h2)1/2 , (4)

where the notation ∇xs(xp, yp, x, y) denotes the gradient of a function s with respect to the
(x, y) variables. We assume that equation (4) implies a one to one correspondence between
� and �p, which is equivalent to assuming that no caustic surface intersects either planes
z = 0, h.

Using equation (4), we can write down the classical stationary phase approximation of
u(xp, yp) and then use it to obtain the following relation between the intensities at the two
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planes:

Ip
(
T(x, y)

)∣∣J(T(x, y)
)∣∣ = I(x, y). (5)

Here J is the Jacobian of the ray mapping (xp, yp) = T(x, y), and |J| denotes the absolute
value of the determinant of J. We denote the set of mappings T satisfying condition (5)
as T . Therefore, the phase retrieval problem is equivalent to finding a ray mapping T :
(x, y) → (xp, yp) that satisfies both equations (4) and (5).

4 Beam shaping
Consider an incident collimated beam, propagating in the z direction, whose cross sec-
tional intensity is I(x, y). The goal is to design a lens with two freeform surfaces, denoted
f and g , that converts it into a new collimated beam with cross sectional intensity Ip(x, y).
Such problems are of great importance in the laser industry [6]. The case where I and
Ip are both radially symmetric is well-known [15], and can be reduced to simple ODEs.
However, we consider the most general case of arbitrary distributions I and Ip. In this case
beam shaping can only be achieved by freeform surfaces [7], [21], [13], [14], [16], [4].

The schematic beams and optical element are depicted in Fig. 1. In Fig. 2 we present an
example, where the target is to design a lens that converts an incoming collimated beam
with six spots (for instance a beam created by a LED-based device) into a homogeneous
collimated beam. Later, in Sect. 6, we shall compute the surfaces f and g for this example.
A striking fact, proved in Sect. 5, is that both these surfaces are convex.

Let f (x, y) and g(x, y) be the front and back surfaces of the lens, respectively. The refrac-
tion index of air is 1, and we denote the lens refraction index n. Consider a ray that starts
from a point (x, y) on a surface z = 0 on the left side of the lens. After two refractions, the
ray is mapped into a point (xp, yp) = T(x, y) on a plane z = h on the right side of the lens.
The ray mapping T is constrained by the energy conservation equation (5). In addition,
the mapping T and the lens surfaces f and g are related by Snell’s law of refraction and by
the fact that both planes z = 0, h are wavefronts, since the incident and refracted beams
are collimated. This implies that the optical path length between all points (x, y) and their

Figure 1 Shaping arbitrary collimated beams
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Figure 2 An incoming beam consisting of six spots arranged over a circle

images T(x, y) is constant. Combining these facts, and after some algebra, the following
equation is obtained [21] that relates f and T .

∇f =
–n((xp, yp) – (x, y))√

χ – bn|(xp, yp) – (x, y)|2 , (6)

where χ and b are two constants that depend upon n, the distance h between the planes,
and an integration factor [21]. A similar equation holds for the second surface g .

5 The weighted least action principle
We presented in Sects. 3 and 4 two different optical problems that are fully determined by
specific ray mappings. Surprisingly, both problems lead to a similar mathematical formu-
lation. Both ray mappings are required to satisfy the energy conservation condition (5). In
addition, in both cases the ray mapping T must satisfy a ‘symmetry’ condition such as (4)
or (6). Three questions arise. The first is whether such ray mappings T exist at all. If the
answer to this question is positive, the second question is how many solutions exist, and
what are their properties. The third question is how to compute the ray mappings.

It is very hard to answer these questions directly from equations (4)–(5). Together they
constitute a very complicated PDE of the notorious Monge–Ampere type [17]. Instead,
we shall answer all three questions using an equivalent formulation of the problem. For
this purpose, we associate each ray connecting (x, y) and (xp, yp) = T(x, y) with an action
C(T , (x, y)), and then define the weighted total action to be

M(T) =
∫

�

C
(
T , (x, y)

)
I(x, y) dx dy, (7)

where � denotes the wave’s aperture, or the beam’s cross sectional domain. The weighted
action M is restricted to the set T (I, Ip) of mappings that satisfy condition (5). The func-
tional M(T) was introduced (for the special case C(xp, yp, x, y) = |(xp, yp) – (x, y)| by Monge.
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It has been extensively studied in recent years both theoretically and in the context of sev-
eral applications [25]. In the optical set up, the special case C(xp, yp, x, y) = |(xp, yp)–(x, y)|2,
naturally denoted the L2 Monge problem, is related to paraxial wave propagation [22], and
to the Schrödinger equation [20]. For the applications in the present paper we consider
cost functions C of the form

C(xp, yp, x, y) = C
(
(xp, yp) – (x, y)

)
, (8)

with C(z) being a smooth convex function.
The stationary points of M(T) are characterized by the following condition:

Theorem 1 Assume I , Ip are positive continuous functions, and the domains �, �p are
compact. A ray mapping (xp, yp) = T̄(x, y) is a critical point of M in the class T (I, Ip) if and
only if T satisfies the following relation

∇xC(xp, yp, x, y) = ∇ζ (x, y), (9)

for some ‘potential’ function ζ (x, y).

The stationarity condition (9) can be proved (e.g. [22]) by computing the first variation
of M under the constraint (5). The next question is how many solutions exist.

Theorem 2 Under the assumptions of Theorem 1 there exist a minimizer and a maximizer
for the functional M(T).

The existence of a minimizer of M, was proved by Brenier [5]; see also [25]. The existence
of a maximizer follows from the fact that the conditions on I , Ip and �, �p imply weak
star compactness for the optimization problem; see [26]. Furthermore, we conjecture that
there always exist also critical points that are neither minimizers nor maximizers.

As will be shown later, it is important to characterize in some detail the stationary solu-
tions. In the L2 Monge problem, it can be shown that both the minimizer and the maxi-
mizer are gradients of some function ψ , where ψ is convex for the minimizer, and concave
for the maximizer. For a more general convex cost function C, we now prove:

Theorem 3 Assume I and Ip are positive continuous functions, the two domains �, �p are
bounded, and C(z) is a smooth convex function. Let ζ (x) be the potential in equation (9)
associated with the maximizer of M. Then the maximizer (xp, yp) = T̄(x, y) of the functional
M is of the form

T̄(x, y) = (x, y) – ∇C∗(∇ζ (x, y)
)
, (10)

where

C∗(p1, p2) = max
x,y

(p1, p2) · (x, y) – C(x, y), (11)

and ζ is a convex function.
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Proof Define the class A to be:

A = α(x, y),β(xp, yp); α(x, y) + β(xp, yp) ≥ C
(
(xp, yp) – (x, y)

)
. (12)

We also introduce the class of joint intensity functions �, such that the marginal intensities
of any function π ∈ � are I and Ip respectively, i.e.

∫
π (x, y, xp, yp) dx dy = Ip(xp, yp),

∫
π (x, y, xp, yp) dxp dyp = I(x, y). (13)

Clearly, for every π ∈ �

∫ (
α(x, y) + β(xp, yp)

)
π dx dy dxp dyp

=
∫

α(x, y)I(x, y) dx dy +
∫

β(xp, yp)Ip(xp, yp) dxp dyp

≥
∫

C
(
(xp, yp) – (x, y)

)
π dx dy dxp dyp. (14)

Since the inequality in equation (14) holds for all π and all α, β we can apply a min-max
argument and conclude

inf
α,β∈A

∫
α(x, y)I dx dy +

∫
β(xp, yp)Ip dxp dyp

≥ sup
π∈�

∫
C

(
(xp, yp) – (x, y)

)
π dx dy dxp dyp. (15)

In particular, for the special set of π of the form π = I(x, y)δ((xp, yp) – T(x, y)), where T(x, y)
is a mapping in T , we have

inf
α,β∈A

∫
α(x, y)I dx dy +

∫
β(xp, yp)Ip dxp dyp

≥ sup
T∈T

∫
C

(
T(x, y) – (x, y)

)
I(x, y) dx dy. (16)

Recalling the potential function ζ (x, y) we define

η(xp, yp) = max
x,y

C
(
(xp, yp) – (x, y)

)
– ζ (x, y). (17)

Moreover, solving the optimization problem in equation (17) provides a ray mapping

(xp, yp) = T̄(x, y) = (x, y) – ∇xC∗(∇xζ ). (18)

Similarly, ζ can be expressed in terms of η:

ζ (x, y) = sup
xp ,yp

C
(
(xp, yp) – (x, y)

)
– η(xp, yp). (19)

We now select π̄ = I(x, y)δ((xp, yp) – T̄(x, y)) and α(x, y) = ζ (x, y), β(xp, yp) = η(xp, yp). Us-
ing the definition of ζ , η and T̄ we can calculate the integrals in the inequality (15), and
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obtain that for this choice of (T̄ ,α,β) both sides equal M(T̄). Therefore T̄ is the map-
ping that maximizes M(T) in the class T . Finally, since ζ (x, y) is obtained by maximizing
a convex function C, it must be convex, which completes the proof. �

It is now possible to identify both equations (4) and (6) to be of the form of equation (9).
Therefore the phase from intensity problem can be solved by associating the unknown
phase φ(x, y, 0) with the critical points of M for the choice C1(xp, yp, x, y) = d(xp, yp, x, y).
Similarly the beam shaping lens can be solved by identifying the front lens surface f with
the critical points of M for the choice C2(xp, yp, x, y) = –

√
χ – bn|(xp, yp) – (x, y)|2. It re-

mains to consider the computation of the critical points.
We point out that in general the selection of the appropriate cost function C follows

from the nature of the wave equation, or more precisely from its Hamiltonian nature.
A number of canonical wave equations, their Hamiltonian, and the associated C can be
found for instance in [20].

6 Results
The problem of computing minimizers of M received quite a bit of attention. For example
we refer to [1, 2, 8] where PDE-based approach is suggested. An alternative combinatorial
approach is to sample the two intensities I , Ip faithfully by two sets of points (xj, yj) for
I and (xj

p, yj
p) for Ip, where j = 1, 2, . . . , N . The problem of minimizing M is the same as

computing the permutation π that minimizes

N∑
j=1

C
(
xπ (j)

p , yπ (j)
p ; xj, yj).

The same method can be used to find the maximizer of M(T). While searching over all
permutations has of course huge complexity, much more efficient algorithms, such as the
“Hungarian algorithm” [9] were proposed with complexity of O(N3). An even more ef-
fective multiscale algorithm was proposed recently by Merigot [11], although it is limited
to quadratic cost functions. We recently developed a very fast O(N log N) multiscale al-
gorithm that works for all convex C, at the price of some moderate assumptions on the
potential function ζ . However, in the simulations in the present paper we use the Hungar-
ian algorithm.

We proceed to present a few examples. We first demonstrate the WLAP as a method to
retrieve an arbitrary phase. We select the initial aperture to be the unit disc, and the initial
phase is φ(x, y) = 0.1( x2

2 + y2 + 3x4 + y3) to mimic defocus, coma and spherical aberrations.
We assumed uniform intensity on the first screen, and computed the exact intensity at
the second screen. The sampling of both intensities (200 sampling points) are depicted in
Figs. 3(a) and 3(b), respectively.

The ray mapping was computed by minimizing the Monge functional C1 defined in
Sect. 5. The calculated ray mapping, and the exact ray mapping are depicted in Figs. 4
and 5, respectively.

The expected convergence rate of the algorithm can be bounded by the size of an average
‘cell’. In the case of a unit disc aperture, the bound is thus

√
π/N where N is the number

of sampling point. In practice the convergence is better, as can seen in Table 1.
In the second example we consider the beam shaping problem of Sect. 4. The intensi-

ties were sampled with 400 points (right drawing of Fig. 6. In this case we computed the
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(a) The sampling of the wave’s (b) The sampling of the wave’s intensity on the second screen

intensity on the first screen

Figure 3 The sampling of the wave’s intensity

Figure 4 The theoretical ray mapping

Figure 5 The ray mapping obtained by minimizing the Monge functional

Table 1 Convergence of the ray mapping algorithm

Number of sampling points Average mapping error Theoretical error bound

200 0.038 0.125
400 0.021 0.088
800 0.017 0.062
1000 0.015 0.056

maximizer of M, for the cost function C2 defined in Sect. 5, since this solution guarantees
that both surfaces f and g are convex, which is a very important consideration in the lens
manufacturing. The ray mapping is depicted in the left drawing of Fig. 6. Finally, we depict
the lens surfaces in Fig. 7.

Indeed, as proved in Theorem 3 in Sect. 5, both surfaces are convex, in contrast to the
highly nonconvex intensity distribution of the incident beam.

7 Discussion and conclusions
The notion of ray mapping was presented in the context of two canonical optical problems.
Although the problems are physically completely different, it was shown that they both
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Figure 6 A discrete sampling of the intensity of the incoming beam (right) and the ray mapping (left)

Figure 7 The surfaces (f on the left and g on the right) of the beam shaping lens

can be solved within the same mathematical framework of the Monge optimal transport
paradigm. We showed that the weighted least action functional has at least two critical
points, one a minimizer and one a maximizer. We conjecture that there exist also other
(finitely many) critical points.

The characterization of the optical problems as minimizers or maximizers of the func-
tional M(T) provides a very useful tool for computing the solutions of these problems. The
minimizer (or maximizer) can be found by a relatively simple combinatorial optimization
tools. We thus provided an example demonstrating the application of the theory to phase
retrieval and an example of beam shaping. An important aspect of the beam shaping prob-
lem is that by maximizing the functional M(T), we obtain a lens with two convex freeform
surfaces. The convexity was proved in a very general context under certain convexity as-
sumption on the action C. This assumption holds for the Helmholtz equation or Fresnel
equation for monochromatic waves, for the Schrödinger equation (in the semi-classical
limit) and in other cases.

Acknowledgements
Not applicable

Funding
This work is supported by grants from the Israel Science Foundation.

Abbreviations
WLAP, Weighted Least Action Principle.



Rubinstein et al. Journal of Mathematics in Industry  (2018) 8:6 Page 10 of 10

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JR and GW contributed the theoretical parts of the paper, and YW contributed the numerical examples and simulations.
All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 12 February 2018 Accepted: 2 July 2018

References
1. Angenent S, Tannenbaum A, Haker S. Minimizing flows for the Monge–Kantorovich problem. SIAM J Math Anal.

2003;35:61–97.
2. Benamou JD, Brenier Y. Minimizing flows for the Monge–Kantorovich problem. Numer Math. 2000;84:375–93.
3. Born M, Wolf E. Principles of optics. Cambridge: Cambridge University Press; 1999.
4. Bosel C, Gross H. Single freeform surface design for prescribed input wavefront and traget irradiance. J Opt Soc Am A.

2017;34:1490–9.
5. Brenier Y. Polar factorization and monotone rearrangement of vector-valued functions. Commun Pure Appl Math.

1991;64:375–417.
6. Dickey FM. Laser beam shaping. Opt Photonics News. 2003;14:31–5.
7. Glimm T, Oliker VI. Optical design of two-reflector systems, the Monge–Kantorovich mass transfer problem and

Fermat’s principle. Indiana Univ Math J. 2004;53:1255–87.
8. Haber E, Rehman T, Tannenbaum A. An efficient numerical method for the solution of the L2 optimal mass transfer

problem. SIAM J Sci Comput. 2010;32:197–211.
9. Kuhn HW. The Hungarian method for the assignment problem. Nav Res Logist Q. 1955;2:83–97.
10. Mendel L, Wolf E. Optical coherence and quantum optics. Cambridge: Cambridge University Press; 1995.
11. Merigot Q. Multiscale approach to optimal transport. Comput Graph. 2011;30:1548–92.
12. Nam J, Rubinstein J, Thibos L. Wavelength adjustment using an eye model from aberrometry data. J Opt Soc Am A.

2010;27:1561–74.
13. Oliker V. On design of freeform refractive beam shapers, sensitivity to figur eerror and convexity of lenses. J Opt Soc

Am A. 2008;25:3067–76.
14. Oliker V. Designing freeform lenses for intensity and phase control of coherent light with help from geometry and

mass transport. Arch Ration Mech Anal. 2011;201:1013–45.
15. Oliker V, Rubinstein J, Wolansky G. Ray mappings and illumination control. J Photonics Energy. 2013;3:035599.
16. Oliker V, Rubinstein J, Wolansky G. Supporting quadric method in optical design: precise illumination control of a

collimated light with a single convex freeform lens. Adv Appl Math. 2015;62:160–83.
17. Prins CR, Ten Thije Boonkkamp JHM, Van Roosmalen J, Ijerman WL, Tukker TM. A Monge–Ampere-solver for free-form

reflector design. SIAM J Sci Comput. 2014;36:640–60.
18. Roddier F. Curvature sensing and compensation: a new concept in adaptive optics. Appl Opt. 1988;27:1223–5.
19. Rubinstein J, Wolansky G. A variational principle in optics. J Opt Soc Am A. 2004;21:2164–72.
20. Rubinstein J, Wolansky G. A weighted least action principle for dispersive waves. Ann Phys. 2005;316:271–84.
21. Rubinstein J, Wolansky G. Intensity control with a free-form lens. J Opt Soc Am A. 2007;24:463–9.
22. Rubinstein J, Wolansky G. Optimal transport and geometrical optics. J Opt Soc Am A. 2017;34:1817–23.
23. Smith DG. Field guide to physical optics. Bellingham: SPIE; 2013.
24. Teague MR. Deterministic phase retrieval: a Green’s function solution. J Opt Soc Am. 1983;73:1434–41.
25. Villani C. Topics in optimal transportation. Providence: Am. Math. Soc.; 2003.
26. Wells BB. Weak compactness of measures. Proc Am Math Soc. 1969;20:124–30.


	Ray mappings and the weighted least action principle
	Abstract
	Keywords

	Introduction
	Methods
	Phase from intensity
	Beam shaping
	The weighted least action principle
	Results
	Discussion and conclusions
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


