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Abstract
In this paper a review of semiparametric models developed throughout the years
thanks to an extensive collaboration between the Department of Statistics and
Operations Research of the University of Santiago de Compostela and a power station
located in As Pontes (A Coruña, Spain) property of Endesa Generation, SA, is shown. In
particular these models were used to predict the levels of sulphur dioxide in the
environment of this power station with half an hour in advance. In this paper also a
new multidimensional semiparametric model is considered. This model is a
generalization of the previous models and takes into account the correlation
structure of errors. Its behaviour is illustrated in a simulation study and with the
prediction of the levels of two important pollution indicators in the environment of
the power station: sulphur dioxide and nitrogen oxides.

Keywords: Semiparametric prediction models; Pollution indicators; Cointegration

1 Introduction: an environmental problem
The coal-fired power station in As Pontes is one of the production centers owned by En-
desa Generation SA in the Iberian Peninsula. It is located in the town of As Pontes de
García Rodríguez, northeast of A Coruña province.

This power station was designed and built to make use of lignite from the mine located
in its vicinity. This solid fuel was characterized by its high moisture and sulphur contents
and its low calorific value. Throughout the years the plant has undergone several transfor-
mation processes in their facilities with the aim of reducing emissions of sulphur dioxide
(SO2). The power station completed its last adaptation in 2008 to consume, as primary
fuel, imported subbituminous coal, characterized by its low sulphur and ash contents.

The location of the power plant close to natural sites of high ecological value, such as the
Natural Park As Fragas do Eume and existing legislation, mean that it has existed since the
beginning a great concern for its impact on the environment. Therefore the station has a
Supplementary Control System of Air Quality that allows it to make changes in operating
conditions in order to reduce emissions when the weather conditions are adverse to the
spread of the emitted smoke plume, specifically containing SO2, and there are significant
episodes of impaired air quality. Spanish law, by rules and regulations, sets maximum con-
centrations that can be achieved for these gases in a given period of time. In particular, for
this plant the only limit that might be exceeded at any time, is one that is established on
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the hourly mean (continuously computed) from the concentration of SO2 in the soil, the
value of 350 μg/m3.

The problem is to be able to predict, using the information received continuously at
sampling stations and the past information, the future values for SO2 levels. Statistical
forecast models are the key to get these predictions and suggest a course of action to the
plant operators.

In recent years, new statistical models have been designed to obtain the simultaneous
prediction of two pollution indicators in the environment due to the changes in the envi-
ronmental legislation, in the power station itself, and the construction of a new natural gas
combined cycle station in the vicinity. The fuels that are going to be used make that the
main interest lies in predicting the values of the nitrogen oxides (NOx) which is emitted by
both facilities simultaneously with the values of SO2 which is only emitted by the power
station.

All these changes have created a new problem: predicting hourly mean concentrations
of sulphur dioxide and nitrogen oxides, measured in the environment of the two facilities.
Faced with this new approach, the statistical forecast models are again an effective tool.
Thus, a multidimensional prediction general model is designed (see Sect. 3).

2 Methods: one-dimensional predictive models
2.1 Models designed to solve the environmental problem
Resulting from the collaboration over the past years between the Department of Statistics
and Operations Research at the University of Santiago de Compostela and the Environ-
ment Section of the power station, the Integrated System of Statistical Prediction of the
Immision (SIPEI, in Spanish) have been created employing statistical models to provide
predictions for the levels of SO2 with a half an hour horizon.

Due to data availability with minutal frequency in real-time and current legislation, the
hourly mean is considered from both of the values of SO2 and NOx, for predictions of
future values of both pollutants. Thus, two time series are constructed, X1,t and X2,t , for
which the subscript t represents a minutal instant, and each value will be an average of the
actual values for the last hour:

X1,t =
1

60

59∑

i=0

SO2(t – i) and X2,t =
1

60

59∑

i=0

NOx(t – i),

where SO2(t) and NOx(t) represent the concentration of SO2 and NOx, respectively, at
time t, measured in μg/m3.

The series of hourly SO2 means has a characteristic behaviour, highly influenced by
weather conditions and local topography. It takes values close to zero for long periods
of time, and it can suddenly and sharply increase (episodes) in bad meteorological condi-
tions for the dispersion of the smoke plume. Nowadays, the series of hourly NOx means
has a similar behaviour to that of SO2, but on a smaller scale (see Fig. 1). The main objec-
tive of the developed statistical models is to predict the episodes, so our interest is centred
on the values that occur less frequently along the time series.

Because of this, a kind of memory called Historical Matrix was designed (Prada-Sánchez
and Febrero-Bande [14]), which will be essential to the behaviour of all developed models
so far. This matrix is composed of a large number of vectors based on (Xt–l, . . . , Xt , Xt+k):
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Figure 1 Episode depicted in one of sampling stations. The one hour mean of SO2 and NOx are,
respectively, drawn in red and orange

real data of bihourly SO2 or NOx means, chosen so as to cover the full range of variable in
question and make the role of historical memory. To ensure that cover the entire range of
the variable, the matrix is divided into blocks according to the level of the response vari-
able, Xt+k . To update the memory, in every instant, when a new observation is received,
the historical matrix is renewed in the following way: the class to which the new obser-
vation belongs is found and then the oldest datum in such class leaves the matrix and the
new observation enters it. With a sample built this way, makes sure that always have up-
dated information on the full variation range of the interest variable, and over the years
this concept has been adapted to the different statistical techniques used.

2.1.1 The first semiparametric model
In the early years of development, the data transmission frequency to SIPEI was pen-
taminutal, and also, the legislation in force at that time established the limit values for
the two hour mean of the SO2. For this reason, the prediction models for SO2 levels ini-
tially worked with series of bihourly means. The objective was to obtain the prediction,
with a half an hour horizon, for this time series. Therefore, each time it receives a new
observation, Xt , it has to predict the value at six times ahead, Xt+6.

A semiparametric approach was considered (García-Jurado et al. [8]) which generalizes
the traditional Box–Jenkins models as follows:

Xt+κ = ϕκ (Xt , Xt–l) + Zt+κ , κ , l ∈ Z
+,

where Zt has an ARIMA structure of mean zero independent of Xt (Box et al. [1]).
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In particular at each time t, the regression function ϕ6(Xt , Xt–1) = E(Xt+6/Xt , Xt–1) is es-
timated with the well-known Nadaraya–Watson kernel type estimator (see Nadaraya [13]
and Watson [19]) using the information provided by the historical matrix. The second
step is to calculate the residual time series Ẑt–64, . . . , Ẑt relative to the last six hours, where
Ẑi = Xi – Ê(Xi/Xi–6, Xi–7) for each i and fits an appropriate ARIMA model for it. Finally we
get the Box–Jenkins prediction of Ẑt+6. The final point prediction proposed is given by:
Ê(Xt+6/Xt , Xt–1) + Ẑt+6.

2.1.2 Partially linear model
The information used by the previous semiparametric models to obtain the predictions is
the past of the time series; however it might be useful to introduce additional information
in order to improve these predictions. Specifically, meteorological and emission variables
have been used with, the so-called partially linear models (Prada-Sánchez et al. [15]) to
estimate bihourly mean values of SO2 with one hour in advance.

Data in the form of (Vt , Zt , Yt) is considered, where Vt is a vector of exogenous variables,
Zt = (Xt , Xt–l) and Yt = Xt+12 being Xt the series of bihourly SO2 means; and it is assumed
that this series conform to the following partially linear model: Yt = V t

t β +ϕ(Zt)+εt , where
εt is an error term of mean equals to zero.

This model can easily estimated following Speckman [18] and allow us to extend the
horizon to one hour maintaining the same level of accuracy as the semiparametric model
for half an hour horizon. In any case, the incorporation of external information slightly
improves the prediction because the measure point for the meteorological variables is lo-
cated at 80 m over ground level which is relatively far away (and so, uncorrelated) respect
to the typical height of the emitted smoke plume (above 800 m over ground level). Emis-
sion information is also of little interest because these signals are almost constant specially
when the facility is working not describing at all the reasons that make the smoke plume
falls to the ground. By these reasons, meteorological or emission information was not con-
sidered in the following models.

2.1.3 Neural networks
The change in the interest series established by the European Council Directive
1999/30/CE, from bihourly means to hourly means, causes the time series to be less
smooth. At the beginning, the previous semiparametric model was adapted to work on
the new series of hourly means. The results showed a considerable increase in terms of the
variability of the given predictions, regarding the results usually obtained for the series of
two hour means.

In an attempt to improve the response given by the SIPEI, and in particular, its point
predictions with half an hour horizon, new predictors based on neural networks models
were developed (Fernández de Castro et al. [6]).

A neural network model has been designed to provide predictions of one hour mean
values of SO2 with half an hour in advance. It consists of an input layer, one hidden layer
and an output layer. The number of nodes in the output layer is determined by the size of
the response to be obtained from the network; in this case interested in a prediction for
Xt+6. As input to the network it has been taken the bidimensional vector (Xt–3, Xt) and the
nodes in the hidden layer have been taken as the activation function of a logistic function,
and in the output layer, the identity function.
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Figure 2 Episode of SO2 depicted in one of sampling stations (red) jointly with the prediction provided by
the neural network (blue) (Fernández de Castro et al. [6])

The predictor given by the neural network has the following expression:

X̂t+6 = o1 =
L∑

j=1

ωo
1jf

h
j
(
θh

j + ωh
j1Xt–3 + ωh

j2Xt
)

with f h
j (z) = 1

1+e–z .
The weights {ωh

j1,ωh
j2,ωo

1j; j = 1, . . . , L} and the trends {θh
j ; j = 1, . . . , L} are determined dur-

ing the training process, as well as the final L number of hidden layer nodes, that is cho-
sen like the value which neural network provides better results, after having trained net-
works with identical architecture and different values of L. To design the training set of the
neural network it have been considered historical matrices, formerly introduced, suitably
adapted.

Figure 2 shows the forecasts given half an hour before by the neural network with 50
nodes in its hidden layer for an episode depicted in one of the measuring stations. The
good behaviour of the forecast (dotted line) can easily be seen. The procedures based on
neural networks accurately predict the real one hour mean SO2 air quality values (solid
line). These models were optimized later with boosting learning techniques (Fernández
de Castro and González-Manteiga [4]).

2.1.4 Functional data model
The one hour mean values of SO2 can be treated as observations of a stochastic process in
continuous time. The interest is, as it was discussed above, to predict a half-hour horizon,
so that each of the curves is an interpolated data on half an hour. In this case curves were
obtained by considering six pentaminutal consecutive observations, with sampling points
for each functional data. Therefore, we use random variables with values in Hilbert space
H = L2([0, 6]) with the form Xt(u) = x(6t + u).
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The following statistical model is considered Xt = ρ(Xt–1) + εt , where εt is a Hilbertian
strong white noise and ρ : H → H is the operator to estimate. For the estimation of ρ ,
a functional kernel estimator has been used in the autoregressive Hilbertian of order-one
framework. Furthermore, it has been conveniently adapted the concept of historical matrix
to the case where the data are curves (Fernández de Castro et al. [5]).

2.1.5 Other approaches designed to predict probabilities
The models described, so far, provide point predictions of SO2, but other techniques have
also been developed in order to predict probabilities. The aim of these alternative models
is to estimate the probability that the series of bihourly SO2 measures exceeds a certain
level r with an hour anticipation, namely in our case, we predict P(Zt) = P(Xt+12 > r|Zt)
being Zt = (Xt , Xt – Xt–3). To do it additive models with an unknown link function (Roca-
Pardiñas et al. [17]) have been used.

It has also been considered more complex generalized additive models (GAM) with
second-order interaction terms (Roca-Pardiñas et al. [16]). They have shown that the
GAM with interactions detects the onset of episodes earlier than it does GAM on its own.

2.2 Alternative one-dimensional models: additive models
In the statistical literature there is a wide range of one-dimensional models which can
be used to predict the levels of SO2. We will focus on the techniques we will use in the
next section to construct our multidimensional model: additive models for continuous
response.

There have been a number of proposals for fitting the additive models. Friedman and
Stuetzle [7] introduced a backfitting algorithm and Buja et al. [2] studied its properties.
Mammen et al. [12] proposed the so called smooth backfitting by employing projection
arguments. Let {(Yt , Zt)}T

t=1 be a random sample of a strictly stationary time series, with
Yt one-dimensional and Zt q-dimensional following the model:

Yt = m(Zt) + εt , t ∈ Z, (1)

where {εt} is a white noise process and E[εt|Zt] = 0.
Typically, it is assumed that the function m is additive with component functions mj, for

j = 0, . . . , q, thus

Yt = m0 + m1(Z1,t) + · · · + mq(Zq,t) + εt . (2)

A generalized kernel nonparametric estimation can be given using smooth backfitting
for the functions m1, . . . , mq (see again the above mentioned papers).

In all the models described above it is usually necessary the selection of a regularization
parameter (bandwidth with kernel smoothing, number of neurons in the hidden layer
for neural networks, . . . ). The calibration of this parameter was developed using cross-
validation techniques with the information of the updated Historical Matrix.

3 Methods: multidimensional semiparametric prediction
The new goal is to incorporate the prediction of NOx with half an hour in advance, as well
as to continue getting the predictions of SO2, as has already been commented. The idea is
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to generalize the one-dimensional semiparametric approach proposed by García-Jurado
et al. [8] taking into account the structure of correlation between the vectorial series that
is intended to predict.

3.1 The model
Be (Y , Z) = (Yl, Zl), l = 0,±1,±2, . . . a vectorial strictly stationary time series, where Yl

is a r-dimensional response series and Zl is a q-dimensional covariables series and, let
{(Yt , Zt)}T

t=1 be a random sample of (Y , Z). The following model is considered

Yt = ϕ(Zt) + Et , (3)

where Yt = (Y1,t , . . . , Yr,t)t , Zt = (Z1,t , . . . , Zq,t)t and Et = (E1,t , . . . ,Er,t)t . Let us consider two
possible structures for the multidimensional residuals series:

P1. Each Ek,t is a stationary AR(pk) process of the form

Ek,t =
pk∑

i=1

φi
kEk,t–i + ξk,t for all t ∈ Z, k = 1, . . . , r

independent of Zt , where ξk,t is a white noise process with variance σ 2
k , for k = 1, . . . , r.

P2. Et has a VAR(p) structure of the form

Et =
p∑

i=1

�iEt–i + ξt for all t ∈ Z,

independent of Zt , where the �i are fixed (r × r) coefficients matrices and ξt is a
r-dimensional white noise process, i.e. E(ξt) = 0, E(ξtξ

′
t ) = 
ξ and E(ξtξ

′
s ) = 0 for

t �= s.
Our main objective is to predict Yt using a sample of size T , κ instants ahead. The pre-

diction of Yt+κ is then defined by

Ẏt+κ = ϕ̂κ (Zt) + Ėt+κ , (4)

where ϕ̂κ (Zt) is a nonparametric estimate of ϕκ (Zt) = E[Yt+κ/Zt] and Ėt+κ the prediction
given, κ instants ahead, for the residual series constructed as Êt+κ = Yt+κ – ϕ̂κ (Zt).

3.2 Estimations
We suppose that the model (3) is verified. The first step is to make a nonparametric esti-
mation of ϕ independently for each of the r components of Yt : ϕ(Zt) = (ϕ1(Zt), . . . ,ϕr(Zt)).
Furthermore, we assume that the functions ϕk are additive with component functions ϕ

j
k ,

for k = 1, . . . , r and j = 0, . . . , q, thus

ϕk(Zt) = ϕ0
k + ϕ1

k (Z1,t) + · · · + ϕ
q
k (Zq,t), k = 1, . . . , r. (5)

Therefore, r additive models with q covariates are estimated using the smooth backfit-
ting technique. We have to take into account that the process Et is not observable since
the function ϕ is not known. Thus, we have to replace Et by the residuals

Êt = Yt – ϕ̂(Zt)
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and use these approximations to Et in the maximum likelihood estimations later defined.
To estimate the parametric part of the model, we must consider the two possible error

structures proposed above:
P1. The parameters φk = (φ1

k , . . . ,φpk
k ) of the error process {Ek,t} are estimated by stan-

dard maximum likelihood methods. In particular, we use a conditional maximum
likelihood estimator for every component of the form

φ̂k = arg max
φk∈�

l̂(φk),

where � is a compact parameter space and l̂ is the conditional log-likelihood given
by

l̂
(
φk ,σ 2

k
)

= –
T
2

log(2π ) +
1
2

log
(
σ –2

k
)

–
1
2

T∑

t=pk +1

((
Êk,t – Êk,t(φk)

)
/σk

)2

with Êk,t(φk) =
∑pk

i=1 φi
k Êk,t–i.

P2. The coefficients matrices (�1, . . . ,�p) of the r-dimensional error process {Et} are
also estimated by generalized maximum likelihood methods (Hamilton [10]). First,
we need to establish the following notation: �t = [�1 �2 . . . �p] denote the (r × rp)
coefficients matrix, let Xt be a (rp×1) vector containing p lags of each of the elements
of Et : Xt

t = [E t
t–1 E t

t–2 . . . E t
t–p].

The theoretical conditional log-likelihood function to be optimized has the follow-
ing expression:

l(�,
ξ ) = –
rT
2

log(2π ) +
r
2

log
∣∣
–1

ξ

∣∣ –
1
2

T∑

t=1

[(
Et – �tXt

)t

–1

ξ

(
Et – �tXt

)]
.

Thus the conditional log-likelihood is:

l̂(�̂, 
̂ξ ) = –
rT
2

log(2π ) +
r
2

log
∣∣
̂–1

ξ

∣∣ –
1
2

T∑

t=1

[(
Êt – �̂tX̂t

)t

̂–1

ξ

(
Êt – �̂tX̂t

)]
.

3.3 Other considerations: the phenomenon of cointegration
Sometimes the vectorial processes can be cointegrated, so one has to take into account the
structure of correlation between the series. The notion of cointegration has been one of
the most important concepts in time series since Granger [9] and Engle and Granger [3]
that formally developed it. The issue has broad applications in the analysis of economic
data as well as several publications in the economic literature.

Let Yt = (Y1,t , . . . , Yr,t)t be a vector of r time series integrated of order 1 (I(1)). Yt is said
to be cointegrated if a linear combination of them exists that it is stationary (I(0)), i.e., if
there exists a vector β = (β1, . . . ,βr)t such as

β tYt = β1Y1,t + · · · + βrYr,t ∼ I(0).

The vector β is called the cointegration vector. This vector is not unique since for any
scalar c the linear combination cβ tYt = β∗tYt ∼ I(0). Therefore, normalization is often
assumed to identify an unique β . A typical normalization is β = (1, –β2, . . . , –βr)t .
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Johansen [11] addresses the issue of the cointegration within an error correction model
in the framework of vector autoregressive models (VAR). Consider then a general model
VAR(p) for the vector of r series Yt

Yt = �0Dt + �1Yt–1 + · · · + �pYt–p + ξt , t = 1, . . . , T ,

where Dt contains deterministic terms (constant, trend, . . .).
Suppose Yt is I(1) and possibly cointegrated. Then, the VAR representation is not the

most suitable representation for analysis because the cointegrating relationships are not
explicitly apparent. The cointegrating relationships become apparent if the VAR model is
transformed to a vector error correction model of order p (VECM(p))

�Yt = �0Dt + �Yt–1 + �1�Yt–1 + · · · + �p–1�Yt–p+1 + ξt ,

where � = �1 + · · · + �p – Ir , �k = –
∑p

j=k+1 �j, k = 1, . . . , p – 1 and �Yt = Yt – Yt–1. The
matrix � is called the long-run impact matrix and �k are the short-run impact matrices.
Moreover, the rank of the singular matrix � provides information on the number of coin-
tegration relations that exist, i.e., the rank of cointegration. Johansen proposes a sequential
procedure of likelihood ratio tests to estimate this range.

3.4 Prediction scheme
We present now the prediction scheme step by step:

1. Every instant t, ϕκ (Zt) is estimated with the smooth backfitting technique
independently for each of r components using the data (Yl, Zl–κ ), l = κ + 1, . . . , T .

2. The residuals series Êt+κ is computed by

Êt+κ = Yt+κ – ϕ̂κ (Zt), t = 1, . . . , T – κ .

3. The following step is to make an appropriate adjustment on the model error
structure (VECM) and to obtain the prediction κ instants ahead: ĖT+κ .

4. The proposed final prediction is given by (4).
This scheme is a natural generalization of the one-dimensional prediction models de-
scribed in Sect. 2.1.1. In the next two sections simulation examples and real data analysis
are considered.

4 Results and discussion
4.1 A simulation study
To analyze the behavior of the proposed prediction procedure, a simulation study has
been performed generating samples from artificial series and making a prediction study
to k lags using, in all cases, Zt = Yt–1.

The following models are considered:
Series 1. Two independent AR(3) with constant trend:

Yt = ϕ +

(
E1,t

E2,t

)
,
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being

E1,t = 0.50E1,t–1 – 0.525E1,t–2 + 0.75E1,t–3 + η1,t ,

E2,t = 0.1875E2,t–1 – 0.50E2,t–2 + 0.05E2,t–3 + η2,t ,

where η1,t ∼ N(0, 0.252), η2,t ∼ N(0, 0.102) and ϕ = (25, 10)t .
Series 2. VAR(3) with constant trend:

Yt = ϕ + �1(Yt–1 – ϕ) + �2(Yt–2 – ϕ) + �3(Yt–3 – ϕ) + ηt ,

being �1 =
( 0.50 0.3150

0.75 0.1875

)
, �2 =

( –0.525 0
0 –0.50

)
, �3 =

( 0.75 0.375
–0.50 0.050

)
, ηt ∼ N2

(( 0
0

)
,

( 0.252 0
0 0.102

))
and ϕ as in Series 1.

Series 3. NPVAR(1) with independent VAR(3) noise:

Yt = ϕ(Yt–1) + Et ,

being ϕ(y) =
( ϕ1(y)

ϕ2(y)
)

=
( 5 cos(|y1|)

5 cos(|y2|)
)

and Et = �1Et–1 + �2Et–2 + �3Et–3 + ηt , where
�1, �2, �3 and ηt are similar to those of the previous series.

Series 4. VECM with constant trend:

Yt = ϕ +

(
Y1,t

Y2,t

)
,

being Y1,t = Y1,t–1 +vt and Y2,t = –Y1,t +ut , where vt ∼ N(0, 0.52), ut = 0.75ut–1 +
ηt , ηt ∼ N(0, 0.52) and ϕ is similar to that of the first series.

In each case, 1000 bidimensional series of length 500 were generated from the models
given above (Y i

1, . . . , Y i
500 with 1 ≤ i ≤ 1000). These values correspond to the generation

after an initial period of stabilization (starting at zero and neglecting the first 500 values
drawn). For every sample, M = 500 possible continuations of the series were obtained for
k periods ahead (Y i1

500+k , . . . , Y i500
500+k), which were compared with the prediction that was

made from the sample Y i
1, . . . , Y i

500.
For each of these series, three predictors are compared:
(a) The nonparametric predictor using additive models with the estimation of each

component independently (NPM).
(b) The semiparametric predictor for additive models to estimate the trend of each

bidimensional series component independently with model P1 for the residuals
(SPM).

(c) The semiparametric predictor for additive models to estimate the trend of each
bidimensional series component independently with VAR modelling for the vector
residuals proposed in the previous section as P2 (SPBM).

Thus, as noted above, by calling Y i
1, . . . , Y i

500, i = 1, . . . , N = 1000, each of the simulated
series and, considering Ŷ i(a)

500+k , Ŷ i(b)
500+k and Ŷ i(c)

500+k , k = 1, . . . , 30 as each of the predictors
according to the methods (a), (b) and (c) respectively, methods are compared using Mean
Square Prediction Errors:

MSPE(l) =
1
N

N∑

i=1

1
M

M∑

j=1

(
Y ij

500+k – Ŷ i(l)
500+k

)2, (6)
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where Y ij
500+k represents the observed value of the jth prolongation of the ith series, j =

1, . . . , M = 500, l = a, b or c and k = 1, . . . , 30.
The results are summarized in Tables 1 to 4. “MSPE(a, b, c)” means the mean square

prediction error (6) for the methods (a), (b) and (c), respectively. It can be seen that the
proposed semiparametric method improves the behavior the other two, specially in the
first lags and as the lags grow the differences between the three methods become smaller.
This is illustrated in Fig. 3 which compares the distribution of the prediction errors ob-
tained with three predictors for the second model.

Table 1 AR independent model (Series 1)

Series 1 MSPE(a) MSPE(b) MSPE(c)

Lags Var. 1 Var. 2 Var. 1 Var. 2 Var. 1 Var. 2

1 0.1637 0.0134 0.0646 0.0103 0.0640 0.0102
2 0.1704 0.0135 0.0819 0.0107 0.0804 0.0105
3 0.1735 0.0134 0.0856 0.0129 0.0845 0.0127
10 0.1701 0.0134 0.1595 0.0137 0.1480 0.0135
20 0.1690 0.0134 0.2140 0.0141 0.1695 0.0135
30 0.1689 0.0134 0.2696 0.0147 0.1733 0.0135

Table 2 VAR(3) model (Series 2)

Series 2 MSPE(a) MSPE(b) MSPE(c)

Lags Var. 1 Var. 2 Var. 1 Var. 2 Var. 1 Var. 2

1 0.1689 0.2299 0.0709 0.0513 0.0644 0.0103
2 0.1965 0.2782 0.0950 0.0773 0.0842 0.0494
3 0.1963 0.2650 0.0979 0.1295 0.0852 0.0673
10 0.2066 0.2803 0.1898 0.2455 0.1794 0.2313
20 0.2101 0.2824 0.2060 0.2856 0.2058 0.2732
30 0.2114 0.2828 0.2103 0.2875 0.2106 0.2813

Table 3 Model NPAR(1) with VAR(3) noise (Series 3)

Series 3 MSPE(a) MSPE(b) MSPE(c)

Lags Var. 1 Var. 2 Var. 1 Var. 2 Var. 1 Var. 2

1 1.3530 1.0066 1.2277 0.9937 1.2281 0.9895
2 6.4228 6.8469 6.3825 6.8125 6.3962 6.8373
3 12.4008 14.9944 12.5475 15.0671 12.5544 15.0604
10 19.9809 19.8974 20.0418 20.0296 20.0456 20.0320
20 20.5862 20.0169 20.6387 20.1749 20.6455 20.1776
30 20.8909 19.6885 20.9619 19.8530 20.9679 19.8559

Table 4 Pure VECMmodel (Series 4)

Series 4 MSPE(a) MSPE(b) MSPE(c)

Lags Var. 1 Var. 2 Var. 1 Var. 2 Var. 1 Var. 2

1 6.9370 8.8101 0.3426 3.0539 0.2699 2.6542
2 16.8852 18.7127 2.9435 5.8296 2.8263 5.1088
3 25.5642 27.4790 7.1160 10.2645 6.9875 9.3126
10 47.1114 49.5927 23.1711 28.1485 21.3344 24.0975
20 51.5780 54.1854 33.4512 41.7827 25.4007 28.2645
30 54.3195 56.9187 46.7582 59.7599 28.0551 30.8976
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Figure 3 Boxplots of the prediction errors obtained with three predictors for the pure VAR model.
(a) nonparametric predictor for each component independently, (b) semiparametric predictor for each
component independently and (c) semiparametric predictor with VAR modelling of the residuals

4.2 Real data application
The general model proposed in Sect. 3.1 was implemented for the particular case of the
prediction of levels of SO2 and NOx in the vicinity of power station and combined cycle.

Let Xt be the bidimensional series formed by the one hour mean series of SO2 and NOx

at each minute t. In terms of equation (3), we consider Yt = Xt+κ and Zt = (Xt , Xt – Xt–5). If
X̂i denotes the observed values for past instants (i ≤ t) and the best prediction for future
instants (i > t), the aim is to predict Xt+30 following the next algorithm:

• Every instant t, ϕ(Zt) is estimated with additive models and the information provided
by the historical matrix, independently for each component. The estimate of ϕ is done
at 30 instants ahead: Ẏt = Ẋt+30 = ϕ̂30(Zt) + ėt+30.

• The residuals series êt is computed by êt = Yt – ϕ̂30(Zt) and a test of model adequacy is
performed (for instance, the Ljung–Box test) for each component of the series
concerning the last four hours (240 observations).

• If any of the components of the residuals series is not white noise, a test is performed
to explore if the vectorial residual series is cointegrated. If this is the case, an adequate
VECM is adjusted. If the series is not cointegrated, a VAR model is fitted.

• Thus ėt+30 is obtained.
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• The proposed final prediction given by the Semiparametric Bidimensional Model with
the nonparametric part estimated at 30 instants (SPBM) is:

Ẋt+30 = ϕ̂30(Zt) + ėt+30.

To observe the behaviour of the prediction model, we have evaluated its performance
on two episodes of air quality alteration, whose information has not been included in the
historical matrix.

Figure 4 shows the forecasts given half an hour before by the proposed models for an
episode depicted in one of sampling stations. The good behaviour of the forecasts can
easily be seen. The proposals estimate quite well the real one hour mean of SO2 and
NOx values. This is confirmed in Table 5. This table contains three measures of accuracy
for the pure nonparametric predictor (NPM) and the proposed semiparametric predictor
(SPBM), based on the following criteria:

(a) Squared error: SE =
∑

t(yt – ŷt)2.
(b) Absolute error: AE = |yt – ŷt|.
(c) Relative absolute error (%): RAE = 100| yt–ŷt

yt
|.

Figure 4 Episode depicted in one of the sampling stations. Predictions given by the bidimensional
semiparametric models (NPM and SPBM) for the one hour SO2 mean

Table 5 SO2 and NOx Forecast errors

Model SO2 NOx

SE AE RAE SE AE RAE

M Md M Md M Md M Md M Md M Md

SPBM 1265.28 635.65 27.91 25.21 27.15 18.33 15.83 8.87 3.25 2.97 21.35 9.28
NPM 1043.23 372.02 24.20 19.29 24.18 15.99 30.35 18.28 4.42 4.28 29.77 12.17
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Figure 5 Episode depicted in one of sampling stations. Predictions given by the bidimensional
semiparametric models for the one hour SO2 (left) and NOx (right) means

Table 6 SO2 Forecast errors

Model SO2

SE AE RAE

M Md M Md M Md

SPBM 5782.18 2566.27 62.40 50.66 38.48 16.31
NPM 5833.85 3055.29 64.17 55.27 43.92 16.39

The mean (M) and the median (Md) of these three measures have been computed for the
period covering the pollution incident proper (02.00 to 10.00 hours). The SO2 nonpara-
metric prediction with the historical matrix captures very well the behaviour of the real
series (RAE: 24.18%) while the semiparametric prediction is not able to overcome (RAE:
27.15%). However, the NOx prediction given by SPBM (RAE: 21.35%) notably improves
one obtained by the NPM (RAE: 29.77%). Furthermore, the residuals series was detected
as cointegrated 123 times (8.37%), mainly when the episode higher values occur.

In another SO2 episode depicted in one of the sampling stations (see Fig. 5) the be-
haviour of the predictors is somewhat different. The SO2 prediction given by NPM (RAE:
43.92%) does not entirely capture the behaviour of the real series and so, the semiparamet-
ric prediction (RAE: 38.48%) can improve that results as shown in Table 6. In this episode,
the NOx values are very low (practically zero) and therefore there are no cointegration
relationships.

5 Conclusions
This paper reviews several prediction models that have been implemented along the years
for the prediction of SO2 in the vicinity of a power station. This evolution reflects the
adaptation of the statistical models to the change of improved environmental rules and
the availability of new technological resources that allows the estimation in more complex
situations.

The last part of the paper is devoted to a new proposal that, having in mind the same
philosophy applied to the previous univariate models, extends the semiparametric model
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to the multivariate framework. In particular, the paper deals with the joint prediction of
SO2 and NOx levels using natural extensions of the model in the univariate framework.
These models, originally developed for financial applications, are successfully adapted to
the environmental problem showing good results in the simulation studies and in the real
data application. The semiparametric joint predictor (SPBM) obtains similar results as
the nonparametric (NPM) and the semiparametric independent predictor (SPM) in those
scenarios where the components of the response are not related (see Table 1). Recall that
predictors NPM and SPM are constructed under this assumption. In the scenarios with
dependence among components, predictor SPBM clearly beats its competitors (see Ta-
bles 2–4) showing also good results in the real data application.
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